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Abstract 

 It has been shown previously that the number of epithelial cells in a monolayer can 

be determined in vitro using phase contrast microscopy by subtracting images mean-

filtered with two different kernel radii and then thresholding to segment cells. Careful 

selection of filter sizes was essential to ensure the number of segmented regions 

corresponded accurately with the number of cells in the image, however manual 

parameter selection and verification is time-consuming and prone to human error. We 

propose an intelligent imaging approach for evaluating the success of filter size 

combinations for cell detection using discrete mereotopology to compare 

segmentations with ground truth binary images of stained cell nuclei. Applying this 

approach to phase contrast images of H400 epithelial monolayers with varying levels 

of confluency, a region in the parameter space could be identified where more than 

90% of cells were correctly detected.   

1 Introduction 

Epithelial cells cultured in vitro form adherent monolayers and enable the study of cell 

behaviour in a simplified environment. These 2D epithelial monolayer models are used for 

a wide variety of purposes including toxicity assays and assessing potential wound healing 

treatments [1, 2]. One important metric in such studies is the change in cell growth rate in 

response to stimuli and this may be assessed by establishing growth curves from cell 

counts obtained at multiple time-points during the culture period. Cell numbers are 

frequently determined by counting cells in a haemocytometer chamber, a technique which 

involves enzymatic detachment of adherent monolayers from the culture surface to 

perform manual cell counts using a microscope. The destructive nature of this technique 

means it is unsuitable for observing cell growth longitudinally in the same cell population 

thus large numbers of cultures are required to generate growth curves, consuming time and 

laboratory resources and introducing error through potential inaccuracies in seeding 

density across different cultures. The accuracy of this technique is further limited by inter-

operator variability [3].  
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Phase contrast (PC) microscopy is a non-invasive method for imaging unstained cells 

using small phase shifts in light transmitted through the sample and provides a potential 

approach for non-destructively determining cell number using images of cell monolayers. 

However, PC images suffer from intrinsic “halo” artefacts – regions of bright pixels at 

object edges (Figure 1B) – which are a barrier to the application of simple thresholding 

techniques for segmenting cells.  

A method for determining cell number from PC images has previously been developed 

using morphological filters to overcome the halo artefact and create an image that may be 

segmented with a single threshold value [4]. This method involves applying two mean 

filters to the image – one with a kernel radius, rk, larger than the average cell and the other 

smaller than the average cell. Subtracting the two resultant images and then applying a 

threshold yields a binary image where the number of connected regions represents the cells 

(Figure 2A). The radii of the two filters – rk_small and rk_large – must be selected carefully to 

avoid separate cells from being merged, split or entirely undetected resulting in an 

erroneous cell count.  

In previous work, rk values were selected by applying a large range of rk pairs to a test 

image and comparing the number of regions segmented by each pair with the total number 

of cells in the image as determined by a manual count. However, this approach is 

inadequate in a number of ways. Firstly, manually determining cell number from a PC 

image is a laborious and error-prone process, particularly for images of confluent 

monolayers where cell numbers can be in the thousands. Furthermore, considering the total 

number of segmented regions as the sole measure of cell detection success does not 

guarantee that the regions have any spatial correspondence with the true cells.  

Discrete Mereotopology (DM) is a version of the Region Connection Calculus (RCC) 

logic used to describe the parthood relationships between discrete regions [5]. RCC5D is 

an implementation of DM which describes a set of five possible relationships between two 

regions in discrete 2D space (Figure 1A). RCCD has been used previously to encode 

information about cellular structure into an automated evaluation of segmentation success 

in histological images [6].  

 
Figure 1 : A) The 5 spatial relationships as described by the RCCD5 relation set and may 

be read as follows: DR(X,Y) – “X is disconnected from Y”, PO(X,Y) – “X partially 

overlaps with Y”, PP(X,Y) – “X is a proper part of Y”, PPi(X,Y) – “X is a proper part 

inverted of Y”, EQ(X,Y) – “X is equal to Y”. B) PC image of a H400 cell showing the 

“halo” artefact – bright pixels at the cell edge. C) Image B overlaid with cell nucleus (blue) 

and manual cell segmentation (green). The relation shown is PP(nucleus, segmentation). 

