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Introduction

Let X be a compact, connected Riemann surface of genus g, and let φ : X → P1C
be meromorphic of degree n. Let B := {x ∈ P1C: |φ−1(x)| < n} be the set of branch 
points of φ. It is well known that B is a finite set and that if b0 ∈ P1C \ B, then the 
fundamental group π1(P1C \ B, b0) acts transitively on F := φ−1(b0) via path lifting. 
The image of the action of π1(P1C \B, b0) on φ−1(b0) is called the monodromy group of 
(X, φ) and is denoted by Mon(X, φ).

We are interested in the structure of the monodromy group when the genus of X is 
less than or equal to two and φ is indecomposable in the sense that there do not exist 
holomorphic functions φ1 : X → Y and φ2 : Y → P1C of degree less than the degree 
of φ such that φ = φ2 ◦ φ1. The condition that X is connected implies that Mon(X, φ)
acts transitively on F whereas the condition that φ is indecomposable implies that the 
action of Mon(X, φ) on F is primitive.
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Our question is closely related to a conjecture made by Guralnick and Thompson [12]
in 1990. By cf (G) we denote the set of isomorphism types of the composition factors 
of G. In their paper Guralnick and Thompson [12] defined the set

E∗(g) =
( ⋃

(X,φ)

cf Mon(X,φ)
)
\ {An,Z/pZ: n > 4, p a prime}

where X is a compact connected Riemann surface of genus g, and φ : X → P1(C) is 
meromorphic, and conjectured that E∗(g) is finite for all g ∈ N. Building on works of 
Guralnick and Thompson [12], Neubauer [24], Liebeck and Saxl [15], and Liebeck and 
Shalev [17], the conjecture was established in 2001 by Frohardt and Magaard [6].

The set E∗(0) is distinguished in that it is contained in E∗(g) for all g. Moreover the 
proof of the Guralnick–Thompson conjecture shows that it is possible to compute E∗(0)
explicitly and indeed to describe the minimal covers φ : P1(C) → P1(C) (at least those 
whose monodromy group is not an alternating or symmetric of the same degree as the 
cover).

The idea of the proof of the Guralnick–Thompson conjecture is to employ Riemann’s 
Existence Theorem to translate the geometric problem to a problem in group theory as 
follows. If φ : X → P1C is as above with branch points B = {b1, . . . , br}, then the set 
of elements αi ∈ π1(P1C \ B, b0) each represented by a simple loop around bi forms a 
standardized set of generators of π1(P1C \ B, b0). We denote by σi the image of αi in 
Mon(X, φ) ⊂ SF

∼= Sn. Thus we see that

Mon(X,φ) = 〈σ1, . . . , σr〉 ⊂ Sn

and that

r∏
i=1

σi = 1.

Moreover the conjugacy class of σi in Mon(X, φ) is uniquely determined by φ. Recall 
that the index of a permutation σ ∈ Sn is equal to the minimal number of transpositions 
needed to express σ as a product of such. The Riemann–Hurwitz formula asserts that

2(n + g − 1) =
r∑

i=1
Ind(σi),

where g is the genus of X.

Definition 1. If τ1, . . . , τr ∈ Sn generate a transitive subgroup G of Sn such that ∏r
i=1 τi = 1 and 2(n + g− 1) =

∑r
i=1 Ind(τi) for some g ∈ N0, then we call (τ1, . . . , τr) a 

genus g-system and G a genus g-group. We call a genus g-system (τ1, . . . , τr) primitive 
if the subgroup of Sn it generates is primitive.
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If X, φ are as above, then we say that (σ1, . . . , σr) is the genus g-system induced by φ.

Theorem 1 (Riemann’s Existence Theorem). For every genus g-system (τ1, . . . , τr) of Sn

there exist a Riemann surface Y and a cover φ′ : Y → P1C with branch point set B such 
that the genus g-system induced by φ′ is (τ1, . . . , τr).

Definition 2. Two covers Yi, φi, i = 1, 2, are equivalent if there exist holomorphic maps 
ξ1 : Y1 → Y2 and ξ2 : Y2 → Y1 which are inverses of one to another such that φ1 = ξ1 ◦φ2
and φ2 = ξ2 ◦ φ1.

The Artin braid group acts via automorphisms on 
∏

1(P1C \B, b0). We have that all 
sets of canonical generators of

∏
1(P1C \B, b0) lie in the same braid orbit. Also the group 

G acts via diagonal conjugation on genus g-generating sets. The diagonal and braiding 
actions on g-generating sets commute and preserve equivalence of covers; that is if two 
genus g-generating sets lie in the same orbit under either the braid or the diagonal con-
jugation action, then the corresponding covers given by Riemann’s Existence Theorem
are equivalent. We call two genus g-generating systems braid equivalent if they are in the 
same orbit under the group generated by the braid action and diagonal conjugation. We 
have, see for example [27, Proposition 10.14].

Theorem 2. Two covers are equivalent if and only if the corresponding genus g-systems 
are braid equivalent.

Suppose now that (τ1, . . . , τr) is a primitive genus g-system of Sn. Express each τi
as a product of a minimal number of transpositions; i.e. τi :=

∏
j σi,j . The system 

(σ1,1, . . . , σr,s) is a primitive genus g-system generating Sn consisting of precisely 2(n +
g − 1) transpositions. By a famous result of Clebsch, see Lemma 10.15 in [27], any two 
primitive genus g-systems of Sn are braid equivalent. Thus we see that every genus 
g-system can be obtained from one of Sn which consists entirely of transpositions.

So generically we expect primitive genus g-systems of Sn to generate either An or Sn.
We define PE∗(g)n,r to be the braid equivalence classes of primitive genus g-systems 

(τ1, . . . , τr) of Sn such that G := 〈τ1, . . . , τr〉 is a primitive subgroup of Sn with An � G. 
We also define GE∗(g)n,r to be the conjugacy classes of primitive subgroups of Sn which 
are generated by members of PE∗(g)n,r.

We also define

PE∗(g) :=
⋃

(n,r)∈N2

PE∗(g)n,r,

and similarly

GE∗(g) :=
⋃

2

GE∗(g)n,r.

(n,r)∈N
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We note that the composition factors of elements of GE∗(g) are elements of E∗(g).
Our assumption that G = Mon(X, φ) acts primitively on F is a strong one and allows 

us to organize our analysis along the lines of the Aschbacher–O’Nan–Scott theorem 
exactly as was done in the original paper of Guralnick and Thompson [12]. We recall the 
statement of the Aschbacher–O’Nan–Scott theorem from [12].

Theorem 3. Suppose G is a finite group and H is a maximal subgroup of G such that⋂
g∈G

Hg = 1.

Let Q be a minimal normal subgroup of G, let L be a minimal normal subgroup of Q, 
and let Δ = {L = L1, L2, . . . , Lt} be the set of G-conjugates of L. Then G = HQ and 
precisely one of the following holds:

(A) L is of prime order p.
(B) F ∗(G) = Q ×R where Q ∼= R and H ∩Q = 1.

(C1) F ∗(G) = Q is nonabelian, H ∩Q = 1.
(C2) F ∗(G) = Q is nonabelian, H ∩Q 
= 1 = L ∩H.
(C3) F ∗(G) = Q is nonabelian, H ∩ Q = H1 × · · · × Ht, where Hi = H ∩ Li 
= 1, 

1 ≤ i ≤ t.

We summarize briefly what is known about GE∗(0) and PE∗(0). The members 
of GE∗(0) that arise in case (C2) were determined by Aschbacher [2]. In all such ex-
amples Q = A5 ×A5. Shih [26] showed that no elements of GE∗(0) arise in case (B) and 
Guralnick and Thompson [12] showed the same in case (C1). In his thesis Neubauer [23]
showed that in case (A) either G′′ = 1 and G/G′ is an abelian subgroup of GL2(p), or 
that n ≤ 256. Recently Magaard, Shpectorov and Wang [20], determined all elements 
of PE∗(0)n,r with n ≤ 256. The elements G of GE∗(0) arising in case (C3) have gener-
alized Fitting subgroups with fewer than 5 components; i.e. t ≤ 5. This was shown by 
Guralnick and Neubauer [10] and later strengthened by Guralnick [13] to t ≤ 4. More-
over Guralnick showed that the action of Li on the cosets of Hi is a member of GE∗(0). 
In case (C3) where Li is of Lie type of rank one all elements of GE∗(0) and GE∗(1)
were determined by Frohardt, Guralnick, and Magaard [3], moreover they show that 
t ≤ 2. In [14] Kong shows that if G is an almost simple group of type L3(q), then 
G ∈ GE∗

(q2+q+1,r)(g) with g ≤ 2 only if q ≤ 13, and G ∈ GE∗
(q2+q+1,r)(0) if and only if 

q ≤ 7. Combining the results of Frohardt and Magaard [7] with those of Liebeck and 
Seitz [16] we have that if F ∗(G) is exceptional of Lie type and G ∈ GE∗(0)n,r, then 
n ≤ 65. In [11] Guralnick and Shareshian show that GE∗(0)n,r = ∅ if r ≥ 9. Moreover 
they show that if G ∈ GE∗(0)n,r with F ∗(G) alternating of degree d < n, then either 
r ≤ 4 or r = 5 and n = d(d − 1)/2. In [19] Magaard showed that if F ∗(G) is sporadic 
and G ∈ GE∗(0)n,r then n ≤ 280. We would like to take this opportunity to point out 
that Aut(HS) ∈ GE∗(0)100,3 which was missed in Ref. [19]. Furthermore we thank the 
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referee for pointing out that Aut(HS) possesses four genus zero systems in its action 
on 100 points with signatures (2, 4, 10), (2, 5, 6), (2, 4, 5), and (2, 4, 6). The referee has 
further pointed out that first two of these genus zero systems are rational and rigid. This 
is because in both of these cases the involution has an odd number of transpositions, and 
therefore the corresponding genus 0 field is rational. Thus there exists φ : P1Q → P1Q
of a degree 100 with monodromy group Aut(HS).

This leaves open the cases F ∗(G) = At
d, t, r ≤ 4, and the cases F ∗(G) = Lt, t ≤ 4, 

where L is a classical group of Lie type. In light of the results of [1] we suspect that if G
is in the second case and G ∈ GE∗(0), then Li/Hi is a point action, i.e. equivalent to an 
action of Li acting on an orbit of one-spaces of its natural module. Hence they are the 
focus of this paper.

Another problem closely related to the Guralnick–Thompson conjecture is the de-
scription of the monodromy groups from the generic Riemann surface of genus g to 
P1(C) of degree n. This is related to Zariski’s thesis where he answered a conjecture of 
Enrique by showing that the generic Riemann surface of genus g > 6 does not admit a 
solvable map of fixed degree n to P1(C) (i.e. where the monodromy group is solvable). 
The condition on n being fixed was removed in [10]. Note that any Riemann surface of 
genus at 6 admits a degree 4 map to P1(C) (and so is solvable). Interestingly, Zariski’s 
methods were mostly group theoretic.

Recall that the images of the canonical generators of π1(P1C \ B, b0) are determined 
uniquely up to conjugacy in G. We say that a G-cover of P1C has ramification type
C1, . . . , Cr if the ith canonical generator lies in conjugacy class Ci of G. The mod-
uli space of G-covers of P1C with ramification type C1, . . . , Cr is a Hurwitz space and 
is denoted by H(G, 0, C1, . . . , Cr). Via the Riemann–Hurwitz formula we see that ev-
ery G-cover X ∈ H(G, 0, C1, . . . , Cr) has the same genus g. So the forgetful functor 
F : H(G, 0, C1, . . . , Cr) → Mg is well defined and so the problem of determining maps 
of degree n from the generic Riemann surface of genus g can be rephrased as follows:

For which groups G and which ramification types C1, . . . , Cr of G is the forgetful 
functor F : H(G, 0, C1, . . . , Cr) → Mg dominant; i.e. is the image of H(G, 0, C1, . . . , Cr)
dense in Mg?

Now Theorem 2 of Guralnick–Magaard [9] shows that if the image of H(G, 0,
C1, . . . , Cr) under the forgetful functor is dense in Mg, then one of the following holds

1. g ≤ 2,
2. g = 3 and G is affine of degree 8 or 16,
3. g = 3 and G ∼= L3(2),
4. g ≥ 3 and G ∼= Sn, n ≥ (g + 2)/2 or An, n > 2g.

It is well known that Sn does cover P1C generically. However it was only in 2006 when 
Magaard and Völklein [21] proved that An and L3(2) also cover P1C generically. It was 
later shown by Magaard, Völklein and Wiesend [22] that AGL3(2) and AGL4(2) cover 
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P1C generically. This leaves only the first possibility, and is a reason why our ultimate 
goal is to determine PE∗(g) where g ≤ 2.

Our two primary results here are Theorem 4, which shows that if n > 104 then the 
elements of PE∗

n,r(g) with g ≤ 2 are not point actions of classical groups, and Theorem 5
which is more technical but can be applied to a wider class of actions. Combining Theo-
rem 4 with the main theorem of [4] shows that if n > 104, then the elements of PE∗

n,r(g)
with g ≤ 2 are generally not subspace actions of classical groups. The potential ex-
ceptions to the statement are also explicitly given in [4]. These potentially exceptional 
actions are precisely those actions whose permutation modules do not contain the per-
mutation module of the action on singular points as a submodule. The main result of [1]
determines all classes of maximal subgroups of classical groups whose permutation mod-
ule does not contain the permutation module of the action on singular points. For these 
classes of maximal subgroups we hope to establish the hypotheses of Theorem 4 which 
would then show that if n > 104, then the elements of GE∗

n,r(g) with g ≤ 2 are either 
cyclic of prime order n or contain the alternating group An.

To establish Theorem 5 we show that for any pair (G, Ω), where G is a classical group 
acting primitively on a set Ω such that the hypotheses of Theorem 5 are satisfied, and 
any generating r-tuple (τ1, . . . , τr) of G which satisfies the product 1 condition, then 
the expression 

∑r
i=1 Ind(τi) is greater than (2 + ε)n for some positive constant ε. We 

achieve this by proving effective lower bounds on Ind(τi) using Scott’s Theorem 14 and 
the technique of translating tuples, see Lemma 15.

1. Statement of results

Definition. x = (x1, x2, . . . , xr) is a normalized generating r-tuple for G provided

1. G = 〈x1, x2, . . . , xr〉.
2. x1x2 . . . xr = 1.
3. xi 
= 1, i = 1, 2, . . . , r.

If, in addition, G is a transitive permutation group of degree N and

∑
Ind(xi) = 2(N + g − 1)

then x has genus g.

The formula above is the Riemann–Hurwitz Formula (RH). The Riemann Existence 
Theorem [12] guarantees that given a normalized generating tuple x for a permutation 
group G there is a surface X and a covering ρ : X → P1(C) such that G ∼= Mon(X, ρ)
and the genus of X is the genus of the tuple x, written g(x).

The primary result of this paper is the following.
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Theorem 4. If (G, Ω) is a primitive classical point action of degree at least 104, then the 
action has genus larger than 2.

The case of point actions will lead to almost all the examples (indeed using [4] and 
some ongoing work of AGM, one can eliminate most other situations).

The proof of Theorem 4 uses inequalities based on RH and estimates for the fixed 
point ratios of elements of G.

Definition. For x a permutation of the finite set Ω, let FΩ(x) (or F (x)) denote the fixed 
points of x on Ω and let fΩ(x) (or f(x)) denote the fixed point ratio of this permutation. 
That is, f(x) = |F (x)|/|Ω|.

Definition. Let V be a vector space and let x ∈ ΓL(V ). If x acts as a permutation on 
the set Ω then the triple (x, V, Ω) satisfies Grassmann Condition ε provided

fΩ(x) < |W |
|V | + ε

for some eigenspace W for the action of x on V .
A classical group G with natural module V acting as a permutation group on the set 

Ω satisfies Grassmann Condition ε provided (x, V, Ω) satisfies Grassmann Condition ε
for every x ∈ G.

