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FOUR-VALUED MODAL LOGIC:

KRIPKE SEMANTICS AND DUALITY

UMBERTO RIVIECCIO, ACHIM JUNG, AND RAMON JANSANA

Abstract. We introduce a family of modal expansions of Belnap-Dunn four-valued
logic and related systems, and interpret them in many-valued Kripke structures. Using
algebraic logic techniques and topological duality for modal algebras, and generalizing
the so-called twist-structure representation, we axiomatize by means of Hilbert-style
calculi the least modal logic over the four-element Belnap lattice and some of its ax-
iomatic extensions. We study the algebraic models of these systems, relating them to
the algebraic semantics of classical multi-modal logic. This link allows us to prove that
both local and global consequence of the least four-valued modal logic enjoy the finite
model property and are therefore decidable.

1. Introduction

Combining many-valued and modal logics into a single system is a long-standing concern
in mathematical logic and computer science, see for example [16, 17] and the literature cited
there. The benefit of such an interaction is that it may allow us to deal with modal notions
like belief, knowledge, obligations, in connection with other aspects of reasoning that can
be best handled using many-valued logics, for instance vagueness and inconsistency. If our
final aim is to provide a comprehensive model of human reasoning, it is obvious that all
these aspects have to be dealt with at the same time, therefore such a study is especially
interesting from the point of view of theoretical computer science, cognitive science and
artificial intelligence.

Recent work in the tradition of mathematical fuzzy logic has provided a very general
framework for studying modal expansions of fuzzy logic, whose truth values are usually
linearly ordered: see for instance [11, 12, 7]. A parallel line of research has been developing
modal versions of inconsistency-tolerant logical systems, such as Belnap-Dunn four-valued
logic and paraconsistent Nelson logic: see [32, 33, 35, 34, 37]. These are also many-valued
systems where truth values can be naturally ordered according to different criteria, none of
which defines a linear order.

In this paper we make a first attempt at combining the two approaches mentioned above,
investigating expansions of Belnap-Dunn logic and related paraconsistent systems from
the point of view of general many-valued modal logic adopted in [7]. In this way we
systematically lay out a framework for studying paraconsistent modal logic which extends
and encompasses the work of [34, 31]. A preliminary version of the present work has
appeared in [25]. While the approach employed here is essentially the same, we have
simplified many proofs, and refined and extended most results. The last section of the
present paper is entirely new.

Our starting point is a Kripke-style semantics whose models are four-valued in two dif-
ferent respects, both semantic valuations and the accessibility relation among worlds taking
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2 UMBERTO RIVIECCIO, ACHIM JUNG, AND RAMON JANSANA

values into the four-element Belnap lattice. We axiomatize the minimum modal logic over
this lattice in the sense of [7], i.e., the logic determined by the class of all four-valued Kripke
frames. However, our completeness proofs follow an alternative strategy to both those of [7]
and of [34]. We will then consider axiomatic extensions of our base logic and explore further
possible generalizations.

We obtain what we consider particularly neat completeness proofs, for both the global
and the local consequence relation, mainly relying on (i) an algebraic study of models of
the logic, (ii) a convenient representation of these models as twist-structures, and (iii) re-
lating Kripke semantics to the topological semantics for classical modal logic provided by
the duality of Jónsson and Tarski for modal algebras. This strategy allows us to attack the
problem of completeness for four-valued modal logic using analogous results for classical
multi-modal logic. We show that axiomatic extensions of the minimum modal logic, corre-
sponding to restrictions on the accessibility relation, can be easily axiomatized using the
same methods. Taking advantage of the insight gained through our algebraic analysis of the
logic, we also introduce and study a more general four-valued semantics that seems to us
a natural modal expansion of Belnap-Dunn (and paraconsistent Nelson) logic, encompass-
ing the above-mentioned existing work on modal expansions of these systems. We obtain
axiomatizations and completeness results for the base logic and its extensions by an easy
modification of the methods used in the previous case.