We propose to use DM to incorporate biological structure information about epithelial 

cells in an automated procedure to assess the success of pairs of rk values for detecting 

H400 epithelial cells in PC images, through comparison with a ground truth image of cell 
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nuclei. First we define a desired relationship between cell segmentation and nucleus in 

terms of RCC5D relations. Subsequently, the optimum values of rk are identified by 

searching through the parameter space to find the rk pairs which maximise the number of 

cells satisfying the defined relationship conditions. The cell count accuracy is then further 

improved by using properties of segmented regions identified as being correct detections to 

set a minimum cell size for removing small noise regions. 

2 Optimisation of filter pairs 

2.1 Defining successful cell detection from DM relations 

Epithelial cells generally have a single nucleus, N, entirely contained within the cell 

cytoplasm, C (Figure 1C). In the ideal case, the segmented region corresponds with the cell 

cytoplasm, thus the following conditions may be applied to define a correctly detected cell:  

i.  A nucleus should be a proper part, PP(N,C) of, or equal to EQ(N,C) the segmented 

cell region. PP is the expected case but the restriction is relaxed to also include 

PO(N,C) and EQ(N,C) relations to account for cases when the cell is a slightly 

under-segmented region but still detected.  

ii.  There should be an exclusive one-to-one relationship between segmented cell 

regions and nuclei (i.e. our definition does not include multi-nucleated cells). 

2.2 Identification of optimal parameters 

An image of fluorescently stained cell nuclei is acquired alongside the PC images to act as 

the ground truth for cell locations. By performing the segmentation on the PC image 

multiple times with a range of rk pairs, optimal values may be defined as the combinations 

which return the highest number of correctly detected cells (Figure 2B). 

 
Figure 2 : A) Workflow for the segmentation method described in [4]. B) Workflow for the 

parameterisation method described in this paper. 

2.3 Removing small noise regions 

Image noise causes some small clusters of pixels to fall above the threshold value resulting 

in incorrectly segmented regions (Figure 3C). Once parameters have been selected 
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according to the method described in section 2.2, the empirical cumulative distribution 

function (CDF) of areas of segmentations meeting the correct detection criteria, CDFcells, is 

compared with the CDF of regions that do not, CDFnoise. An appropriate size threshold for 

removing noise which maximises noise removal whilst minimising removal of true cell 

segmentations is chosen by finding the object area size for which CDFnoise - CDFcells is 

maximised. 

 
Figure 3 – A) Phase contrast image of DAPI-stained H400 cells. B) Thresholded 

fluorescence image of nuclei. C) Cells segmented using rk_small = 7 pixels and rk_large =

18 pixels. Arrows indicate noise regions. D) Cell nuclei (blue) and segmentations (red) 

overlaid on original image. It can be seen that all regions segmented with these parameters 

(except noise regions indicated with arrows) meet the correct cell detection criteria. 

3 Experimental materials and methods 

3.1 Cell culture and fluorescent staining 

Cells used were H400 keratinocytes derived from a human oral squamous carcinoma [7]. 

Cultures were maintained at 37°C in a humidified atmosphere with 5% CO2 in Dulbecco’s 

MEM / nutrient mix supplemented with 10% foetal calf serum (FCS) (Biosera, UK), 

0.6 μg/mL L-glutamine (Sigma, UK) and 0.4 mg/mL hydrocortisone (Sigma, UK). 

For the imaging steps, cells were seeded in a 6-well plate (Sarstedt, UK) at 5 x 10
4
, 

7.5 x 10
4
 and 1 x 10

5 
cells/mL to achieve a range of cell densities and were incubated as 

described above for 48 hours. Cultures were washed three times with phosphate buffered 

saline (PBS) and fixed by overnight incubation with 10% formalin (Leica, UK) and finally 

washed 3 times with PBS, ProLong Gold antifade mountant with DAPI (Life 

Technologies, UK) was delivered dropwise onto the cell monolayer before placing a 

coverslip and then incubated at room temperature in the dark overnight prior to imaging. 

3.2 Image acquisition and analysis 

Cells were imaged concurrently with PC and fluorescence microscopy using a Nikon 

TE300 microscope with a x10 objective and a Retiga-2000R CCD camera (Qimaging, UK) 

using Micro-Manager software for ImageJ [8, 9]. 1600 x 1200 pixel images were acquired 

and calibrated using a stage micrometer (image size was of 1.19 x 0.89 mm).  