Note: For the purposes of the previous definition, an eigenspace for the action of x on 
V is a set W ⊂ V which is a subspace of V over some (possibly proper) subfield of the 
field of definition on which x acts as a scalar. Note that |W | does not depend on its field 
of scalars.

The role of Grassmann Conditions in the proof of Theorem 4 is apparent in the state-
ment of the following technical results which together yield Theorem 4. The key feature 
of the point actions is that with known exceptions they satisfy Grassmann Condition 
1/100. Theorem 5 also applies to other actions that satisfy this condition.

Theorem 5. Let G be a linear group with module V where V contains at least 104 pro-
jective points and no constituent for the action of G on V has dimension 1. If x is a 
normalized generating r-tuple for G in some primitive permutation action, then one of 
the following is true.

1. g(x) > 2.
2. G does not satisfy Grassmann Condition 1/100. More specifically, for some i ∈

{1, . . . , r}, the group 〈xi〉 contains an element y that violates Grassmann Condition 
1/100.

3. The characteristic of V , the dimension of V over its prime field, and the signature 
of x are given in Table 1.
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Table 1
Characteristic, dimension and signature of 
exceptional cases in Theorem 5.

p dimFp
(V ) sig(x)

11 5, 6 (2, 3, 7)
7 6 (2, 3, 7)
5 7, 8, 9 (2, 3, 7)
3 12 (2, 3, 7)
2 14, 15, . . . , 21 (2, 3, 7)
3 10 (2, 3, 8)
2 16 (2, 4, 5)

Note: The signature sig(x) of the r-tuple x = (x1, x2, . . . , xr) is the r-tuple 
(d1, d2, . . . , dr), where di = o(xi).

Theorem 6. Let G be a classical group with natural module V . Let Ω be a primitive point 
action for G with |Ω| ≥ 104 and assume that G does not satisfy Grassmann Condition 
1/100. Then g(x) > 2 for every normalized generating tuple x such that 〈xi〉 contains an 
element y violating Grassmann Condition 1/100.

Theorem 7. Let G be a classical group with natural module V . Assume x is a normalized 
generating tuple for G and that Ω is a primitive point action for G with |Ω| ≥ 104. If 
the characteristic of V , the dimension of V over its prime field, and the signature of x
are given in Table 1 then g(x) > 2.

Definition. The almost simple classical group G has a point action on Ω provided G
has a natural module V of dimension n over Fq where (G, Ω, n, V ) satisfy one of the 
following conditions.

L: F ∗(G) ∼= Ln(q), and Ω is the set of all points in V . n ≥ 2.
Oε, s: F ∗(G) ∼= Oε

n(q), V is a non-degenerate orthogonal space of type ε, and Ω is the 
set of singular points in V . n is even, n ≥ 6, ε = + or −.

Oε,n: F ∗(G) ∼= Oε
n(q), V is a non-degenerate orthogonal space of type ε, and Ω is the 

set of +-type points in V . n is even, n ≥ 6, ε = + or −.
O, s: F ∗(G) ∼= On(q), V is a non-degenerate orthogonal space, and Ω is the set of 

singular points in V . n is odd, n ≥ 5, and q is odd.
O, δ: F ∗(G) ∼= On(q), V is a non-degenerate orthogonal space, and Ω is the set 

of δ-type points in V . n is odd, n ≥ 5, δ = + or −, and q is odd.
Sp: F ∗(G) ∼= Spn(q), V is a non-degenerate symplectic space and Ω is the set of 

points in V . n is even, n ≥ 4.
Sp, δ: F ∗(G) ∼= Spn(q), V is a symplectic space, and Ṽ is an orthogonal space of 

dimension n +1 such that rad Ṽ is anisotropic of dimension 1 and V ∼= Ṽ / rad Ṽ , 
and Ω is the set of all complements to rad Ṽ in Ṽ of type δ. n is even, n ≥ 4, 
δ = + or −, and q is even.
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U, s: F ∗(G) ∼= Un(q1/2), V is a non-degenerate hermitian space, and Ω is the set of 
singular points in V . n ≥ 3, q is a square.

U,n: F ∗(G) ∼= Un(q1/2), V is a non-degenerate hermitian space, and Ω is the set of 
nonsingular points in V . n ≥ 3, q is a square.

We prove Theorems 5, 6, and 7 in the subsequent sections. Since the action of a 
classical group G on its natural module V satisfies the hypotheses of Theorem 5, it is 
evident that Theorem 4 follows from these theorems.

2. Proof of Theorem 5

2.1. Notation and preliminary results

Let G be an almost simple classical group with natural module V of dimension nq

over Fq and let p be the characteristic of Fq. Then VFp
is an Fp-vector space and all 

elements of G correspond to Fp-linear maps. We have G = Ĝ/Z where Ĝ ⊆ GL(VFp
)

and Z acts as scalars on VFp
. Set np = dimFp

VFp
, so that np = nq logp(q).

Definition. vq(y) [resp., vp(y)] is the codimension of the largest eigenspace of the action 
of an associate of y on V [resp., VFp

].

Regarding V as an Fp-space, vp(x) = max(codimCV (x̂): x̂ → x under Ĝ → G).
Let Ω be a primitive G-set of order N . Let x = (x1, . . . , xr) be a normalized generating 

tuple for G.
Let g = g(x), and let

d = (d1, . . . , dr)

be the signature of x, so that di = o(xi), i = 1, . . . , r.
When the context is clear, we will write n instead of nq or np and v instead of vq

or vp.
The Cauchy–Frobenius Formula says that if x ∈ G has order d, then

Ind(x) = N − 1
d

∑
y∈〈x〉

F (y).

Combining this with (RH), we have

r∑
i=1

1
di

(
1 +

∑
y∈〈xi〉�

f(y)
)

= r − 2 − 2
(
g − 1
N

)
. (3)
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Definition.

ε0 = 2
(
g − 1
N

)
,

A(d) =
∑ di − 1

di
.

Definition. For x ∈ G, with o(x) = d, set

κ(x) = 1
d

(
1 +

∑
y∈〈x〉�

p−v(y)
)
.

Fact 8. If G satisfies Grassmann Condition ε then∑
κ(xi) > r − 2 −A(d)ε− ε0.

Proof. Since p−v(y) = |W |
|V | where W is the largest eigenspace for V , we have f(y) <

p−v(y) + ε for all y ∈ G. Therefore,

r − 2 − ε0 <
r∑

i=1

1
di

(
1 + (di − 1)ε−

∑
y∈〈x〉�

p−v(y)
)

< A(d)ε +
∑

κ(xi). �

The relevance of this result can be seen from the main result of [5].

Theorem 9 (Grassmann Theorem). There is a function ε̂ : N → R+ such that

1. (G, Ω) satisfies Grassmann Condition ε̂(m) whenever (G, Ω) is a classical subspace 
action of degree m, and

2. limm→∞ ε̂(m) = 0.

In the balance of this subsection we obtain upper bounds for κ(x) that will be used 
in the proof of Theorem 5.

Set

ζ(d) = ζ(d, p) = 1
d

(
1 +

∑
m|d,m>1

φ(m)p−1
)
,

where φ is the Euler φ-function on integers. When a is not an integer we take φ(a) = 0. 
Since

κ(x) = 1
d

(
1 +

∑
m|d,m>1

φ(m)p−v(xd/m)
)

= 1
d

(
1 +

∑
φ

(
d

m

)
p−v(xm)

)
,

m|d,m<d
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it follows that if x has order d, then

κ(x) ≤ ζ(d) = 1
d

+ 1
p
− 1

dp
. (4)

Note that ζ is a decreasing function of both d and p.
For each positive integer s ≥ 1, set

ζs(d) = 1
d

(
1 + φ(d) · p−s +

∑
m|d,1<m<d

φ(m)p−1
)
.

More generally, for a finite sequence s1, s2, . . . , sl of positive integers, let

ζs1,s2,...,sl(d) = 1
d

(
1 +

l∑
i=1

φ(d/i)p−si +
∑

m|d,1<m<d/l

φ(m)p−1

)
.

The following statement is evident.

Fact 10. If x has order d and v(xi) ≥ si, i = 1, . . . , l, then κ(x) ≤ ζs1,...,sl(d).

The estimates for κ(x) can be further refined by taking into consideration the possible 
actions of elements of a given order on a vector space over Fp.

Definition. For each prime p and integer d ≥ 2 let μ∗(d, p) be the smallest positive integer 
μ such that μ = dim ([V, x]) for some linear operator x of order d acting on a vector space 
V over Fp.

Note that each x ∈ G is the image of some element x̂ in Ĝ with dimCVp
(x̂) = v(x).

If y ∈ G has order m then v(y) ≥ μ∗(m, p). This inequality holds in particular when 
m|d, o(x) = d, and y = xd/m. Set

ζ∗(d) = ζ∗(d, p) = 1
d

(
1 +

∑
m|d,m>1

φ(m)p−μ∗(m,p)
)
.

Then

κ(x) ≤ ζ∗(d). (5)

Similarly, if

ζ∗s1,...,sl(d) = 1
d

(
1 +

∑
m|d,m>1

φ(m)p−α(d/m)
)
, α(i) = max

(
si, μ∗(d/i, p)

)
,

then
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κ(x) ≤ ζ∗s1,...,sl(d) (6)

whenever v(xi) ≥ si, i = 1, . . . , l.

Lemma 11.

1. If p > 2 then ζ∗(d) < 3
d + .04.

2. If p = 2 then ζ∗(d) < 4
d + .032.

Proof. Suppose p > 3. Then μ∗(d) = 1 if and only if d = p or d|p − 1, and μ∗(d) > 1
for all other d. Since at most p − 1 nontrivial powers of an element have order p and at 
most p − 2 nontrivial powers of an element have order dividing p − 1 this implies that 
ζ∗(d, p) ≤ 1

d (1 + (2p − 3)p−1 + (d − 1 − (2p − 3))p−2) < 1
d(1 + 2 + d/p2) = 3/d + 1/p2 ≤

3/d +1/52. If p = 3, then μ∗(m, p) = 1 if and only if m = 2 or 3, and μ∗(m, p) = 2 if and 
only if m = 4, 6, or 8. This implies that 

∑
m|d,μ∗(m,p)=2 φ(m) ≤ φ(4) + φ(6) + φ(8) = 8. 

Therefore ζ∗(d, 3) ≤ 1
d (1 + 3 · 3−1 + 8 · 3−2 + (d − 12) · 3−3) < 3/d + 1/27.

For p = 2, we note that μ∗(m, 2) = 1 if and only if m = 2; μ∗(m, 2) = 2 if and only 
if m = 3 or 4; μ∗(m, 2) = 3 if and only if m = 6 or 7; and μ∗(m, 2) = 4 if and only if 
m = 5, 8, 12, 14, or 15. It follows from this that ζ∗(d, 2) ≤ 4/d + 1/32. �
Corollary 12. Let x ∈ G have order d, and let k be a real number.

1. If p > 2 and ζ(d) ≥ k > .04 then d ≤ 3
k−.04 .

2. If p = 2 and ζ(d) ≥ k > .032 then d ≤ 4
k−.032 .

The precise value of μ∗(d, p), the smallest possible commutator dimension for an 
element of order d over Fp, can be computed using the following statement.

Fact 13.

1. If dp is the largest power of p dividing d and dp′ = d/dp, then μ∗(d, p) = μ∗(dp, p) +
μ∗(dp′ , p).

2. For a ≥ 1, μ∗(pa, p) = pa−1.
3. If (d, p) = 1 then either μ∗(d, p) is the exponent of p (mod d) or μ∗(d, p) = μ∗(a, p) +

μ∗(b, p) for some integers a, b with ab = d, a, b > 1, and (a, b) = 1.

Proof. We may assume that d > 1. Suppose x is an operator of order d on V that achieves 
the minimum commutator dimension. Without loss, assume that dimV is minimal.

V is a direct sum of indecomposable Fp〈x〉-submodules Vi. Setting xi = x|Vi
we 

have o(x) = gcd({o(xi)}) and dim([V, x]) =
∑

dim([Vi, xi]). Since dim([Vi, xm
i ]) ≤

dim([Vi, xi]) for all m ∈ N, by minimality of dim([V, x]) we may assume that o(xi)
is relatively prime to o(xj) when i 
= j.
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To prove statement 2, suppose d = pa. Then V consists of a single Jordan block 
with eigenvalue 1. The order of a Jordan block of size b with eigenvalue 1 is pa where 
pa−1 < b ≤ pa. [Proof: (y − 1)b−1 
= 0 and (y − 1)b = 0 imply yp

k = 1 exactly when 
pk ≥ b.] Therefore pa ≥ dimV > pa−1, whence dimV = pa−1 + 1 by minimality, and 
μ∗(a, p) = dim([V, x]) = dimV − 1 = pa−1.

To prove 1, note that since ab ≥ a − 1 + b for positive integers a and b, for unipotent 
u and semisimple s the commutator dimension of u ⊗ s is always at least as large as the 
commutator dimension of u ⊕ s.

The last statement follows easily from the fact that if x acts irreducibly and semisimply 
on V then dimV is the exponent of p (mod d). This completes the proof of Fact 13. �
2.2. System bounds

The results of the previous subsection apply to individual elements. We shall require 
stronger bounds, which depend on the system, not merely the individual generating 
elements. As in [6], we use a result of L. Scott on linear groups together with a fact 
about group generation to control the contributions of elements with large fixed point 
ratios to the index sum.

Theorem 14 (Scott). Suppose Ĝ is a group of linear operators on V with [V, Ĝ] = V and 
CV (Ĝ) = 1. If Ĝ = 〈g1, . . . , gr〉 where 

∏
gi = 1, then 

∑
dim([V, gi]) ≥ 2 dimV .

Proof. See [25]. �
Lemma 15. Assume that e is an ordered r-tuple that is a permutation of one of the 
following.

1. (m, m, 1, . . . , 1), m ≥ 1.
2. (2, 2, m, 1, . . . , 1), m ≥ 2.
3. (2, 3, m, 1, . . . , 1), m = 3, 4, or 5.

Set Ci = Ci(e) = 2
ei(2−A(e)) .

Let H be a group with generators {y1, . . . , yr} where y1y2 · · · yr = 1. Then there is 
an ordered M -tuple (z1, . . . , zM ), of elements of H, where M =

∑
j Cj such that the 

following conditions hold.

1. z1z2 · · · zM = 1.
2. {1, . . . , M} =

⋃n
i=1 Ci (disjoint union) where |Ci| = Ci and zj is conjugate to yeii for 

all j ∈ Ci.
3. The group K generated by {zj} is normal of index 2/(2 − A(e)) in H, and H/K is 

cyclic, dihedral, or isomorphic to Alt4, Sym4, or Alt5.
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Proof. By the well-known properties of generators and relations (see [18], for example), 
if e is one of the specified tuples, then the group 〈yi, i = 1, . . . , r | yei =

∏
i yi = 1〉 is, 

in the respective cases, cyclic of order m, dihedral of order 2m, or isomorphic to Alt4, 
Sym4, or Alt5. In each case, this group has order 2/(2 − A(e)). The statements follow 
from the proof of Lemma 3.2 in [5] or from [10]. �

Note that if C(e) = (C1(e), . . . , Cr(e)) then

C(m,m, 1, . . . , 1) = (1, 1,m, . . . ,m),

C(2, 2,m, 1, . . . , 1) = (m,m, 2, 2m, . . . , 2m),

C(2, 3, 3, 1, . . . , 1) = (6, 4, 4, 12, . . . , 12),

C(2, 3, 4, 1, . . . , 1) = (12, 8, 6, 24, . . . , 24),

C(2, 3, 5, 1, . . . , 1) = (30, 20, 12, 60, . . . , 60).

Assume now that x is a normalized generating r-tuple for G, a classical group with 
natural module V with dim(V/CĜ(V )) = n.

Lemma 16. If e and C are as above, then, for each i∗ in {1, . . . , r},

(Ci∗ − 1)v
(
xei∗
i∗

)
+

∑
i	=i∗

Civ
(
xei
i

)
≥ n.