The paper is organized as follows. In Section 2 we introduce the non-modal core of our
logics, which is essentially the logic of the four-element Belnap lattice, either viewed as a
bilattice or as an N4-lattice, and recall some facts that will be used in the study of its
modal expansions. In Section 3 we introduce the semantics of our logics, based on four-
valued Kripke frames; it is essentially an instantiation of the definition proposed in [7] for the
least modal logic over a residuated lattice. We associate two modal consequence relations
to each class of frames, a global and a local one. Section 4 introduces Hilbert-style calculi
that we prove to be complete with respect to our semantically defined modal consequences.
In Section 5 we determine and study the algebraic models of our calculi. The findings,
besides their intrinsic mathematical interest, are key for the developments in the remainder
of the paper. They also provide additional semantic insight into four-valued modal logic.
In Section 6 we develop a topological duality theory for the algebraic models of our logic,
which turns out to be a straightforward application of Jónsson-Tarski duality for modal
algebras. This allows us to prove completeness of the logic with respect to Kripke-style
semantics, and also to axiomatize certain interesting axiomatic extensions of the base logic.
We also see that the semantics introduced in Section 3 can be generalized by replacing the
four-element Belnap bilattice with any complete algebra in the same variety. In Section 7 we
introduce an even more general semantics inspired by our algebraic analysis of four-valued
modal logic, and we sketch out how to axiomatize the resulting logic and its extensions.
The final Section 8 discusses open problems and directions for future research.

2. The non-modal core of the logic

Our non-modal starting point is the logic determined by the four-element Belnap lattice
FOUR (Figure 1) together with the subset of designated elements {t,⊤}. FOUR has two
(bounded) lattice structures, namely the t-lattice 〈FOUR,≤t,∧,∨, f, t〉 and the k-lattice
〈FOUR,≤k,⊗,⊕,⊥,⊤〉. The four lattice operations are determined by the two Hasse
diagrams shown in Figure 1. Moreover, we will consider a negation and an implication
operator. Negation ¬ is a unary operator that swaps t and f while having both ⊥ and ⊤
as fixed points. Weak implication ⊃ (later on we will introduce a strong implication) is
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Figure 1. The four-element Belnap bilattice FOUR in its two orders

defined in FOUR by the following prescription:

x ⊃ y =

{

y if x ∈ {t,⊤}

t if x /∈ {t,⊤}.

The (non-modal) logical language we are mainly interested in is 〈∧,∨,⊃,¬, f, t,⊥,⊤〉, but
it will sometimes be convenient to focus on more restricted languages, both for the sake of
generality and in order to relate our study to known results on other non-classical logics.

The logical matrix 〈FOUR, {t,⊤}〉 determines Belnap-Dunn logic [3, 4] in the following
way. One considers the formula algebra Fm freely generated by a countable set of proposi-
tional variables over the language L = 〈∧,∨,¬〉, whose connectives correspond to t-lattice
meet, t-lattice join and negation, respectively. Given formulas Γ ∪ {ϕ} ⊆ Fm, one sets
Γ |= ϕ if and only if, for all L-homomorphisms h : Fm → FOUR, we have h(ϕ) ∈ {t,⊤}
whenever h[Γ ] ⊆ {t,⊤}.

Different choices of the propositional language L, keeping the underlying set of truth
values and the designated elements fixed, give rise to different logics:

1. L = 〈∧,∨,¬, f, t〉 gives us Belnap-Dunn logic with propositional constants f (falsity)
and t (truth).

2. L = 〈∧,∨,⊗,⊕,¬〉 defines the implicationless bilattice logic of Arieli and Avron [2],
to which one may add constants to obtain 〈∧,∨,⊗,⊕,¬, f, t〉. As we will see, the
latter is in fact equivalent to 〈∧,∨,¬, f, t,⊥,⊤〉, in the sense that both constants ⊥
and ⊤ can be obtained as terms in the language 〈∧,∨,⊗,⊕,¬, f, t〉 and, conversely,
the connectives ⊗ and ⊕ are term-definable in 〈∧,∨,¬, f, t,⊥,⊤〉.

3. L = 〈∧,∨,⊃,¬〉 gives us four-valued paraconsistent Nelson logic, which is an exten-
sion of paraconsistent Nelson logic [1, 28] obtained by adding the following axiom
(Peirce’s law): ((p ⊃ q) ⊃ p) ⊃ p. The language with truth constants t and f is
considered, for instance, in [30].