Epifluorescence images were pre-processed with a Gaussian filter with radius of 2 

pixels to reduce noise and a rolling ball algorithm [10] to account for uneven illumination, 

and then segmented using manual threshold selection. Images were visually inspected to 

ensure there were no merged or unsegmented nuclei. PC images were segmented using the 

method described in [4] using parameters in the range 2 ≤ 𝑟𝑘_𝑠𝑚𝑎𝑙𝑙 ≤ 30 and 𝑟𝑘_𝑠𝑚𝑎𝑙𝑙 <
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𝑟𝑘_𝑙𝑎𝑟𝑔𝑒 ≤ 70. In total, the success of 1566 rk combinations in detecting 1425 cells were 

considered.   

Macros to analyse DM relations between nuclear and PC segmentations were 

developed in-house with ImageJ [9] utilising freely available RCCD plugins [6]. Graphs 

representing correct detections for parameter combinations and empirical CDFs were 

generated using Matlab.  

4 Results 

Figure 4A shows graphical data of correct detections over the range of rk pairs tested. A 

region in the parameter space was identified inside which more than 90% of cells were 

successfully detected in all images. The values of the centroid of this region were 

𝑟𝑘_𝑠𝑚𝑎𝑙𝑙 = 7 pixels = 6 μm and 𝑟𝑘_𝑙𝑎𝑟𝑔𝑒 = 18 pixels = 16 μm, which were used for further 

analysis of segmented region properties. 

Figure 4B shows the CDFs of the correct segmentations and noise regions from all three 

images as segmented with these parameter values. When CDFcells was subtracted from 

CDFnoise, there was a maximum at an object area of 130 pixels. Setting this as the 

minimum cell area condition removed 82% of noise regions at the expense of 14% of 

correct segmentations.  

     
Figure 4 : A) Graph showing the number of correctly detected cells as a percentage of total 

cells in all of the three images, for all 𝑟𝑘_𝑠𝑚𝑎𝑙𝑙 and 𝑟𝑘_𝑙𝑎𝑟𝑔𝑒 combinations tested. The area circled 

in red shows regions where at least 90% of cells were correctly detected, the centroid of 

which was(𝑟𝑘_𝑠𝑚𝑎𝑙𝑙,𝑟𝑘_𝑙𝑎𝑟𝑔𝑒)=(18,7)=(16 μm,6 μm) B) Empirical cumulative distribution 

functions of correct segmentations, noise segmentations and the difference between the 

two. The maxima of the difference in CDFs occurred at 130 pixels (106 μm
2
). 

5 Discussion and conclusion 

Defining cell detection in terms of the spatial relationships between segmented and ground 

truth images provides a quantitative and objective method for assessing the success of 

parameters for optimally segmenting cells and removes the requirement for tedious and 

error prone manual counting. We have applied this approach to three images each 

representing a different level of confluence to select a pair of rk values which, when 

applied to PC images of H400 cells, correctly detected more than 90% of cells. The 

parameterisation results detailed here were valid for images of H400 cells acquired with 

the experimental set up described, but must be repeated if any part of the experimental 

setup changes, for example, when using other cell types. However, this approach needs to 

be performed only once to determine the optimal filter parameters. H400 cells are 

A) B) 
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generally rounded in shape, relatively homogeneously sized and form a single non-

overlapping layer until extremely high density is reached. Other cell lines with similar 

morphological properties have potential to achieve comparable cell detection success rate, 

but further validation will need to be undertaken to confirm this.  

By using the DM definition of correct cell detections in terms of the nuclear ground 

truth, it was possible to compare the properties of cell regions and incorrect noise regions 

separately. By considering the empirical cumulative density functions of segmentation 

areas a minimum cell size threshold could be determined which removed small incorrect 

segmentations whilst retaining the maximum number of true segmentations. This provides 

a simple and effective way of removing noise however it is envisaged that the DM 

conditions defining correct cell detection in terms of the nuclear ground truth may be used 

as a training set to apply more sophisticated supervised learning techniques for noise 

removal. 

A further advantage of the parameterisation method is that by verifying cell location 

rather than only considering the total number of cells detected, there is scope for studying 

the distribution of cells in monolayer as well as the population size - information which is 

lost if cell number is determined using the current gold standard of haemocytometer 

counting. 
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