If p = 2, then ∑
Civ

(
xei
i

)
≥ 2n.

Proof. We apply Theorem 14 to the preimages ẑj of the elements zj under the homomor-
phism Ĝ → G. In general, we can choose M−1 preimages ẑj so that dim([V, ̂zj ]) = v(xei

i ), 
when j ∈ Ci. If j∗ is the remaining subscript and j∗ ∈ Ci∗ , then dim([V, ̂zi∗ ]) ≤ n, and 
we have the first statement.

If p = 2, then dim([V, ̂zj ]) = v(xei
i ) whenever j ∈ Ci because |F×| = 1. �

Fact 17. Suppose r = 3 and d1 ≤ d2 ≤ d3.

1. If n > d1, then v(xi) ≥ 2 for i ≥ 2.
2. If n > d2, then v(x1) ≥ 2 for all i.
3. If n ≥ 4 and d1 ≤ 3, then κ(xi) < ζ2(di) for i > 1.
4. If n ≥ 4 and d2 ≤ 3, then κ(xi) < ζ2(di) for all i.

Proof. Setting e = (d1, 1, d1) and i∗ = 3, Lemma 16 implies that d1v(x2) = v(xd1
1 ) +

d1v(x2) ≥ n. Therefore v(x2) ≥ n/d1 > 1, so the first statement holds for i = 2. 
Using e = (d1, d1, 1) and i∗ = 2 establishes the statement for i = 3. To establish the 
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second statement, use e = (1, d2, d2), i∗ = 3. The remaining two statements follow from 
Fact 10. �

Set ζt(d) = 1
d (1 +

∑
m|d,m<d φ(d/m)p− max(1,n−mt)).

Note that

ζt(d) = ζn−t,n−2t,...(d).

Lemma 18. If j 
= k and 
∑

i	=j,k v(xi) ≤ t, then κ(xj) ≤ ζt(dj) and dj ≥ n/t.

Proof. Without loss, j = 1 and k = 2. From Lemma 16 with e = (m, m, 1, . . . , 1) and 
i∗ = 2 we have v(xm

1 ) ≥ n −mt. The total contribution of the φ(d1/m) generators of 〈xm
1 〉

to κ(x1) is therefore at most φ(d1/m) · 1
d1

· p− max(1,n−mt). This implies the inequality 

for κ(xj). Since v(xd1
1 ) = 0, it also follows that d1 ≥ n/t. �

Lemma 19. If j, k, l are distinct, dk = dl = 2, and 
∑

i	=j,k,l v(xi) ≤ t, then κ(xj) ≤ ζ2t(dj)
and dj ≥ n/2t.

Proof. Argue as in the proof of Lemma 18. Assume j = 1, k = 2, l = 3, and use 
Lemma 16 with e = (m, 2, 2, 1, . . . , 1) and i∗ = 1 to get v(xm

1 ) ≥ n − 2mt. �
Lemma 20. Suppose d = (2, d2, d3) and v(x2

2) = v.

1. κ(x3) ≤ ζv(d3) and d3 ≥ n/v + 1.
2. If p = 2 then κ(x3) ≤ ζv/2(d3) and d3 ≥ 2n/v.

Proof. Using e = (2, 2, k), i∗ = 3, in Lemma 16, we have v(xk
3) ≥ n − kv in general, and 

v(xk
3) ≥ n − kv/2 when p = 2. Using e = (2, 2, d3), i∗ = 2, we have (d3 − 1)v ≥ n in 

general and d3v ≥ 2n when p = 2. �
Lemma 21. If r = 3 and i 
= j, then div(xj) ≥ n. In particular, κ(xj) ≤ ζ
n/di�(dj), 
where �x� is the smallest integer not less than x.

Proof. Without loss, i = 1 and j = 2. The first statement follows from Lemma 16 with 
e− (d1, 1, d1) and i∗ = 3. The second statement follows from the first. �
Lemma 22. Assume that d = (2, 3, d). If p is odd, set s2 = �n/2�, s3 = �n/3�, s4 = �n/5�, 
and s5 = �n/11�. If p = 2, set s2 = �2n/3�, s3 = �n/2�, s4 = �n/3�, and s5 = �n/6�. 
Then

v
(
xk

3
)
≥ sk, d = 2, 3, 4, 5.

In particular κ(x3) ≤ ζ∗s ,s ,s ,s ,s (d).

2 2 3 4 5
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Proof. Lemma 16 with e = (2, 3, e) and e = 2, 3, 4, 5, with i∗ = 3 shows that (C3(e) −
1)v(xe

3) ≥ n in general and C3(e)v(xe
3) ≥ 2n when p = 2. We have C3(e) = 3, 4, 6, 12 in 

the respective situations, and the result follows immediately. �
Lemma 23. Assume that d = (2, 4, d). If p is odd, set s2 = �n/3� and s3 = �n/7�. If 
p = 2, set s2 = �n/2� and s3 = �n/4�. Then

v
(
xk

3
)
≥ sk, d = 2, 3.

In particular κ(x3) ≤ ζ∗s2,s2,s3(d).

Proof. Use Lemma 16 with e = (2, 4, e) and e = 2, 3, with i∗ = 3 for the general case. 
We have C3(e) = 4, 8 in the respective situations. �
Lemma 24. Suppose p = 2, n ≥ 14, r = 3, and {i, j, k} = {1, 2, 3}. Then

1. v(x2
i ) + v(x2

j ) ≥ 28/dk.
2. If di = dj = 3, then v(x2

k) ≥ 5.
3. If di = 3 and dj = 4, then v(x2

k) ≥ 3.

Proof. Without loss, i = 1, j = 2, and k = 3. Use Lemma 16 with e = (2, 2, d3), (3, 3, 2),
and (3, 4, 2), respectively. �
2.3. Initial reductions

The proof of Theorem 5 uses routine, but extensive, calculations based on the results 
of the previous subsections. We have verified these calculations using GAP4 [8].

Assume that

1. G is a classical group with natural module V and Fp dimension n.
2. V contains at least 104 points.
3. x is a normalized generating r-tuple for G in a primitive action.
4. Every power of every element of x satisfies Grassmann Condition 1/100.
5. g(x) ≤ 2.

To prove Theorem 5 it suffices to show that the characteristic of V , the dimension of V
over its prime field, and the signature of x are given in Table 1.

Unless stated otherwise, we assume that d1 ≤ d2 ≤ · · · ≤ dr and that v(xi) ≤ v(xi+1)
whenever di = di+1. Also recall that ε0 and A(d) were defined just before Fact 8.

We have ε0 < 2 · 10−4 and ε < 10−2. Combining Fact 8 with the inequality κ(xi) ≤
1 + 1 − 1 , we have the following inequalities.
di p dip
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Fact 25. A(d) > (.99A(d) − 2.0002)p. Consequently

1. p < A(d)
.99A(d)−2.0002

2. A(d) < 2.0002p
.99p−1

Lemma 26. n ≥ 3.

1. If p ≤ 97 then n ≥ 4.
2. If p ≤ 19 then n ≥ 5.
3. If p = 7 then n ≥ 6.
4. If p = 5 then n ≥ 7.
5. If p = 3 then n ≥ 10.
6. If p = 2 then n ≥ 14.

Proof. The enumerated statements are immediate consequences of the inequality (pn −
1)/(p − 1) ≥ 10 000.

If n = 2, then F ∗(G) ∼= L2(p), and F (x) ≤ 2 for all x ∈ G�. It follows that f(x) ≤
1/5000 for all x ∈ G�, so Eq. (3) cannot hold for g ≤ 2. �

Set S = S(d) = r−2 − .01A(d) − .0002, the right hand side of the inequality in Fact 8. 
For i = 1, . . . , r, set κi = κ(xi). Set Σ =

∑
κi. Then Σ > S by Fact 8 and assumptions 

on x.

Lemma 27.

1. If p ≥ 17, then r = 3.
2. If p ≥ 7, then r ≤ 4.
3. If p = 7, then r ≤ 4 and S ≥ (r − 3) + .9761.
4. If p = 5, then r ≤ 5 and S ≥ (r − 3) + .9744.
5. If p = 3, then r ≤ 6 and S ≥ (r − 3) + .9693.
6. If p = 2, then r ≤ 8 and S ≥ (r − 3) + .9589.

Proof. Since ζ is a decreasing function, we have ζ(d) ≤ ζ(2) = (p + 1)/2p, so κ(xi) ≤
(p + 1)/2p for all i. Therefore r · p+1

2p > r− 2 − .01A(d) − .0002 > .99r− 2.0002, whence

r <
4.0004p
.98p− 1 .

All assertions about r, except the first, follow from this.
If r = 4, then A(d) ≥ 13/6, so p < 17 by Fact 25.1.
The statements concerning S follow from Fact 25.2. �
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Lemma 28.

1. If r = 3, then S ≥ .9698.
2. If r = 3 and d1 = 2 then S ≥ .9748.
3. If r = 3, d1 = 2, and d2 = 3 then S ≥ .9781.
4. If d = (2, 3, 7), then S ≥ .9795.

Proof. These statements follow from straightforward computations. �
2.4. Completion of the proof

Lemma 29. n ≥ 4.

Proof. Suppose n = 3. Then Ω is the set of points in the natural module for F ∗(G) ∼=
L3(p). We have N = p2 + p + 1. By Lemma 26, p > 100, so A(d) < 2.02 by Fact 25.2. It 
follows that d = (2, 3, 7).

Since x1 is an involution in G, we have Fix(x1) ≤ p + 2, and Ind(x1) ≥ 1
2 (p2 − 1). 

By Lemma 21, v(xi) ≥ 2, for i = 2, 3. This implies that Fix(xi) ≤ 3, i = 2, 3, whence 
Ind(xi) ≥ (di − 1)/di · (p2 + p − 2). It follows from the Riemann–Hurwitz equation that 
g > 2, a contradiction. �
Lemma 30. p ≤ 19.

Proof. Suppose p ≥ 23. Then A(d) ≤ 2.0002p/(.99p − 1) < 2.114 by Fact 25.2. This 
implies that d is one of the following: (2, 3, d), (2, 4, ≤ 7), (2, 5, 5), or (3, 3, 4). Also, 
S > .9787 by Fact 8.

If d = (2, 3, d), d ≥ 8, then Fact 17 implies that 
∑

κ(xi) ≤ ζ2(2) + ζ2(3) + ζ2(d). Since 
φ(d) ≥ 4, it follows that ζ2(d) ≤ 1

d (1 +(d − 5)/p +4/p2) = 1
p +(1 + 4

p2 + 5
p ) · 1

d ≤ ζ2(8) <
.1423, whence 

∑
ζ2(di) ≤ .9778, a contradiction.

In the remaining six cases, we have κi ≤ ζ2(di), i = 2, 3, and κ1 ≤ ζ(d1) in all 
cases, and κ1 ≤ ζ2(2) in the (2, 3, 7) case. By inspection, either Σ < S or p = 23 and 
d = (2, 4, 5) or (2, 3, 7).

Suppose d = (2, 4, 5). Then v(x3) ≥ μ∗(5, 23) = 4. If v(x1) ≥ 2, then 
∑

κi < .9628, 
so we must have v(x1) = 1. Therefore v(x2) ≥ n − v(x1) ≥ 3. Furthermore, n = 4, 
by Lemma 21. This implies that v(x2

2) ≥ 2 since every involution t in PGL(4, 23) with 
v(t) = 1 is not a square in that group. It follows that 

∑
κi < .974, a contradiction.

We must have d = (2, 3, 7), whence v(x3) ≥ μ∗(7, 23) = 3, and κ3 ≤ ζ3(7). This 
implies that 

∑
κi < .9786, which is not so. �

Proposition 31. If p > 7 then p = 11, d = (2, 3, 7), and n = 5 or 6.

Proof. By Lemmas 26 and 30, n ≥ 5. Suppose p > 7. Then p ≥ 11, and for purposes of 
estimation with ζ(d) and ζk(d) we may assume that p = 11.
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Since A(d) ≤ 2.2246 by Fact 25, we have S ≥ (r − 3) + .9775.
If r > 3, then d = (2, 2, 2, 3) by the condition on A(d). Since 

∑
i	=j v(xi) ≥ n ≥ 5

for j = 3, 4, we have v(x3) > 1 and either v(x2) > 1 or v(x4) > 1. Therefore 
∑

κi ≤
max(2ζ(2) + ζ2(2) + ζ2(3), ζ(2) + 2ζ2(2) + ζ(3)) < 1.95, a contradiction.

Thus r = 3. Since ζ(d1) ≥ S/3 > ζ(4), it follows that d1 = 2 or 3.
Suppose d1 = 3. Then ζ(d2) > (S − ζ(3))/2 > ζ(5), so d2 ≤ 4, and κ1 ≤ ζ2(3) by 

Fact 17. Since ζ2(4) < ζ2(3), this implies that κ3 > S − 2ζ2(3) > ζ2(4) > ζ(5), whence 
d3 = 3, which is impossible because d 
= (3, 3, 3). This shows that d1 = 2.

Since κ3 ≤ ζ(d3) ≤ ζ(d2) and κ2 ≤ ζ(d2), we must have ζ(d2) > (S − ζ(2))/2 > ζ(8)
so d2 ≤ 7. If d2 = 5, 6, or 7, then κ2 ≤ max5≤d≤7(ζ2(d)) ≤ ζ2(6). [Recall that p = 11
for the purpose of calculation.] Since ζ(8) < ζ2(6) and ζ(d) < ζ(8) for d > 8, we have 
κ3 ≤ ζ2(6) and 

∑
κi ≤ ζ(2) + 2ζ2(6) < S. Therefore d2 ≤ 4.

Suppose d2 = 4. Then κ3 ≥ S − ζ2(2) − ζ3(4) > .2002 > ζ3(d) for d > 6, so d3 ≤ 6. 
If d3 = 5, then A(d) = 2.05, so S ≥ .9793 and Σ ≤ ζ2(2) + ζ3(4) + ζ3(5) < .9781. It 
follows that d3 = 6. From Lemma 16 with e = (2, 2, 2), either v(x2

2) > 1 or v(x2
3) > 1. If 

v(x2
2) > 1, then κ2 ≤ ζ3,2(4). If v(x2

3) > 1, then κ3 ≤ ζ3,2(6). In either case, Σ < .97 < S.
Suppose d2 = 3. Then S ≥ .9781 and κ1 + κ2 ≤ ζ2(2) + ζ3(3) < .8426, so κ3 > .1355. 

If d ≥ 21, then ζ(d) < ζ(21) < .135. Therefore d3 ≤ 20. By inspection, if d3 = 9 or 
d3 ≥ 11, then ζ3(d3) < .137, and the inequality cannot hold. Therefore d3 is one of 7, 8, 
or 10. If d3 = 8, or 10, then κ3 ≤ ζ3,3(d3) by Lemma 22 and 

∑
κi < S.

Therefore d3 = 7, so S ≥ .9795 and the condition ζ2(2) + ζ3(3) + ζ3(7) ≥ S implies 
that p = 11 or 13. If p = 13, then v(x3) is necessarily even, so κ3 ≤ ζ4(7) and 

∑
κi < S. 

Therefore p = 11. It follows that κ2 is even, so κ2 ≤ ζ4(3). If v(x1) > 2, then 
∑

κi ≤
ζ3(2) + ζ4(3) + ζ3(7) < S. Therefore v(x1) = 2 and n = 5 or 6. �
Proposition 32. If p = 7, then n = 6 and d = (2, 3, 7).

Proof. By Lemma 27 n ≥ 6, r ≤ 4, and S ≥ (r − 3) + .9761.
Suppose r = 4. If v(x1) + v(x2) = 2, then dj ≥ 3, j > 2, and 

∑
κi ≤ 2ζ(2) + 2ζ2(3) <

1.9 by Lemma 18. Therefore v(x1) +v(x2) ≥ 3, and in fact v(xi) ≥ 2 for at least 3 choices 
of i. It follows from inspection of values of ζ(d) and ζ2(d) that 

∑
κi < S, a contradiction.