4. L = 〈∧,∨,⊗,⊕,⊃,¬〉 gives us the full bilattice logic of Arieli and Avron [2]. As before,
the language with truth constants 〈∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤〉, which is considered
in [25], is equivalent to 〈∧,∨,⊃,¬, f, t,⊥,⊤〉.

The equivalences stated in 2. and 4. depend on the fact that the following identities hold
in FOUR [24, Lemma 1.5]:

x⊗ y = (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y)

x⊕ y = (x ∧ ⊤) ∨ (y ∧ ⊤) ∨ (x ∧ y).

This means that, in the presence of the constants ⊥ and ⊤ in the language, the k-lattice
operations can be simply introduced as derived connectives. Conversely, one can define

⊥ := f ⊗ t ⊤ := f ⊕ t.
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We notice that all the above-mentioned logics can be finitely axiomatized, for instance,
through Hilbert- and Gentzen-style syntactic calculi. We will introduce one of these in
Section 4.

Unless otherwise stated, the language of our non-modal base logic is the one mentioned
in the last item above, that is, L = 〈∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤〉. That is, we will be dealing
with Arieli-Avron bilattice logic [2]. We will use the following abbreviations:

x→ y := (x ⊃ y) ∧ (¬y ⊃ ¬x)

x ∗ y := ¬(y → ¬x)

x≡ y := (x ⊃ y) ∧ (y ⊃ x)

x↔ y := (x→ y) ∧ (y → x).

We use the same symbol for the algebraic operation and the corresponding propositional
connective. The first two derived operations, that we call strong implication (→) and
fusion (∗), play a particularly important role in this paper. The reason is that they together
form a residuated pair : a fact, as we will see in the next section, that will allow us to
relate our treatment of four-valued modal logic to existing literature on the modal logic of
residuated lattices.

In our setting, being a residuated pair means that the following property holds for arbi-
trary elements x, y, z of FOUR:

x ∗ y ≤t z iff y ≤t x→ z.

This, together with the fact that 〈FOUR, ∗,⊤〉 is a monoid, entails that we can view
FOUR as a residuated lattice [36, Proposition 5.4.1]. Residuated lattices are well-known in
algebraic logic, for they provide algebraic semantics for a wide class of multi-valued logics,
including the so-called fuzzy logics [20].

∗ f ⊥ ⊤ t → f ⊥ ⊤ t

f f f f f f t t t t

⊥ f f ⊥ ⊥ ⊥ ⊥ t ⊥ t

⊤ f ⊥ ⊤ t ⊤ f ⊥ ⊤ t

t f ⊥ t t t f ⊥ f t

Table 1. The residuated pair in FOUR.

Table 1 shows the behaviour of the two operations in FOUR. Some important points
that we would like to highlight are the following:

• As suggested by the terminology, strong implication → has some logical features
of classical implication. For instance, it satisfies the contraposition law (ϕ → ψ is
semantically equivalent to ¬ψ → ¬ϕ) and determines the t-lattice order of FOUR
in the following way:

x ≤t y iff x→ y ∈ {t,⊤}

iff x→ y = (x→ y) → (x→ y).

On the other hand, other good properties of classical implication are enjoyed by
weak implication ⊃ but not by the strong one, the most prominent example being
the deduction theorem.
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• A remarkable feature that distinguishes strong implication from the classical one,
and that will have important consequences for our study, is the following. Given
x ∈ FOUR and y ∈ {t,⊤}, it can happen that x → y /∈ {t,⊤}. The reason is that
t → ⊤ = f. Logically, this means that, even if ψ is valid, ϕ→ ψ might not be valid.

• Being an adjoint to strong implication, fusion ∗ has the logical role of a multiplicative
conjunction. In fact, one can see that the formula that defines fusion from strong
implication is the same as the one that defines classical conjunction from classical
implication. As an algebraic operation, fusion is associative and commutative, but
not idempotent, because ⊥∗⊥ = f (this is in fact the only exception to idempotency).
Notice also that the neutral element of the monoid 〈FOUR, ∗,⊤〉 is not the top
element of the lattice order ≤t. In the standard terminology of residuated lattices
this is expressed by saying that FOUR is a commutative non-integral residuated
lattice.