Therefore r = 3. If v(x1) = 1, then κ2, κ3 ≤ ζ1(d) < .168 by Lemma 18. Since 
κ1 ≤ ζ(2) < .572, we have 

∑
κi < S, a contradiction. Therefore v(xi) ≥ 2 and κi ≤ ζ2(di)

for all i. Since ζ2(d) < .3 for d > 3, we have d1 ≤ 3.
Suppose d1 = 3. Then, by inspection of ζ2(d), d ≥ 3, we have d = (3, 3, 4). Either 

v(x1) = 2, in which case 
∑

κi ≤ ζ2(3) + ζ4(3) + ζ4(4), or v(x1) ≥ 3, in which case ∑
κi ≤ 2ζ3(3) + ζ2(4). In either case, 

∑
κi < .97, a contradiction. We conclude that 

d1 = 2.
We have κ2 + κ3 ≥ S − ζ2(2) ≥ .465. Also κi ≤ ζ3(di), i > 1 by Lemma 21. By 

inspection, ζ3(d) < .2 for d > 6, so d2 ≤ 6.
Suppose v(x1) = 2. Then κj ≤ ζ2(dj), j ≥ 2, whence d2 ≤ 4 because ζ2(d) < .21 for 

d > 4. If d2 = 4, then d3 ≥ 5 because A(d) > 2, so 
∑

κi ≤ ζ2(2) + ζ2(4) + ζ2(5) < .97, 
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a contradiction. Therefore d2 = 3 and d3 ≥ 7, so S ≥ .9781, and κ2 + κ3 ≥ .4678, 
whence κ3 ≥ .4678 − ζ2(3) > .1341. By inspection, d3 ∈ {7, 8, 9, 12}. By Lemma 22, 
κ3 < ζ4,3,2,2(d3), and we conclude that d = (2, 3, 7). Note that n = 6 by Lemma 21.

We may assume henceforth that v(x1) ≥ 3, so κ1 ≤ .5015 and κ2 + κ3 > .4747.
If d2 = 6, then d3 = 6 by inspection of the values of ζ3(d), d ≥ 6. From Lemma 16

with e = (2, 2, 2) we have v(x2
j) > 1 for some j > 1, so κ2 +κ3 ≤ ζ3(6) +ζ3,2(6) < S−κ1. 

This implies that d2 < 6.
By inspection, d2 
= 5. If d2 = 4, then κ2 ≤ ζ3(4) < .2872, so κ3 > .1875. This implies 

that d3 ≤ 6. From Lemma 16 with e = (2, 2, d3) we have v(x2
2) > 1, so κ2 ≤ ζ3,2(4) < .257. 

When d3 = 6, the same argument shows that κ3 ≤ ζ3,2(6) < .2. In each case, 
∑

κi < S.
So d2 
= 4, and we have d2 = 3. Also, κ1 + κ2 ≤ ζ3(2) + ζ3(3) < .8368. So κ3 ≥

S − κ1 − κ2 > .1413. By inspection of ζ3(d), we have d3 ≤ 18. By Lemma 22, κ3 ≤
ζ3,3,2,2(d3), so by inspection d3 = 7. If n > 6, then v(x1) ≥ 3 and v(xj) ≥ 4, j > 1, so ∑

κi ≤ ζ3(2) + ζ4(3) + ζ4(7) < .9781 < S. Therefore n = 6. �
Proposition 33. If p = 5, then d = (2, 3, 7), n = 7, 8, or 9, v(x1) = 3, and v(x3) = 6.

Proof. By Lemma 27, n ≥ 7, r ≤ 5, and S ≥ (r − 3) + .9744.
If r = 5, then 

∑
κi ≤ 3ζ(2) + 2ζ2(2) < S because v(xi) > 1 for at least two choices 

of i. Therefore r ≤ 4.
Suppose r = 4. If v(x1) +v(x2) ≤ 3, then Lemma 18 implies that di ≥ 7/3 > 2 for i =

3, 4, and κi ≤ ζ3(di) ≤ ζ3(3) = .3344. Since κ1 +κ2 ≤ 2ζ(2) = 1.2, it follows that Σ < S. 
Therefore v(x1) + v(x2) ≥ 4. Moreover, v(xi) + v(xj) ≥ 4 whenever i 
= j. If v(x1) = 1, 
then 

∑
κi ≤ ζ(2) +2ζ3(2) +ζ3(3) < 1.95. If v(x1) = 2, then 

∑
κi ≤ 3ζ2(2) +ζ2(3) = 1.92. 

Therefore v(x1) ≥ 3. If d3 > 2, then we have 
∑

κi < 2ζ3(2) + 2ζ(3) < 1.95, noting that 
κ1, κ2 ≤ ζ3(2) since ζ(3) < ζ3(2). So d3 = 2 and κ1 + κ2 + κ3 ≤ 3ζ3(2) = 1.512. 
From Lemma 16 with e = (2, 2, 2, 1) we have v(x4) ≥ 3, so κ4 ≤ ζ3(d) and 

∑
κi ≤

3ζ3(2) + ζ3(d) < 1.9. We conclude that r 
= 4. Thus, r = 3.
If v(x1) = 1, then Lemma 18 shows that d2 ≥ 7 and κi ≤ ζ1(di), i = 2, 3. So ∑
κi ≤ ζ(2) + 2ζ1(d) < .9. Therefore v(x1) ≥ 2, and in fact κi ≤ ζ2(di) for all i. Since 

ζ∗(d) ≤ .29 for d ≥ 12 by Lemma 11 and ζ2(d) ≤ .32 for 4 ≤ d ≤ 11 by inspection it 
follows that d1 ≤ 3, whence κi ≤ ζ3(di), i = 2, 3, by Lemma 21.

Suppose d1 = 3. Then κ1 ≤ ζ2(3) = .36. If d2 ≥ 4, then κi ≤ ζ3(d) ≤ .304 for i > 1, 
and 

∑
κi ≤ .968. Therefore d2 = 3, so v(x1) ≥ 3 and κ1 +κ2 ≤ 2ζ3(3) < .6774. If d3 > 4, 

then κ3 ≤ ζ3(d3) ≤ .27, so d3 = 4. From Lemma 16 with e = (3, 3, 2) we have v(x2
3) ≥ 2

so κ3 ≤ ζ3,2(4) = .264 < S − κ1 − κ2. We conclude that d1 = 2.
We have shown that v(x1) > 1. If d3 > 23, then κ3 < ζ∗(d3) < .165. Suppose 

v(x1) = 2. Then d2 ≥ 4 and κi ≤ ζ2(di), i = 2, 3. Since κ1 ≤ .52 and ζ2(d) ≤ .203
for d > 4, we must have d2 = 4, whence d3 > 4. If d3 
= 6, then 

∑
κi ≤ ζ2(2) +

ζ2(4) + ζ2(5) < .973 < S. Therefore d3 = 6 and A(d) < 2.09, so S > .9789. We have ∑
κi ≤ ζ2(2) + ζ2(4) + ζ2(6) ≤ .975, a contradiction. This shows that v(x1) > 2.
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We have κ1 ≤ ζ3(2) = .504 so κ2 + κ3 > .47. Also, κi ≤ ζ4(di), i = 1, 2. Since 
ζ∗(d) < .2 for d ≥ 20 and ζ4(d) < .21 for 6 < d < 20, we have d2 ≤ 6. From Lemma 16
with e = (2, d2, 2) and i∗ = 3 it follows that v(x2

3) ≥ 7/(d2 − 1) > 1. This implies 
that κ3 ≤ ζ4,2(d3). If d2 = 6, then κ2 ≤ .268. We have d3 = 6 as otherwise κ3 ≤
min(ζ∗(d3), ζ4,2(d3)) < .174, so κ2, κ3 ≤ ζ4,2(6) < .214, and Σ < S. Therefore d2 < 6. 
If d2 = 5, then κ2 + κ3 ≤ ζ4(5) + ζ4,2(6) ≤ .47. If d2 = 4, then κ2 ≤ ζ4(4) = .3008. 
By Lemma 23, κ3 ≤ ζ4,3(d3). If d3 > 23, then κ3 < ζ∗(d3) < .165. It follows from 
inspection that ζ4,3(d) ≤ .214 for 6 < d < 24. Therefore d3 ≤ 6, whence v(x2

2) ≥ 2
and κ2 ≤ ζ4,2(4) = .2608. If d3 = 5, then 

∑
κi < S. If d3 = 6, then κ3 ≤ .2032, and ∑

κi < S. It follows from this paragraph that d2 
= 4. Therefore d2 = 3.
We have κ1 + κ2 ≤ ζ3(2) + ζ4(3) = .8384. By Lemma 27, S ≥ .9781, so κ3 ≥ .1397. 

Since κ3 < 3/d3 + .04 we may assume that d3 ≤ 30. By Lemma 22, κ3 ≤ ζ4,4,3,2(d3). By 
inspection, d3 = 7.

If v(x1) ≥ 4, then 
∑

κi ≤ ζ4(2) + ζ4(3) + ζ4(7) < S. So v(x1) = 3 and n ≤
d2v(x1) = 9. �
Proposition 34. If p = 3, then either

1. d = (2, 3, 7), n = 12, v(x1) = 4, v(x2) = 8, and v(x3) = 12 or
2. d = (2, 3, 8), n = 10, v(x1) = 4, v(x2) = 6, and v(x4

3) = 2.

Proof. By Lemma 27, n ≥ 10, r ≤ 6, and S ≥ (r − 3) + .9693.
We note that ζ∗(d) < .11 for d > 42 by Lemma 11 and ζ∗(d) < .11 by direct 

computation for 24 < d ≤ 42. Also, ζ∗(d) < .2 for d > 12. Thus, statements bounding 
κi with weaker bounds need only be verified for a finite number of possible values of di. 
We shall use this implicitly in the following argument.

Since n > r, we have κi ≤ ζ2(di) for at least two choices of i. If r = 6, then 
∑

κi ≤
4ζ(2) + 2ζ2(2) < 3.8, a contradiction, so r ≤ 5.

Suppose r = 5. If v(x1) + v(x2) + v(x3) = 3, then di ≥ 4 and κi ≤ ζ3(di) < .3 for 
i = 4, 5 by Lemma 18. If v(x1) + v(x2) + v(x3) = 4, then di ≥ 3 and κi ≤ ζ4(di) < .35
for i = 4, 5. Since κ1 + κ2 + κ3 ≤ 3ζ(2) = 2 we have Σ < S in this case. Therefore 
v(xi) + v(xj) + v(xk) ≥ 5 for any choice of distinct i, j, k. If v(xi) = 1 for two values of i, 
then v(xi) ≥ 3 for three values and 

∑
κi ≤ 2ζ(2) +3ζ3(2) < 2.9. Therefore v(xi) = 1 for 

at most one value of i, and 
∑

κi ≤ ζ(2) + 4ζ2(2) < 2.9. We conclude that r ≤ 4.
Suppose r = 4. If v(x1) + v(x2) = 2, 3, 4, respectively, then κ1 + κ2 is respectively at 

most 1.3334, 1.2223, 1.1852, while Lemma 18 implies that for i = 3 or 4, κi ≥ ζ2(di)
and di ≥ 5, κi ≥ ζ3(di) and di ≥ 4, κi ≥ ζ4(di) and di ≥ 3, in the respective cases. By 
inspection, κ3 + κ4 is respectively at most .401, .511, .67, whence 

∑
κi < S. It follows 

that v(x1) + v(x2) ≥ 5. Since the same is true of v(xi) + v(xj), i 
= j, it follows that 
v(xi) ≥ 3 for at least 3 choices of i. Since ζ(2) < .67, ζ3(2) < .52, and ζ(d) < .56, 
ζ3(d) < .36 when d > 2, we have d3 = 2, else 

∑
κi < 1.96 < S. Set v = v(x1). If v = 1, 

then κ1 + κ2 + κ3 ≤ ζ(2) + 2ζ4(2) < 1.68 and, by Lemma 19, κ4 ≤ ζ2(d4) where d4 ≥ 5, 
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so κ4 < .21. If v = 2, then κ1 + κ2 + κ3 ≤ ζ2(2) + 2ζ3(2) < 1.6 and, by Lemma 20, 
and inspection of ζ2 values, κ4 ≤ ζ4(d4) where d4 ≥ 4, so κ4 < .28. If v > 2, then 
κ1 + κ2 + κ3 ≤ 3ζ3(2) < 1.56. From Lemma 16 with e = (2, 2, 2, 1) and i∗ = 4 we have 
v(x4) ≥ 4 and κ4 ≤ ζ4(3) < .35. In all cases, 

∑
κi < S. Therefore r 
= 4.

We have r = 3. By inspection, d > 6 implies ζ∗(d) ≤ .25. Therefore d1 ≤ 6 and 
A(d) ≤ 3 · 5/6 < 2.84, so S > .9714. By inspection, κ1 ≤ ζ(2) < .67.

If v(x1) = 1, then, by Lemma 18, di ≥ 10 and κi ≤ ζ1(di) < .11, i = 2, 3. If v(x1) = 2, 
then κ1 ≤ ζ2(2) < .556. Also, by Lemma 18, di ≥ 5 and κi ≤ ζ2(di) < .201, i = 2, 3. It 
follows that v(x1) > 2, so κi ≤ ζ3(di) for all i.

Suppose d1 ≥ 4. Then κi ≤ ζ3(di) ≤ ζ3(4) < .3519 for all i, so 
∑

j 	=i κj ≥ S − ζ3(4) >
.619, i = 1, 2, 3. If v(xi) = 3 for some i, then Lemma 18 shows that κj ≤ ζ3(dj) ≤ .254
for j 
= i. If v(xi) = 4 for some i, then κi ≤ ζ4(di) ≤ ζ4(4) < .34 and κj ≤ ζ4(dj) < .28, 
j 
= i. It follows that v(xi) ≥ 5 for all i, so κi ≤ ζ5(4) < .336. Since ζ∗(d3) ≤ .25 for 
all d > 4 with d 
= 6 we conclude that di = 4 or 6 for all i. From Lemma 16 with 
e = (2, 2, 2) we have v(x2

i ) ≥ 2 for some i. Therefore κi ≤ ζ5,2(di) < .28 for some i. Since 
κj ≤ ζ5(dj) < .34 for all j it follows that Σ < .96 < S.

Suppose d1 = 3. Then κ1 ≤ ζ3(3) < .36. If v(x1) = 3, then di ≥ 4 and κi ≤ ζ3(di) <
.26, i = 2, 3, by Lemma 18, whence 

∑
κi < S. Therefore v(x1) ≥ 4 and κ1 ≤ ζ4(3) < .342, 

so κ2 + κ3 ≥ S − κ1 > .6295. If d > 3 and d is odd, then ζ∗(d) < .21. For all d ≥ 3
we have ζ4(d) ≤ ζ4(3) < .342. It follows that di is even whenever di > 3. If d2 > 3, 
then Lemma 16 with e = (3, 2, 2) implies that v(x2

i ) > 1 for some i > 1. Therefore 
κ2 + κ3 ≤ ζ4,2(di) + ζ4(d5−i) ≤ ζ4,2(4) + ζ4(4) < S − κ1. This implies that d2 = 3, so 
d3 > 3. From Lemma 16 with e = (3, 3, 2) and i∗ = 3 we have v(x2

3) ≥ 2. Therefore ∑
κi ≤ 2ζ4(3) + ζ4,2(d3) ≤ 2ζ4(3) + ζ4,2(4) < S, a contradiction.
We have d1 = 2 and κ1 ≤ ζ3(2) < .5186. Since ζ∗(d) < .22 for d > 8 it follows that 

d2 ≤ 8. By Lemma 21, v(xi) ≥ 5 for i = 2, 3.
We claim that if i = 2 or 3 and di > 4, then κi ≤ .236 and furthermore, either 

κi < .204 or di = 6 and v(x2
i ) ≥ 3. Since ζ∗(d) < .2 for d ≥ 13 and ζ∗5 (d) < .204 for 

d odd with 4 ≤ d < 12, it suffices to assume that di is even and di ≤ 12. We have 
κi ≤ ζ5(di) < .236. Suppose v(x2

i ) = 1. By Lemma 20, κ5−i ≤ ζ1(d5−i) and d5−i ≥ 11, 
so κ5−i < .11. It follows that 

∑
κi < .97 < S. Therefore v(x2

i ) > 1. Suppose v(x2
i ) = 1. 