3. Relational semantics of the modal logic

For a modal expansion of our logic we initially focus on the necessity operator ✷ only.
Semantically, we seek to interpret it in suitable Kripke structures. For motivation, let us
consider first a classical Kripke model 〈W,R, v〉, where W is a non-empty set of “worlds”,
R an accessibility relation among them and v a valuation. Now view R as the character-
istic function associated with the accessibility relation, i.e., as a map R : W×W → {t, f}.
Similarly, view v : Fm×W → {t, f} as a map assigning to each formula ϕ ∈ Fm at each
point w ∈ W a truth value in {t, f}. By the so-called standard translation of modal logic
into first-order logic, we obtain the following definition for the semantics of the necessity
operator

(1) v(✷ϕ,w) :=
∧

{R(w,w′) → v(ϕ,w′) : w′ ∈ W}

where
∧

denotes the infinitary meet and → is Boolean implication. Note that conjunction
is taken in the complete lattice of truth values, so there is no problem with applying it to
an infinite set.

This definition can now easily be adapted to our four-valued setting. We consider Kripke
models 〈W,R, v〉 where both R and v are four-valued, that is, we define R : W×W → FOUR
and v : Fm×W → FOUR. As before, valuations are required to be homomorphisms in their
first argument. We stress, as this will be important for our axiomatization, that we have
included the constants t, f,⊤,⊥ in the propositional language, so valuations must interpret
each of them as the corresponding element of FOUR.

Since FOUR carries three distinct conjunctions and two implications, there are six
candidates for the translations of (1) to the four-valued setting. We reject the monoid
operation ∗ because it is not idempotent and hence would require us to replace the set
{R(w,w′) → v(ϕ,w′) : w′ ∈W} by a multi-set. The choice between ∧ and ⊗ is more subtle
as it relates to the intended interpretation of the necessity operator. Our choice is for the
“logical” connective rather than the knowledge order one as it is here that there are useful
interactions with the two implications. This leaves the pairs 〈∧,→〉 and 〈∧,⊃〉.

The latter choice has, in our opinion, the disadvantage that the accessibility relation R,
although formally introduced as four-valued, turns out to have a two-valued behaviour when
interacting with weak implication. This is so because in FOUR the value of (1) (with →
replaced by ⊃) is the same as the following one:

∧

{v(ϕ,w′) : R(w,w′) ∈ {t,⊤}}.
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In fact, the choice 〈∧,⊃〉 has already been considered in [34] for a modal expansion of Belnap-
Dunn logic. It turns out, however, that the resulting operator is strictly less expressive than
the one defined by the pair 〈∧,→〉. Denoting the two choices by ✷⊃ and ✷→, we get:

Proposition 3.1. For all formulas ϕ ∈ Fm, all four-valued Kripke models 〈W,R, v〉, and
all w ∈ W :

v(✷⊃ϕ, w) = v(✷→(ϕ ∨ ⊥)⊕ (✷→ϕ ∧⊥), w).