Then κi ≤ ζ5,2(di) < .281. By Lemma 20, κ5−i ≤ ζ2(d5−i) and d5−i ≥ 6, so κ5−i < .17. 
This also implies that 

∑
κi < .97 < S. Therefore v(x2

i ) ≥ 3 and κi ≤ ζ∗5,3(di). The claim 
follows.

It follows from the claim that if d2 > 4 then d = (2, 6, 6) and v(x2
i ) ≥ 3 for i = 2, 3. 

By Lemma 16 with e = (2, 3, 3) we have v(x3
i ) > 1 for some i > 1, so κ2 + κ3 ≤

ζ5,3(6) + ζ5,3,2(6) < .435 < S − κ1. This shows that d2 ≤ 4.
Suppose d2 = 4. Set v = v(x2

2). If v = 1, then κ2 ≤ ζ5(4) < .336 and, as above, 
κ3 < .11. If v = 2, then κ2 ≤ ζ5,2(4) ≤ .28 and κ3 ≤ ζ2(d3) ≤ ζ2(6) < .17. In either 
case, κ2 + κ3 < .45 < S − κ1. Therefore v ≥ 3 and we have κ2 ≤ ζ5,3(4) < .2614. If 
d3 
= 5, 6, 8, 9, 12, then κ3 < ζ∗(d3) < .15, so we may assume that d3 ∈ {5, 6, 8, 9, 12}. By 
Lemma 23 and the condition that v(x3) ≥ 5, κ3 ≤ ζ5,4,2(d3). By inspection, this is at 
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most .191 for d3 > 5, so 
∑

κi < .971 < S in this case. We must have d = (2, 4, 5). Thus, 
A(d) = 2.05 and S = .9793. If v(x1) = 3, then Σ ≤ ζ3(2) + ζ3(4) + ζ3(5) < .975 < S. 
Therefore v(x1) ≥ 4 and κ1 ≤ ζ4(2) < .507. We have κ2 ≤ ζ5,3(4) < .262 and κ3 ≤
ζ5(5) ≤ .204, so 

∑
κi < .973 < S, a contradiction. This shows that d2 
= 4, so d2 = 3.

We have S > .9781 by Lemma 28. By Lemma 21, v(x1) ≥ 4 and v(x2) ≥ 5. Since 
v(x1) + v(x2) ≥ 10, we have κ1 + κ2 ≤ max(ζ4(2) + ζ6(3), ζ5(2) + ζ5(3)) < .8405. By 
Lemma 22, κ3 ≤ ζ5,5,4,2(d3). If d3 > 8, then κ3 < .137 < S − κ1 − κ2. Therefore d3 = 7
or 8.

If d3 = 7, then S > .9795. If n > 12, then v(x1) ≥ 5, v(x2) ≥ 7, and v(x3) ≥ 7, so ∑
κi ≤ ζ5(2) + ζ7(3) + ζ7(7) < S. Therefore n ≤ 12. Since ζ6(2) +1/3 +1/7 > S([2, 3, 7])

we must have v(x1) ≤ 5. We have n ≥ 10. Therefore v(x1) ≤ n − v(x1). From the strong 
form of Scott’s Theorem we have max(v(x1), n − v(x1)) + v(x2) + v(x3) ≥ 2n. Therefore 
v(x2) + v(x3) ≥ n + v(x1) ≥ 4n/3. Since p = 3, we have v(x2) ≤ 2n/3, so v(x3) ≥ 2n/3. 
Since 3 has multiplicative order 6 modulo d3 = 7, v(x3) is necessarily a multiple of 6. 
Since 10 ≤ n ≤ 12 we must have v(x3) = n = 12. If v(x1) ≥ 5, then v(x2) ≥ 7 and ∑

κi ≥ ζ5(2) + ζ7(3) + ζ12(7) > S([2, 3, 7]), a contradiction. Therefore v(x1) = 4 and 
v(x2) = 8.

Suppose d3 = 8. If n > 10, then v(x1) ≥ 4, v(x2) ≥ 6, v(x2
2) ≥ 6, and v(x4

2) ≥ 3, so 
Σ ≤ ζ4(2) + ζ5(3) + ζ6,6,1,3(8) < S. Therefore n = 10. If d1 > 4, then d1 = 5, 5 ≤ d2 ≤ 6, 
and d3 ≥ 8 by the strong form of Scott’s Theorem, so Σ ≤ ζ5(2) +ζ5(3) +ζ8,5,1,2(8) < S. 
Therefore d1 = 4, whence d2 = 6. Since Σ ≤ ζ4(2) + ζ6(3) + ζ6,5,1,3(8) < S, we also have 
v(x4

3) = 2. �
Proposition 35. If p = 2, then 14 ≤ n ≤ 21 and one of the following is true.

1. d = (2, 3, 7)
2. n = 16, d = (2, 4, 5), v(x1) = 4, v(x2) = 12, and v(x3) = 16.

Proof. Assume that p = 2. By Lemma 27, n ≥ 14, r ≤ 8, and S > (r − 3) + .9589.

Step 1.

1. ζ∗(2) = .75.
2. If d > 2, then ζ∗(d) ≤ .5.
3. If d > 4, then ζ∗(d) ≤ .375.
4. If d > 6, then ζ∗(d) < .282.
5. If d > 8, then ζ∗(d) ≤ .25.
6. If d > 12, then ζ∗(d) < .19.
7. If d > 14, then ζ∗(d) ≤ .15.
8. If d > 30, then ζ∗(d) < .094.
9. If d > 42, then ζ∗(d) < .08.

In view of Lemma 11, the assertions follow immediately from inspection of the values 
of ζ∗(d) for d < 100.
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Step 2. r < 5.

If r = 8, then v(xi) ≥ 2 for at least 2 choices of xi, so 
∑

κi ≤ 6ζ(2) + 2ζ2(2) = 5.75. 
If r = 7, then v(xi) ≥ 3 for at least 2 choices of xi since v(x1) + · · ·+ v(x6) ≥ 14 > 6 · 2. 
Therefore 

∑
κi ≤ 5ζ(2) + 2ζ3(2) ≤ 4.875 < S. This shows that r ≤ 6.

Suppose r = 6. Set w = v(x1) + v(x2) + v(x3) + v(x4). If w ≤ 6, then Lemma 18
implies that d5, d6 > 2 and κi ≤ ζ6(di) < .34, i = 5, 6, so 

∑
κi ≤ 4ζ(2) + 2 · .34 < 3.7. 

Therefore v(x1) + v(x2) + v(x3) + v(x4) ≥ 7, and the same is true for any other choice 
of 4 distinct subscripts. If v(xi) = 1 for 3 values of i, then v(xj) ≥ 4 for all other values 
and 

∑
κi ≤ 3ζ(2) +3ζ4(2) < 3.9. If v(xi) = 1 for exactly 2 values of i, then v(xj) ≥ 3 for 

at least 3 values of j and 
∑

κi ≤ 2ζ(2) + ζ2(2) + 3ζ3(2) < 3.9. It follows that v(xi) = 1
for at most 1 choice of i, and 

∑
κi ≤ ζ(2) + 5ζ2(2) < 3.9. Therefore r < 6.

Suppose r = 5. We claim that if i, j, and k are distinct, then v(xi) +v(xj) +v(xk) ≥ 7. 
Assume that v(xi) + v(xj) + v(xk) ≤ 6. Then, by Lemma 18, dl > 2 for l 
= i, j, k and 
κl ≤ ζ6(dl). If dl > 6, then κl < .3 by Step 1. If 3 ≤ dl ≤ 6, then ζ6(dl) < .34 by 
inspection. This implies that 

∑
κi < 3ζ(2) + 2 · .34 = 2.93 < S, and the claim follows.

We claim further that if v(xi) + v(xj) ≤ 4 for distinct i, j, then dk = 2 for all k 
= i, j. 
For the purpose of establishing this claim we remove the running assumption on the 
ordering of xi for the balance of this paragraph and show that if v(x1) + v(x2) ≤ 4
then dk = 2 for k > 2. If v(x1) + v(x2) = 2, then v(xk) ≥ 5 for k > 2 by the previous 
paragraph, and 

∑
κi ≤ 2ζ(2) +

∑
k>2 ζ5(dk). Since ζ5(2) < .52 and min(ζ5(d), ζ∗(d)) < .4

for d > 2, we have either 
∑

κi ≤ 2ζ(2) + 2ζ5(2) + .4 < 2.94 or dk = 2 for all k > 2. If 
v(x1) + v(x2) = 3, then κ1 +κ2 ≤ ζ(2) + ζ2(2) = 1.4 and 

∑
κi ≤ κ1 +κ2 +

∑
k>2 ζ4(dk). 

Since ζ4(2) < .54 and min(ζ4(d), ζ∗(d)) < .41 when d > 2, either 
∑

κi < 2.9 or dk = 2
for all k > 2. Finally, if v(x1) +v(x2) = 4, then κ1+κ2 ≤ ζ(2) +ζ3(2) < 1.32. Considering 
that ζ3(2) < .57 and min(ζ3(d), ζ∗(d)) < .44 for d > 2, either 

∑
κi < 2.9 or dk = 2 for 

all k > 2. Since 
∑

κi ≥ S we conclude in every case that dk = 2 for all k > 2. This 
completes the argument that if v(xi) + v(xj) ≤ 4 for some i 
= j, then dk = 2 whenever 
k 
= i, j.

Reverting to the ordering of xi, so that d5 is the largest value of di, the previous 
paragraph implies that if d5 > 2, then v(xi) + v(xj) ≥ 5 for every pair of distinct 
i, j < 5. In that case, 

∑
i<5 κi ≤ max(ζ(2) + 3ζ4(2), ζ2(2) + 3ζ3(2)) < 2.4, and κ5 ≤

ζ∗(d5) ≤ .5, whence 
∑

κi < S. We conclude that di = 2 for all i. From Lemma 16
with e = (2, 2, 2, 1, 1) it follows that v(xi) + v(xj) ≥ 7 whenever i 
= j, whence κi ≤
max({ζa(2) + 4ζ7−a(2): a = 1, 2, 3}) < 2.8 < S. This completes the argument that 
r 
= 5.

Step 3. r = 3.

Suppose r = 4. Since v(x) +v(x′) +v(x′′) ≥ 14 for every set of 3 generators {x, x′, x′′}
it follows that v(x) ≥ 5 for at least two of the four generators, so κi ≤ ζ5(di) for at least 
two values of i.



258 D. Frohardt et al. / Journal of Algebra 417 (2014) 234–274
We claim that A(d) ≤ 3. Suppose A(d) > 3. Then 
∑

1/di < 1. The ordering as-
sumption on di implies that d2 > 2 and d4 > 4, so κi ≤ .5 for i > 1 and κ4 ≤ .375. If 
d1 > 2, then 

∑
κi ≤ 1.875, which is not the case, so d1 = 2. It follows that d3 > 4, since 

otherwise 1/d1 + 1/d2 + 1/d3 ≥ 1. This implies that κ1 + κ2 + κ3 ≤ 1.625. Therefore 
κ4 > .3, so d4 ≤ 6 and A(d) ≤ A(2, 4, 6, 6) < 3, a contradiction. This establishes the 
claim, and we conclude that S ≥ 1.9698.

Set w = v(x1) +v(x2). Then, by Lemma 18, κ3 ≤ ζw(d3), κ4 ≤ ζw(d4), and d3 ≥ 14/w. 
If w ≤ 3, then κ1 + κ2 ≤ 1.5, di ≥ 5, and κi < ζ3(di) < .201 for i > 2. If w = 4, then 
κ1 + κ2 ≤ ζ(2) + ζ3(2) < 1.32, di ≥ 4, and κi < ζ4(di) < .26 for i > 2. If w = 5, then 
κ1 + κ2 ≤ ζ(2) + ζ4(2) < 1.282, di ≥ 3, and κi < ζ5(di) < .335 for i > 2. If w = 6, then 
κ1 + κ2 ≤ ζ(2) + ζ5(2) < 1.266, di ≥ 3, and κi < ζ6(di) < .336 for i > 2. In each case, ∑

κi ≤ 1.96 < S. This implies that v(x1) + v(x2) ≥ 7. More generally, v(xi) + v(xj) ≥ 7
whenever i 
= j.

Suppose d3 > 2 and set v = v(x1). We claim that v = 1. If v = 2, then κi ≤ ζ5(di)
for all i > 1. Since ζ∗(d) < ζ5(4) < .5 when d > 4 and ζ∗k(3) ≤ ζ∗k(4) for all k it 
follows that Σ ≤ ζ2(2) + ζ5(2) + 2ζ∗5 (4) < 1.93. Similarly, if v = 3, then Σ ≤ ζ3(2) +
ζ4(2) + 2ζ∗4 (4) < 1.91. If v = 4, then Σ ≤ 2ζ4(2) + ζ∗3 (4) + ζ∗4 (4) < 1.91. If v = 5, 
then Σ ≤ 2ζ5(2) + ζ∗2 (4) + ζ∗5 (4) < 1.93. If v ≥ 6, then κ1 + κ2 ≤ 2ζ6(2) < 1.02 and 
κ3 + κ4 ≤ maxt=1,2,3(ζ∗t (4) + ζ∗7−t(4)) < .9. In all cases, Σ < S.

Therefore v(x1) = 1 and v(xi) ≥ 6 for i > 1. We have κ1 + κ2 ≤ ζ(2) + ζ6(2) < 1.26. 
Also, κi ≤ ζ∗6 (di) when i > 2. If d > 4, then ζ∗6 (d) < .34. Therefore d3 ≤ 4 and 
κ3 < .39. From Lemma 16 with e = (1, 2, d3, 2) we have 2d3 + d3v(x2

4) ≥ 28, whence 
v(x2

4) ≥ 28/d3 − 2 ≥ 5. Therefore κ4 ≤ ζ∗6,5(d4). If d4 ≥ 4, then κ4 < .3 and Σ < 1.95. 
Therefore d4 = 3, whence d3 = 3, and κi ≤ ζ6(3) < .35 for i = 3 or 4. Once again, 
Σ < S. This shows that d3 = 2.

We have A(d) < 2.5, so S > 1.9748. As before, set v = v(x1). From Lemma 19, 
κ4 ≤ ζ2v(d4) and d4 ≥ 7/v. If v = 1, then κ1 + κ2 + κ3 ≤ ζ(2) + 2ζ6(2) < 1.766 and 
κ4 ≤ ζ2(d4) < .144 because d4 ≥ 7. If v = 2, then κ1 + κ2 + κ3 ≤ ζ2(2) + 2ζ5(2) < 1.657
and κ4 ≤ ζ4(d4) < .255 because d4 ≥ 4. If v = 3, then κ1+κ2+κ3 ≤ ζ3(2) +2ζ4(2) = 1.625
and κ4 ≤ ζ6(d4) < .336 because d4 ≥ 3. This shows that Σ < S when v ≤ 3. Therefore 
v ≥ 4 and κ1 + κ2 + κ3 ≤ 3ζ4(2) < 1.594. From Lemma 16 with e = (2, 2, 2, 1) we have 
v(x4) ≥ 7, so κ4 ≤ ζ7(d4) < .379 because d4 > 2. In this case as well, 

∑
κi < S. This 

shows that r < 4.

Step 4. v(xi) ≥ 4 for all i.

Since A(d) < r = 3, S > .9698. Set v = v(x1). We apply Lemma 18 once again to 
bound v from below. If v = 1, 2, or 3, then κ1 ≤ ζv(2) ≤ .75, .625, .563, respectively. 
For i > 1, κi ≤ ζv(di) where di ≥ 14, 7, 5 in the respective cases. Using Step 1 and 
inspection, we have κi < .08, .15, .201 in the respective cases. It follows that 

∑
κi < S

whenever v(x1) < 4. Therefore v(x1) ≥ 4. More generally, since the argument that 
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established this does not use the ordering assumption on xi, it follows that v(xi) ≥ 4 for 
all i.

Step 5. d1 = 2.

Assume that d1 > 2. It follows from Step 1 that d1 ≤ 6, so A(d) < 2.84 and S > .9714. 
Since v(x1) ≥ 4, we have κ1 ≤ ζ∗4 (d1). It follows from Step 1 and inspection that κi < .41
for all i.

If v(x1) = 4, then di ≥ 4, i = 2, 3 and κi ≤ ζ4(di) < .255, which implies that ∑
κi < S. Therefore v(x1) ≥ 5, and, similarly, v(xi) ≥ 5 for all i. Thus κi ≤ ζ∗5 (di) for 

all i. In particular, κi < .3907 for all i.
Suppose d1 > 4. Since ζ∗5 (d) < .27 when d > 4, d 
= 6 and ζ∗5 (6) < .35, it follows 

that di = 6 for all i. Lemma 24 implies that v(x2
i ) ≥ 3 for at least two choices of i, so ∑

κi ≤ ζ∗5 (6) + 2ζ∗5,3(6) < .95. Therefore d1 ≤ 4.
Suppose d1 = 4. Then d2 ≤ 6 since otherwise κi ≤ ζ∗5 (di) < .27 for i = 2, 3 and 

Σ < ζ∗5 (4) + 2 · .27 < S. It follows from Step 1 that d3 ≤ 12 as otherwise Σ < S. 
This implies that A(d) ≤ A(4, 6, 12) = 2.5, so S ≥ .9748. Also, Lemma 24 implies that 
v(x2

1) + v(x2
2) ≥ 3. We claim that d3 ≤ 8. If d2 = 5 or 6, then κ1 + κ2 < ζ∗5 (4) + ζ∗5 (6) <

.7345, so ζ∗5 (d3) ≥ κ3 > .24. It follows from inspection that d3 ≤ 8 in this case. If d2 = 4, 
then κ1 + κ2 ≤ ζ∗5 (4) + ζ∗5,2(4) < .7188, so ζ∗5 (d3) > .25 and d3 ≤ 8 in this case as well.

From Lemma 24.1 we have v(x2
1) + v(x2

2) ≥ 4 and v(x2
1) + v(x2

3) ≥ 5. If v(x2
1) = 1, 

then v(x2
2) ≥ 3 and v(x2

3) ≥ 4. So κ2 ≤ ζ∗5,3(d2) < .3021, κ3 ≤ ζ∗5,4(d3) < .2813, and ∑
κi < .974 < S. If v(x2

1) = 2, then κ1 ≤ ζ∗5,2(4) < .3282, κ2 ≤ ζ∗5,2(d2) < .3438, and 
κ3 ≤ ζ∗5,3(d3) < .3021, whence 

∑
κ1 < .9741 < S. We conclude that v(x2

1) ≥ 3, so that 
κ1 ≤ ζ5,3(4) < .3. Without loss, if di = 4, i = 2, 3, then κi ≤ ζ∗5,3(4) < .3. If di > 4
for some i, then κi ≤ ζ∗5 (di) < .35. Since v(x2

2) + v(x2
3) ≥ 7 by Lemma 24, we have 

either v(x2
2) ≥ 4 or v(x2

3) ≥ 4, whence κi ≤ ζ∗5,4(di) < .3 for some i > 1. It follows that 
Σ < .95 < S, so we conclude that d1 
= 4.

We may therefore suppose d1 = 3, so that κ1 ≤ ζ∗5 (3) ≤ .3542. By Lemma 21, 
κi ≤ ζ∗5 (di) for i = 2, 3. As in the argument when d1 = 4, it follows that d2 ≤ 6. 
By Lemma 16 with e = (1, 1, 1), we have v(xi) ≥ 7 for two choices of i. If d2 = 6, 
then κ1 + κ2 ≤ max(ζ∗5 (3) + ζ∗7 (6), ζ∗7 (3) + ζ∗5 (6)) < .6902. It follows from inspection 
of ζ∗5 values that d3 = 6. Since v(x2

2) + v(x2
3) ≥ 10 by Lemma 24.1 we have 

∑
κi ≤

ζ∗5 (3) + ζ∗5 (6) + ζ∗5,5(6) < .3542 + .3438 + .2709 < .97 < S.
If d2 = 5, then κ2 ≤ .225 and κ3 ≤ ζ∗5 (d3) < .344, so Σ < S.
If d2 = 4, then κ1 + κ2 ≤ max(ζ∗5 (3) + ζ∗7 (4), ζ7(3) + ζ5(4)) < .7332. By Lemma 24.3, 

κ3 ≤ ζ∗5,3(d). It follows that ζ∗5,3(d) > .24, so d3 = 4 or 6 by inspection. If d3 = 4, then 
κ2 ≤ ζ∗5,3(4) < .3 by the same result, and 

∑
κi < ζ∗5 (3) +2ζ∗5,3(4) < S. Therefore d3 = 6. 

If v(x2
2) ≥ 3, then 

∑
κi ≤ ζ∗5 (3) + ζ∗5,3(4) + ζ∗5,3(6) < S. If v(x2

2) = 2, then v(x2
3) ≥ 8 by 

Lemma 24 and 
∑

κi < ζ∗5 (3) + ζ∗5,2(4) + ζ∗5,5(6) < S, so we may assume that v(x2
2) = 1. 

From Lemma 16 with e = (3, 2, 3) we have 4v(x3
3) + 6 ≥ 28 whence v(x3

3) ≥ 6 and 
κ3 < ζ∗5,5,6(6) < .2 < S − κ1 − κ2. This shows that d2 
= 4.
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If d2 = 3 then κ2 ≤ ζ∗7 (3) ≤ .3386 and, by Lemma 24.2, κ3 ≤ ζ∗5,5(d3) ≤ .2735, so 
Σ ≤ .97 < S.

Step 6. d2 ≤ 4.

By Lemma 28 and the previous step, S ≥ .9748. Assume that d2 > 4. By Step 4, 
v(x1) ≥ 4. If v(x1) = 4, then κ1 ≤ ζ4(2) < .532, and κi ≤ ζ∗10,6,2(di) by Lemma 18. By 
inspection, κi < .22 for i ≥ 2. This implies that Σ < S. We conclude that v(x1) > 4.

We have κ1 ≤ ζ5(2) < .5157. If di > 8 and di 
= 12, then κi ≤ ζ∗(di) < .2. If di = 12, 
then κi ≤ ζ∗7 (12) < .232. It follows that either d2 ≤ 8 or d2 = d3 = 12. In the latter case, 
Lemma 16 with e = (2, 3, 3) shows that v(x3

2) + v(x3
3) ≥ 7, so v(x3

i ) ≥ 4 for some i > 1, 
and κi ≤ ζ∗7,1,4(12) < .21. This implies that Σ < S. We conclude that d2 ≤ 8. From 
Lemma 16 with e = (2, d2, 2) we have v(x2

3) ≥ 2 ·14/d2 > 3. Consequently, κ3 ≤ ζ∗7,4(d3). 
Suppose d2 = 8. Then κ2 ≤ ζ∗7 (8) < .254. If d2 > 12, then κ3 < .19 by Step 1 and Σ < S, 
so d2 ≤ 12. By Lemma 16 with e = (2, 2, 12), v(x2

2) > 2, so κ2 ≤ ζ∗7,3(8) < .223. Since 
ζ∗7,4(12) < .222, we conclude that κ2 + κ3 < .446 < S − κ1, a contradiction. Therefore 
d2 < 8. Since ζ∗7 (7) < .15, it is evident that d2 
= 7.

Suppose d2 = 6. Then A(d) < 2.34 and S > .9764, so κ2 + κ3 ≥ S − κ1 > .4607. 
Set w = v(x2

2). Then w is necessarily even because x2
2 has order 3. If w = 2, then 

κ2 ≤ ζ∗7 (6) < .336. By Lemma 20, d3 ≥ 14 and κ3 ≤ ζ1(d3). By Step 1 and inspection 
of the values of ζ1(d) for 14 ≤ d ≤ 30 we have κ3 < .08, so Σ < S in this case. If w = 4, 
then κ2 ≤ ζ∗7,4(6) < .2735. By Lemma 20, d3 ≥ 7 and κ3 ≤ ζ2(d3). Observing that 
ζ2(d) < .1431 for 7 ≤ d ≤ 28, we conclude from Step 1 that Σ < S in this case as well. If 
w = 6, then κ2 ≤ ζ∗7,6(6) < .2579. We have d3 ≥ d2 = 6, and, by Lemma 20, κ3 ≤ ζ3(d3). 
Since ζ3(d) < .18 for 6 ≤ d ≤ 12 we conclude from Step 1 that κ3 < .18, whence, 
once again, Σ < S. It follows that w ≥ 8, so κ2 ≤ ζ∗8,8(6) < .2527. From Lemma 16
with d = (2, 6, 2) we have v(x2

3) ≥ 5, so κ3 ≤ ζ∗7,5(d3). If d3 > 6 and d3 
= 12, then 
ζ∗7,5(d3) < .2 and Σ < S. Therefore either d3 = 6 or d3 = 12. Recall that, by Lemma 16
with e = (2, 3, 3), v(x3

2) + v(x3
3) ≥ 7. If v(x3

2) = 1, then κ3 ≤ ζ∗7,5,6(d3) < .2, and Σ < S. 
Therefore v(x3

2) ≥ 2, so κ2 < ζ∗8,8,2(6) < .211. If d3 = 6 = d2, then we may assume that 
κ3 ≤ κ2, whence κ2 + κ3 < .43. If d3 = 12, then κ3 ≤ ζ∗7,5(12) < .217 and κ2 + κ3 < .43. 
In either case, Σ < S. Therefore d2 
= 6.

Suppose d2 = 5. Then κ2 < .2063, so κ3 ≥ S − κ1 − κ2 > .25. We have κ3 < ζ∗7,6(d3)
by Lemma 16 with e = (2, 5, 2). It follows from Step 1 and inspection that d3 = 6. From 
Lemma 16 with e = (2, 5, 3) we have v(x3

3) ≥ 2, so κ3 < ζ∗7,6,2(d3) < .22, a contradiction.

Step 7. If d2 = 4, then n = 16, d = (2, 4, 5), v(x1) = 4, v(x2) = 12, and v(x3) = 16.

Suppose d2 = 4. Then A < 2.25 and S > .9773. Also, κ2 ≤ ζ∗7 (4) < .379.
Assume that v(x1) = 4. Then κ1 ≤ ζ4(2) < .532. By Lemma 18, d3 > 3 and κ2 ≤

ζ4(d3), so κ2 < .255 by inspection and Step 1. From Lemma 16 with e = (1, 4, 4) we 
have v(x4

3) ≥ 2n − 4 · 4 ≥ 12, so v(x3) ≥ 12 and v(x2
3) ≥ 12 as well. By Lemma 23 we 
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have v(x3
3) ≥ 4. Therefore κ3 ≤ ζ∗12,12,4,12(d3). If d3 > 5 then κ3 < .178 by Step 1 and 

inspection. Therefore d3 = 5. We have n ≤ d2v(x1) ≤ 16 and v(xi) ≥ n −4 ≥ 10, i = 2, 3. 
Since 2 has multiplicative order 4 modulo 5, we also have 4|v(x3), so v(x3) = 12 or 16. 
If v(x3) = 12, then v(x2) ≥ 2n − v(x1) − v(x3) = 16. However, v(x2) ≤ 3n/4 because x2
is an element of order 4 acting in characteristic 2. These inequalities are not compatible 
with the condition n ≤ 16. We conclude that v(x3) = 16, n = 16, and v(x2) = 12.

We may therefore assume that v(x1) > 4. Then κ1 ≤ ζ5(2) < .5157. Set w = v(x2
2). 

Assume that w ≤ 2. Then, by Lemma 20, d3 ≥ 14, and κ3 ≤ ζ1(d3). So κ3 < .08 <
S − κ1 − κ2. Therefore w > 2. If w = 3 or 4, then κ2 ≤ ζ∗7,3(4) < .2852, d3 ≥ 7, and 
κ3 ≤ ζ2(d3), so κ3 < .144 by inspection and Step 1. Once again, Σ < S. If w = 5 or 6, 
then κ2 ≤ ζ∗7,5(4) < .2618, and κ3 ≤ ζ3(d3). If d3 ≥ 6, then κ3 < .19 and Σ < S, so 
d3 = 5. By Lemma 20, w = 6. Thus, κ2 ≤ ζ∗7,6(4) < .2579 and κ3 ≤ ζ3(5) < .2004, 
so Σ < S. We conclude that w = v(x2

2) ≥ 7, so κ2 ≤ ζ∗7,7(4) < .2559. By Lemma 23, 
κ3 ≤ ζ∗7,7,4(d3). If d3 > 5, then κ3 < .2 by Step 1 and inspection, so Σ < S. If d3 = 5, 
then S = .9793, and κ3 ≤ .2063, so once again Σ < S. This completes the argument 
that d3 
= 4.

Step 8. If d2 = 3 then d = (2, 3, 7).

It suffices to assume that d2 = 3 and d3 > 7. We have A(d) < 2.17 and S > .9781. 
Also, v(x2) is even because x2 is an element of order 3 acting over F2. In particular, 
v(x2) ≥ 8 and κ2 < .33595. We have κ3 ≤ ζ∗10,10,7,5,3(d3) by Lemma 22. By inspection, 
κ3 ≤ .132. If v(x1) ≥ 6, then κ1 < .50782 and Σ < S, so v(x1) = 5 by Lemma 21. We 
have κ1 ≤ ζ5(2) < .5157.

It follows that v(x2) ≥ n − 5 ≥ 9, whence v(x2) ≥ 10, and κ2 ≤ ζ10(3) < .334. We 
have κ1 + κ2 < .8497.

By inspection, if d > 7 and d 
= 8 or 12, then ζ∗10,10,7,5,3(d) < .114. It follows that 
d3 = 8 or 12. If d3 = 8, then A(d) < 2.05, so S > .9793 and Σ ≤ ζ5(2) + ζ10(3) +
ζ∗10,10,7,5(8) < .9793 < S. We conclude that d3 = 12, whence A(d) < 2.09 and S > .9789. 
Since x4

3 has order 3, v(x4
3) must be even, and v(x4

3) ≥ 6. If v(x2) = 10, then v(x3) ≥
2n − v(x1) − v(x2) ≥ 13, so κ3 ≤ ζ∗13,10,7,6(12), and 

∑
κi ≤ ζ5(2) + ζ10(3) + ζ∗13,10,7,6(12). 

If v(x2) > 10, then v(x2) ≥ 12 and 
∑

κi ≤ ζ5(2) + ζ10(3) + ζ∗10,10,7,6(12). In either case, 
Σ < S, a contradiction.

Step 9. Conclusion.

By Steps 3, 5, 6, 7, and 8, it suffices to show that if d = (2, 3, 7) then 14 ≤ n ≤ 21.
Assume that d = (2, 3, 7). By Lemma 26, n ≥ 14. If n > 21, then v(x1) ≥ 8, v(x2) ≥

11, and v(x3) ≥ 11, so 
∑

κi ≤ ζ8(2) + ζ11(3) + ζ11(7) < .9795 < S. �
Theorem 5 now follows from Propositions 31–35.
Note that for p = 2, 3, or 5, further information about values of v(y) for certain 

elements y is recorded in Propositions 33, 34, and 35.



262 D. Frohardt et al. / Journal of Algebra 417 (2014) 234–274
3. Proof of Theorem 6

Retaining the notation of Section 2.1, assume that Ω is a primitive point action for 
G with |Ω| ≥ 104 and that x ∈ G.

3.1. Linear and symplectic groups

Proposition 36. If Ω consists of all points in the L action or Sp action, then f(x) −
q−v(x) < 1/100.

Proof. We have N = (qn − 1)/(q − 1), so qn−1 < N < 2qn−1 ≤ qn.
Suppose x is a linear transformation. Then the fixed points of x are contained in the 

union of its eigenspaces, the largest of which has dimension n −v. We claim f(x) −q−v(x) <

q−n/2 < 1/100. It suffices to establish the first inequality.
If v ≤ n/2, then the fixed points of x lying outside the largest eigenspace are contained 

in a space of dimension v. This implies that f(x) ≤ qn−v−1
q−1 + qv−1

q−1 , so

F (x)
N

− q−v ≤ qn−v − 1
qn − 1 + qv − 1

qn − 1 − q−v < q−(n−v) ≤ q−n/2.

If v = n+1
2 , then the fixed points of x lying outside the largest eigenspace are contained 

in the union of two nontrivial spaces having total dimension n − v = (n + 1)/2. For 
fixed m, the largest value of qa + qm−a for a in {1, 2, . . . , m − 1} is qm−1 + q. Therefore 

F (x) ≤ qn−v−1
qn−1 + q(n−1)/2−1

q−1 + 1, so

F (x)
N

− q−v <
q(n−1)/2 − 1

qn − 1 + q − 1
qn − 1 < q−n/2.

If v ≥ n/2 + 1, then x has at most q − 1 eigenspaces, each of which has dimension at 
most n/2 − 1, so F (x) ≤ (q − 1) q

n/2−1−1
q−1 and

F (x)
N

≤ (q − 1)
(
qn/2−1 − 1
qn − 1

)
< q−n/2.

This completes the analysis for x a linear transformation.
Now suppose x is not a linear transformation. Then x induces a field automorphism 

because graph automorphisms do not act on Ω. Let d be the order of x modulo InnDiag. 
Then F (x) ≤ qn/d−1

q1/d−1 , so f(x) > .01 implies that

qn(d−1)/d <
qn − 1
qn/d − 1

< 100 q − 1
q1/d − 1

= 100q(d−1)/d
(

1 − q−1

1 − q−1/d

)
.

Since q−1/d ≤ 1/2, we have qn(d−1)/d < 200q(d−1)/d(1 − q−1) < 200q(d−1)/d. It follows 
that q(n−1)(d−1)/d < 200, so 200d/(d−1) > qn−1.
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By the first line of this argument, 2qn−1 > N > 10 000. Therefore qn−1 > 5000 >
2003/2, whence d

d−1 > 3
2 , and d = 2.

If x is not a standard field automorphism, then F (x) ≤ qn/2−1−1
q1/2−1 + 1, so

.01 < f(x) ≤
(
q1/2 + 1

)(qn/2−1 − 1
qn − 1

)
+ 1

N

<
3
2q

1/2 · q−(n/2+1) + .0001.

This implies that qn+1 < ( 1
.0066 )2 < 1602.

On the other hand, we have F (x) > .01N > 100, so qn/2−1−1
q1/2−1 + 1 > 100. It follows 

from this that qn−2 > 992, whence q3 < (160/99)2, which is impossible. Therefore x
must be a standard field automorphism.

We have f(x) = q1/2+1
qn/2+1 and vq(x) = n/2. If f(x) −q−vq(x) > .01, then q−(n−1)/2 > .01, 

whence qn−1 < 10 000. On the other hand, qn−1 · q
q−1 > qn−1

q−1 = N > 10 000. That is,

qn−1 < 10 000 <
qn

q − 1 .

Since n > 2, the first inequality implies that q < 100. Since q is both a perfect square 
and a prime power, it follows easily by inspection that these two inequalities cannot both 
hold. �
Proposition 37. If Ω consists of hyperplanes of type δ in the Sp action, then f(x) <
q−v(x) + 1/100.

Proof. We have N = 1
2(qn+δqn/2). Since qn is an even power of 2 and 214 +27 < 20 000, 

we have qn ≥ 216.
If x is a field automorphism, then F (x) ≤ qn/2 in either action, so f(x) ≤ 2(qn/2 −

1)−1 < .01.
If x is in InnDiag, then F (x) ≤ 1

2 (qn−v + qn/2), so F (x) − q−v(x)N < qn/2, and 
f(x) − q−v < .01, as before. �
3.2. Actions of unitary and orthogonal groups

We record here properties of orthogonal and unitary actions that will be used in the 
analysis.

Fact 38. Let W be an orthogonal or hermitian space of dimension m over Fq, and let 
π(W ) be the number of points of a given type in W . If radW , the totally singular radical 
of W , has dimension r, then

P (m) − S(m + r) ≤ π(W ) ≤ P (m) + S(m + r)
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where P (m) and S(m) are as given below.

Type P (m) S(m)

U, s qm−1/2−1
q−1

qm/2−1/2

q1/2+1

U,n qm−1/2

q1/2+1
qm/2−1/2

q1/2+1

O, s qm−1−1
q−1 qm/2−1

O,n (q even) qm−1 qm/2−1

O,n (q odd) 1
2 q

m−1 1
2 q

m/2−1/2

In particular, N > qn−2.

Proof. When r = 0, this follows immediately from Table 2 for all cases except odd-
dimensional orthogonal spaces in even characteristic, in which case π(W ) = P (m). 
The general case follows since π(W ) = qr−1

q−1 + qrπ(W/R) for singular points and 
π(W ) = qrπ(W/R) for nonsingular points. �
Fact 39. Assume that V is an even-dimensional unitary space or orthogonal space of 
type +. For k ≤ n/2 − 1, set Fk = P (n − k) +S(n). Set Fn/2 = 2( q

n/2−1
q−1 ). If q = q2

0, set 
F ∗ = qn0 −1

q0−1 .

1. If x is linear and v(x) = k, k ≤ n/2, then F (x) ≤ Fk.
2. If x is linear and v(x) ≥ n/2, then F (x) ≤ Fn/2.
3. If x is semilinear then F (x) ≤ F ∗.

Proof. This is a straightforward consequence of the previous statement. �
Fact 40. Suppose x preserves a non-degenerate sesquilinear or bilinear form on V , Xλ =
ker(X − λI)n, and Xμ = ker(X − μI)n. If λμ̄ 
= 1 then Xμ ⊆ X⊥

λ .

Proof. Argue by induction on k+ l that if k and l are positive integers, v ∈ ker(X−λI)k, 
and w ∈ ker(X − μI)l then 〈v, w〉 = 0. �
3.3. Unitary and orthogonal groups

To complete the proof of Theorem 6 we assume that V admits a nondegenerate or-
thogonal or unitary form, and that the action of G is on the points of type t in V .

To estimate f(x) − q−v(x) we bound F (x) from above and N from below. For a 
subspace W of V , let π(W ) = πt(W ) be the number of points of type t in W . It is 
apparent that F (x) =

∑
π(Eλ) where {Eλ} is the collection of eigenspaces for x.

Lemma 41. If x acts linearly on V , then either

1. f(x) − q−v(x) < 1/100 or
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2. V has even dimension, the action is on singular points, and some eigenspace for the 
action of x on V is a totally singular subspace of dimension dimV/2.

Proof. We have F (x) =
∑

π(Eμ) where the sum is over the eigenspaces Eμ for the action 
of (some pull-back of) x in the group of linear transformations of V .

Suppose v = v(x) ≤ n/2, and let λ be the principal eigenvalue. Then dimEλ = n − v. 
Let Xλ be the corresponding generalized eigenspace, that is Xλ = ker(x − λI)n, and set 
w = codimV Xλ. Then w ≤ v.

If Xλ is totally singular, then dimXλ ≤ n/2, and it follows that Xλ = Eλ, so the 
second alternative holds. We may therefore suppose that Xλ is not totally singular. It 
follows from Fact 40 that λλ̄ = 1 and that Eμ ⊆ X⊥

λ whenever μ 
= λ.
This implies that

F (x) ≤ π(Eλ) + π
(
X⊥

λ

)
.

Setting r = dim rad(Eλ), we have r ≤ codimXλ
(Eλ) = v−w. So dimX⊥

λ = w ≤ v−r. 
By Fact 38, F (x) ≤ P (n − v) + S(n − v + r) + P (v − r) + S(v − r) because X⊥

λ is 
non-degenerate.

Since N ≥ P (n) − S(n) and P (n − v) ≤ q−vP (n), it follows that

F (x) − q−vN ≤ S(n− v + r) + P (v − r) + S(v − r) + q−vS(n)

= S(n− v + r) + P (v − r) + S(v − r) + S(n− 2v),

because S(n) = Kqn/2 where K is independent of n.
Set D(x) = F (x) − q−vN . We claim that D(x) < (q + 1)S(n − 2) + 2.
We have shown that D(x) ≤ φ(v, r) where φ(v, r) = S(n − v + r) + P (v − r) +

S(v − r) + S(n − 2v). By elementary calculus, φ attains its maximum on the region 
{(v, r): 1 ≤ v ≤ n/2, 0 ≤ r ≤ v} at (1, 1). Therefore D(x) ≤ φ(1, 1) = S(n) + S(n −
2) + P (0) + S(0) < (q + 1)S(n − 2) + 2 since P (0) < 1 and S(0) < 1.

Set D = (q+1)S(n −2) +2. It suffices to show that if N ≥ 10 000 then D/N < 1/100.
In all cases, N > qn−2 by Fact 38. When V is unitary, S(n − 2) = q(n−3)/2/(q1/2 +1), 

and it is easy to see that D < q(n−2)/2. So D2 < N , which implies that D/N < 1/100.
We may therefore assume that V is orthogonal. If either the action is on singular points 

or q is even, then S(n −2) = qn/2−2, and D < an/2−1(1 +q−1+2/(qn/2−1)) < 8q(n−2)/2/5. 
Therefore, D/N < 8

5q
−(n−2)/2, and q(n−2)/2 < 160. This implies that n ≤ 16 and 

q ≤ 11 since n ≥ 6. Among the pairs (n, q) of such values, the only ones for which both 
q(n−2)/2 < 160 and N > 10 000 are (6, 11), (7, 7), (8, 5), (11, 3), and (16, 2).

In the nonsingular case when q is odd, S(n − 2) = 1
2q

(n−3)/2, so D ≤ q(n−1)/2(q +
1)/2q + 2 < q(n−1)/2. In this case, N ≥ 1

2q
n−1(1 − q−(n−1)/2) > 4

9q
(n−1). Therefore, 

D/N < 9
4q

−(n−1)/2, and q(n−1)/2 < 225. This implies that n ≤ 10 and q ≤ 7. By 
inspection, the only pairs (n, q) for which both q(n−2)/2 < 160 and N > 10 000 are 
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(6, 8), (8, 4), (16, 2). A straightforward calculation shows that f(x) − q−v < 1/100 in 
these cases.

A straightforward calculation shows that f(x) − q−v < 1/100 in these cases. This 
shows that the result holds when v ≤ n/2.

If v ≥ n/2 + 1, then every eigenspace has dimension at most n/2 − 1, and there are 

at most q − 1 eigenspaces. Therefore F (x) ≤ (q − 1)( q
n/2−1−1
q−1 ) < qn/2−1 <

√
N . Since 

N ≥ 10 000 this implies that F (x)/N < 1/100.
This leaves the case v = (n + 1)/2, where n is necessarily odd. Every eigenspace 

has dimension at most (n − 1)/2, so F (x) ≤ 2(q(n−1)/2 − 1)/(q − 1) + 1 ≤ F where 
F = q(n−1)/2. A short calculation, described below, shows that the conclusion holds in 
this case.

Suppose V is unitary and set q0 = q1/2. Then N = qn−1/2−1
q−1 − q(n−1)/2

q0+1 in the singular 
case, and N = qn−1/2+q(n−1)/2

q0+1 in the nonsingular case. By computation, F/N < 1/100
when (n, q0) = (3, 5), (5, 3), or (9, 2). Since F/N is a decreasing function of both q and n, 
it follows that n = 3, 5, or 7. Furthermore, q0 ≤ 4 when n = 3 and q0 = 2 when n = 5
or 7. By inspection, N < 10 000 in these cases.

In the orthogonal case, q is necessarily odd because n is odd. We have N = qn−1−1
2

in the singular case, and N = qn−1±q(n−1)/2

2 in the nonsingular case. By computation, 
F/N < 1/100 when (n, q) = (7, 7) or (11, 3). Since F/N is a decreasing function of both 
q and n, it follows that n = 7, or 9. Furthermore, q ≤ 5 when n = 7 and q = 3 when 
n = 9. By inspection, N < 10 000 in these cases.

This completes the proof of Lemma 41. �
Lemma 42. If x acts semilinearly on V then either

1. f(x) − q−v(x) < 1/100 or
2. the dimension n of V is even, and x has a totally singular eigenspace of dimension 

n over Fq1/2 .

Proof. Assume that x acts semilinearly on V with f(x) ≥ 1/100. Let d be the order 
of x mod PGL(V ). We claim that d = 2.

Suppose d > 2 and set q1 = q1/d. Then the points fixed by x must lie in an 
n-dimensional space over GF(q1), so F (x) ≤ ψ(d) = qn/d−1

q1/d−1 .
If V is orthogonal, and the action is on singular points, then ψ(d) < 1/100 when 

(d, q1, n) = (3, 2, 8), (4, 2, 6), (3, 3, 6), or (3, 3, 7). If the action is on nonsingular points, 
then ψ(d) < 1/100 when (d, q1, n) = (3, 2, 6), (3, 3, 6), or (3, 3, 7). For a given parity of n
and a given parity of q the ratio ψ(d) is a decreasing function of d, n, and q. We have 
N < 10 000 when V is an orthogonal space of dimension 6 over F8, so d = 2 in the 
orthogonal case.

In the unitary case, q is necessarily a square. We have F (x)/N < 1/100 when 
(d, q1, n) = (3, 22, 3), (3, 22, 4), (4, 2, 3), or (4, 2, 4), and the claim holds for the unitary 
case as well.
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We have d = 2. Let E be the primary eigenspace for x. Then E is an Fq0 space of 
dimension at most n where q0 = q1/2. If dimE ≤ n −1, then F (x) < (qn−1

0 −1)/(q0−1) +1, 
and a short computation shows that F (x)/N < 1/100 whenever N > 10 000. Therefore 
E has dimension n, and F (x) ≤ ψ(2).

We may assume that ψ(2) − q−n
0 N ≥ N/100, and in particular, that ψ(2) > N/100.

Then F (x) ≤ qn0 −1
q0−1 , and the conditions F (x)/N ≥ 1/100, N ≥ 10 000 imply that 

(n, q0) is on one of the following lists.

Unitary groups, nonsingular action: (8, 2), (9, 2), (4, 5);
singular action: (8, 2), (9, 2), (6, 3), (5, 4), (4, 7), (4, 8), (4, 9).

Orthogonal groups, nonsingular action: (8, 2), (6, 3);
singular action: (10, 2), (7, 3), (6, 4).

For U9(22), we have ψ(2) ≤ N/100 + q−n/2N .
For all other cases, the upper bounds in Fact 38 imply that F (x) < N/100 − q−n/2N

whenever E is not totally singular. �
Lemma 43. If f(x) − q−v ≥ 1/100 for some x ∈ G� then the action is on singular points 
and one of the following is true.

1. V is unitary and (n, q0) ∈ {(4, 7), (4, 8), (4, 9), (6, 3), (8, 2)}.
2. V is orthogonal of + type and (n, q) ∈ {(6, 11), (6, 13), (6, 16), (8, 5), (10, 4)}.

Proof. The two previous lemmas show that it suffices to assume that the action is on 
the singular points of an even-dimensional space V and V contains a totally singular 
subspace of dimension dimV/2.

Suppose first that V is a unitary space of dimension 2m over Fq where m ≥ 2 and 

q = q2
0 . Then N = (q2m

0 −1)(q2m−1
0 +1)

q2
0−1 .

If x has a totally singular eigenspace of dimension m, then the fixed points of x are 
contained in the union of two subspaces of V each of dimension m, so F (x) ≤ 2( q

2m
0 −1
q2
0−1 ). 

Otherwise, x has an eigenspace of dimension 2m over Fq0 , and F (x) ≤ q2m
0 −1
q0−1 .

In either case, f(x) ≤ q0+1
q2m−1
0 +1 . By assumption, f(x) ≥ 1/100. Therefore q2m−2

0 <

100( q0+1
q0

) ≤ 150. Since 28 > 150, it follows that 2m − 2 < 8. Therefore m ≤ 4. By 
inspection, one of the following holds: m = 2, q0 ≤ 9; m = 3, q0 ≤ 3; or m = 4, q0 = 2.

By further inspection, N < 104 when m = 2, q0 ≤ 5 and when m = 3, q0 = 2. One of 
the conditions in 1 must therefore hold.

Now suppose V is an orthogonal + space of dimension 2m over Fq, m ≥ 3. Then 

N = (qm−1)(qm−1+1)
q−1 .

Suppose q = 2. Then x has a single eigenspace and F (x) ≤ qm−1, so f(x) ≤ 1
qm−1+1 . 

Since N > 10 000, we have m ≥ 8. Therefore f(x) < 1/100. We may therefore assume 
that q ≥ 3.
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Suppose x fixes a totally singular subspace of dimension m. Then the fixed points of x
are contained in the union of two subspaces of V each of dimension m, so F (x) ≤ 2( q

m−1
q−1 ).

We have f(x) ≤ 2
qm−1+1 . The assumption that f(x) > 1/100 implies that qm−1 < 200. 

Since q ≥ 3 and 35 > 200, it follows that m ≤ 5 and that one of the following holds: 
m = 3, q ≤ 13; m = 4, q ≤ 5; or m = 5, q = 3.

By inspection, N < 104 when m = 3, q ≤ 9, when m = 4, q ≤ 4, and when m = 5, 
q = 3, so one of the following must hold: 2m = 6 and q = 11 or 13; 2m = 8 and q = 5.

If x fixes a subspace of dimension 2m over Fq1/2 , then F (x) ≤ qm−1
q1/2−1 . Therefore 

f(x) ≤ q1/2+1
qm−1+1 .

The condition f(x) ≥ 1/100 implies that qm−1 +1 ≤ 100(q0 +1), so q2m−2
0 ≤ 100(q0 +

1) ≤ 150q0, and q2m−3
0 ≤ 150.

We have m ≤ 5 because 28 > 150, and one of the following holds: m = 3, q0 ≤ 5; 
m = 4, q0 = 2; or m = 5, q0 = 2.

By inspection, N < 104 for m = 3, q0 ≤ 3 and for m = 4, q0 = 2. Since 5+1
252+1 < 1/100, 

the case m = 3, q0 = 5 does not satisfy the hypotheses. This leaves the cases 2m = 6, 
q = 42 and 2m = 10, q = 22. �
Lemma 44. If one of the conclusions of Lemma 43 holds then g(x) > 2 whenever x is a 
normalized generating tuple for G.

Proof. We consider the cases in turn. We assume throughout that N > 104, that x is a 
normalized generating tuple for G, with signature d, and that g(x) ≤ 2.

By Theorem 5, it suffices to assume that there is an element y involved in x which 
violates Grassmann Condition 1/100.

Step 1. For some i, 〈xi〉 contains an element y such that one of the following is true.

1. y fixes two totally singular subspaces of dimension n/2.
2. y is a semilinear map on V , y has order 2, and y fixes a subspace of dimension n

over Fq1/2 .

Step 2. x does not have signature (2, 3, 7).

Proof. If x has signature (2, 3, 7), then every element of G must act linearly on V . 
By Step 1, x must involve an element y which has two totally singular eigenspaces of 
dimension n/2. No such element can violate Grassmann Condition 1/100 when G is of 
type U4(q2

0), U6(32), O6(16), or O10(4). When G is of type U8(22) no element can have 
two distinct totally singular eigenspaces. In all other cases, the element of order 7 can 
have at most one eigenvalue. When q = 11 or 5, the element of order 3 can have at 
most one eigenvalue as well. A short computation using fixed point estimates shows that 
g(x) > 2 in all cases. �
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Step 3. G is not of type U4(q2).

Proof. N = (q2 + 1)(q3 + 1), and, for all x ∈ G�, we have F (x) ≤ F where F =
(q + 1)(q2 + 1). The Riemann–Hurwitz Formula implies that A(d) ≤ (2N + 2)/(N −F ). 
Since d 
= (2, 3, 7), we must have q = 7, d = (2, 3, 8). In this case, v(x2

3) > 1, and x2
3 must 

act linearly on V , so F (x3) ≤ F (x2
3) ≤ 2(q2 + 1). By computation, g(x) > 2. �

Step 4. G is not of type O+
6 (q).

Proof. We have N = (q3 − 1)(q2 + 1)/(q − 1). Set F1 = (q4 − 1)/(q − 1) + q2, F2 =
(q3 − 1)/(q − 1) + q2, and F3 = 2(q3 − 1)/(q − 1). When q = 16, set q0 = 4 and 
F ∗ = (q3 − 1)/(q0 − 1).

Then F (x) ≤ F1 for all x ∈ G�, and the Riemann–Hurwitz Formula implies that 
A(d) ≤ (2N + 2)/(N − F1). It follows that d is one of the following: (2, 3, d); (2, 4, d), 
d ≤ 29; (2, 5, d), d ≤ 11; (2, 6, d), d ≤ 8; (2, 7, 7); (3, 3, d), d ≤ 8; (3, 4, 4); or (2, 2, 2, 3).

By inspection, if B is the set of all elements in G� for which F (x) > max(F2, F ∗) then ∑ |{B∩〈xi〉}|
di

< 1. Set F ′ = max(F2, F3, F ∗).
The Riemann–Hurwitz Formula now implies that A(d) ≤ (2N + 2 + 1(F1 − F ′))/

(N − F ′), whence d is one of the following: (2, 3, d), d ≤ 19; (2, 4, d), d ≤ 7; (2, 5, 5); or 
(3, 4, 4).

Inspecting this list it follows that 
∑ |{B∩〈xi〉}|

di
≤ 1/2, so A(d) ≤ (2N + 2 + 1

2 (F1 −
F ′))/(N − F ′), which further reduces the possible signatures. Further iterations of this 
procedure show that x must have signature (2, 3, 7), which was already ruled out by 
Step 2. �
Step 5. G is not of type U6(32).

Proof. In this case, using N = (q6
0−1)(q5

0 +1)/(q−1), F1 = (q9
0−1)/(q−1) +q5

0/(q0+1), 
F2 = (q7

0−1)/(q−1) +q5
0/(q0+1), F3 = 2(q3−1)/(q−1), and F ∗ = (q6

0−1)/(q0−1), a short 
modification of the analysis in the previous step again reduces to the case d = (2, 3, 7), 
which was treated earlier. �
Step 6. G is not of type O+

8 (5).

Proof. The argument of the previous two steps shows that either d = (2, 3, d) for some 
d or d ∈ {(2, 4, ≤ 8), (2, 5, ≤ 6), (3, 3, ≤ 5)}.

In the former situation, the contribution of elements having v(y) = 1 is less than 2/3, 
and it follows that d < 200, whence the contribution is less than 5/12. Continuing in 
this way shows that no tuple x can have g(x) ≤ 2.

In the remaining cases, bounding the contributions from elements with v(y) ≤ 2 leads 
to the same conclusion. �
Step 7. G is not of type U8(22).
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Proof. The argument of the previous steps shows that either d = (2, 3, d) or (2, 4, d) for 
some d or d ∈ {(2, 5, ≤ 17), (2, 6, ≤ 10), (2, 7, ≤ 8), (3, 3, ≤ 10), (3, 4, ≤ 5), (2, 2, 2, 3)}.

If β1 is the contribution to A(d) from elements having v(y) = 1 and β2 is the contri-
bution from elements with v(y) ≤ 2, then the Riemann–Hurwitz Formula implies that 
A(d) ≤ (2N + 2 − β1(F −F ′) − β2(F ′ −F ′′))/(N −F ′′), where F (x) ≤ F for all x ∈ G�, 
F (x) ≤ F ′ for all x with v(x) > 1, and F (x) ≤ F ′′ for all x with v(x) > 2.

Using this criterion eliminates the individual cases other than (2, 3, d), (2, 4, d). Using 
estimates for indexes, this reduces to (2, 3, ≤ 19), or (2, 4, ≤ 9).

In the (2, 3, d) case, we have Ind(x2) ≥ 2
3 (N − 2(q4

0 − 1)(q3
0 + 1)/(q − 1)) because 

v(x2) ≥ 4 and the eigenspaces for x2, an element of order 3, must be nondegenerate. 
Bounding v(xk

3), and hence F (xk
3), for k = 1, 2, 3, 4, shows that g(x) > 2 for all choices 

of d.
In the (2, 4, d) case, consideration of the subcases v(x2

2) = 1, v(x2
2) > 1 leads to the 

same conclusion. �
Step 8. G is not of type O+

10(4).

Proof. The argument in Step 4 shows that either d = (2, 3, d) or (2, 4, d) for some d or 
d ∈ {(2, 5, ≤ 12), (2, 6, ≤ 9), (2, 7, 7), (3, 3, ≤ 9), (3, 4, ≤ 5), (2, 2, 2, 3)}.

Its extension in Step 7 reduces to the earlier treated case d = (2, 3, 7). �
Combining Lemmas 43 and 44 we have the following result.

Proposition 45. If G is unitary or orthogonal and G violates Grassmann Condition 1/100
then g(x) > 2 for every normalized generating tuple for G.

Propositions 36, 37, and 45 establish Theorem 6.

4. Proof of Theorem 7

We assume here that x and V satisfy one of the conditions listed in Table 1. Suppose 
Ω is a primitive G-set of [projective] points in V with |Ω| ≥ 10 000.

That is, one of the following is true where np = dimFp
(V ).

1. x has signature (2, 3, 7) and one of the following holds.
(a) p = 11 and np = 5 or 6.
(b) p = 7 and np = 6.
(c) p = 5 and np = 7, 8, or 9.
(d) p = 3 and np = 12.
(e) p = 2 and 14 ≤ np ≤ 21.

2. x has signature (2, 3, 8), p = 3, and np = 10.
3. x has signature (2, 4, 5), p = 2, and np = 16. Furthermore vp(x1) = 4, vp(x2) = 12, 

and vp(x3) = 16.
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Table 2
Number of t-points in classical n-space of type X over Fq.

X Condition t CP (X,n, q, t)

L qn−1
q−1

Oε n = 2m Singular (qm−ε1)(qm−1+ε1)
q−1

Oε n = 2m δ (2,q)
2 (qm − ε1)qm−1

Oε n = 2m + 1 Singular q2m−1
q−1

Oε n = 2m + 1 δ qm(qm−εδ)
2

U q = q2
0 Singular (qn

0 −(−1)n)(qn−1
0 +(−1)n)

q−1

U q = q2
0 Non-singular (qn

0 −(−1)n)qn−1
0

q0+1

S n = 2m, q even ε hyperplane qm(qm+ε1)
2

Then V is an nq-dimensional Fq-module where qnq = pn, and nq and q satisfy the 
conditions listed for point actions.

Fact 46. The number CP (X, n, q, t) of t-points in a classical n-space of type X over 
GF(q) is given in Table 2.

Proof. See [5]. �
We calculate a lower bound for g(x) in each of the cases using the following lemma.

Lemma 47.

1. If d = (2, 3, 7), then v(x1) ≥ n/3, v(x2) ≥ n/2, and v(x3) ≥ n/2.
2. If d = (2, 3, 8) then v(x1) ≥ n/3, v(x3) ≥ n/2, v(x2) ≥ n/2, v(x2

2) ≥ n/2, and 
v(x4

2) ≥ n/5.
3. If d = (2, 4, 5), then v(x1) ≥ n/4, v(x2) ≥ n/2, v(x2

2) ≥ n/4, and v(x3) ≥ n/2.
4. The number of t-points in an n-space with radical of dimension r of type X over Fq

is (qr − 1)/(q− 1) + qrCP (X, n − r, q, t) for singular points and qrCP (X, n − r, q, t)
for non-singular points.

5. Assume that q is even. Let G = O(2m + 1, q) ∼= Sp(2m, q) act on the 2m + 1-dimen-
sional orthogonal space V , where V has a 1-dimensional radical R. If x is a linear 
transformation in G then x fixes at most qm(qm−v(x) + 1)/2 complements to R of 
each type.

6. If W is a space of codimension v in the non-degenerate space V then dim radW ≤ v.
7. Let Fix2(x) be the number of fixed points of x lying outside its principal eigenspace. 

Set v = v(x). Then
(a) If (o(x), q − 1) = 1 then Fix2(x) = 0.
(b) Fix2(x) = 0 in case of type S.
(c) If 2v ≤ n then Fix2(x) is bounded by the number of type t points in some 

v-dimensional space.
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(d) If (o(x), q − 1) = d0 and every n − v-dimensional space contains at most M
points then Fix2(x) ≤ (d0 − 1)M .

8. If Fix(xj) ≤ Fj for all positive powers of x, then

Ind(x) ≥ d− 1
d

N − 1
d

( ∑
k|d,k<d

φ

(
d

k

)
Fk

)
.

9. If Indxi ≥ Hi for all i then g(x) ≥ 1
2
∑

Hi −N + 1.

Proof. The first three statements follow from Lemma 16.
The fourth statement is a straightforward count of points in R⊕W where R is totally 

singular of dimension r and W is non-degenerate.
Statement 5 follows from a straightforward calculation, as in the proof of Proposi-

tion 8.1 of [5].
The next statement is clear because radW ⊆ W⊥.
To prove 7, note that the principal eigenspace of x has dimension n −v, and every fixed 

point of x lying outside the principal eigenspace must lie in an eigenspace of dimension 
at most n − v.

All eigenvalues of x must have order dividing both o(x) and q−1, so there are at most 
d0 = (o(x), q− 1) eigenvalues in toto. Statements 7(a) and 7(d) now follow immediately.

In type S only the eigenvalue λ = 1 corresponds to fixed points, so statement 7(b)
holds.

The total dimension of all secondary eigenspaces is at most v, and all secondary fixed 
points of x lie in the direct sum of such subspaces. Statement 7(c) follows.

Statements 8 and 9 follow easily from the Cauchy–Frobenius and Riemann–Hurwitz 
Formulas, respectively. �

In all cases except L14(2) acting on the points in its natural module and U8(22) acting 
on singular points the lower bound is larger than 2.

However, in those cases, we use the following additional facts:

1. If x has order 7 and acts as a linear transformation over F2 or F4 then x has a single 
eigenspace and 3|v(x).

2. If x has order 3 and acts as a linear transformation over F2 then x has a single 
eigenspace and 2|v(x).

Using these additional facts, it is easy to establish the following lemma and complete 
the proof of Theorem 7.

Lemma 48. If d = (2, 3, 7) and the action is either L14(2) on points or U8(22) on singular 
points, then the genus is at least 20.
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Proof. Suppose G = L14(2). Then xi has only one eigenspace for i = 1, 2, 3, 2|v(x2), and 
3|v(x3). It follows that v1 ≥ 5, v2 ≥ 8, and v3 ≥ 9. Furthermore, Ind(x1) ≥ 1

2 (214−29) =
7936, Ind(x2) ≥ 2

3(214 − 26) = 10 880, and Ind(x3) ≥ 6
7 (214 − 25) = 14 016. This implies 

that g(x) > 30.
Suppose G = U8(22). Then x1 and x3 have at most one eigenspace, and 3|v(x3). We 

have v1 ≥ 3, v2 ≥ 4, and v3 = 6, and it follows that g(x) > 2. �
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