Proof. Given that v is fixed, we abbreviate v(ϕ, w) as w(ϕ). Note that x→ ⊥ ≥t ⊥ for all
x ∈ FOUR, and x→ ⊥ = ⊥ precisely when x ≥t ⊤. This implies w(✷→(ϕ∨⊥)) ≥t ⊥ for all
w ∈W , and obviously we also have w(✷→ϕ∧⊥) ≤t ⊥. Let us also notice that the definition
x → y := (x ⊃ y) ∧ (¬y ⊃ ¬x) immediately implies w(✷⊃ϕ) ≥t w(✷→ϕ). Reasoning by
cases, assume w(✷⊃ϕ) = t. This means that w′(ϕ) = t for all w′ s.t. R(w,w′) ≥t ⊤.
Then w(✷→(ϕ ∨ ⊥)) = t. To prove that t ⊕ (w(✷→ϕ) ∧ ⊥) = t, it remains to show that
w(✷→ϕ) ∧ ⊥ 6= f, i.e., w(✷→ϕ) ≥t ⊥. If we had w(✷→ϕ) = ⊤, then there would be
w′ ∈ W s.t. R(w,w′) → w′(ϕ) = ⊤ → ⊤ = ⊤. But our assumption implies w′(ϕ) = t, a
contradiction. Suppose then w(✷→ϕ) = f. Under the assumptions, this means that there
must be w′ ∈ W s.t. R(w,w′) → w′(ϕ) = f. This can only happen if R(w,w′) ≥t ⊤,
but then the assumptions imply w′(ϕ) = t and x → t = t for all x ∈ FOUR. We
conclude w(✷→ϕ) ≥t ⊥ as required. Now assume w(✷⊃ϕ) = ⊤. This implies that, for all
w′ ∈ W , we have w′(ϕ) ≥t ⊤ whenever R(w,w′) ≥t ⊤. Since w(✷→ϕ) ≤t w(✷⊃ϕ) = ⊤,
we have w(✷→ϕ ∧ ⊥) = f. We thus need to show that w(✷→(ϕ ∨ ⊥)) ⊕ f = ⊤, i.e.,
w(✷→(ϕ ∨ ⊥)) = t. This happens when R(w,w′) ≥t ⊤ implies w′(ϕ) ≥t ⊤ for all w′ ∈ W ,
which is precisely our assumption. Now assume w(✷⊃ϕ) = ⊥. This means that (i) there is
w′ ∈ W s.t. R(w,w′) ≥t ⊤ and w′(ϕ) = ⊥, and (ii) for all w′′ ∈ W , we have w′′(ϕ) ≥t ⊥
whenever R(w,w′′) ≥t ⊤. From (i) we obtain w(✷→(ϕ ∨ ⊥)) = ⊥. It remains to show
that w(✷→ϕ ∧ ⊥) 6= f, i.e., w(✷→ϕ) ≥t ⊥. Now w(✷→ϕ) 6≥t ⊥ would mean that there is
w′′′ ∈ W s.t. R(w,w′′′) ≥t ⊤ and w′′′(ϕ) ≤t ⊤, but this is forbidden by (ii). We conclude
w(✷→ϕ) ≥t ⊥ as required. Finally, assume w(✷⊃ϕ) = f. This implies that there is w′ ∈ W
s.t. R(w,w′) ∈ {t,⊤} and w′(ϕ) ≤t ⊥. Hence, w(✷→(ϕ ∨ ⊥)) ≤t R(w,w

′) → w′(ϕ ∨ ⊥) =
R(w,w′) → ⊥ = ⊥. On the other hand, w(✷→ϕ) ≤t w(✷⊃ϕ), implies w(✷→ϕ) = f. Thus
we have w(✷→(ϕ ∨ ⊥) ⊕ (✷→ϕ ∧ ⊥)) = ⊥ ⊕ f = f as required, and this concludes our
proof. �

One may wonder whether, conversely, it is possible to define ✷→ from ✷⊃. This is already
unlikely given the two-valued nature of the latter, and our algebraic analysis (Subsection 5.2)
will indeed confirm this intuition.

To summarize, our choice for the semantics of the necessity operator is based on the pair
〈∧,→〉, that is, in the four-valued context we replace classical conjunction with the truth
lattice meet and classical implication with the strong implication of Arieli-Avron logic. From
now on we will write simply ✷ in place of ✷→.

Let us point out a further pleasing feature of ✷. Given that FOUR is endowed with
an involutive negation (in fact, since ¬x = x → ⊤, we can view FOUR as an involutive
residuated lattice in the sense of [21]), we can introduce a possibility operator ✸ which
turns out to be dual to ✷ in the logic. Semantically, it is given by [7, p.746]:

(2) v(✸ϕ,w) :=
∨

{R(w,w′) ∗ v(ϕ,w′) : w′ ∈W}.

This is again obviously a generalization of the classical definition with the monoid operation
replacing classical conjunction (the fact that ∗ is not idempotent is not a problem here as
it is applied to two terms, not to a set).
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We are now ready to extend the semantic consequence relation of our base logic to the
modal setting. We say that a point w ∈ W of a four-valued model M = 〈W,R, v〉 satisfies
a formula ϕ ∈ Fm if v(ϕ,w) ∈ {t,⊤}. In such a case we write M,w |= ϕ. For a set of
formulas Γ ⊆ Fm, we write M,w |= Γ to mean that M,w |= γ for each γ ∈ Γ . As is
usual in modal logic, we consider two consequence relations. The local consequence Γ |=l ϕ
holds if for every model M = 〈W,R, v〉 and every w ∈ W , it is the case that M,w |= Γ
implies M,w |= ϕ. The global consequence relation Γ |=g ϕ holds if, for every model M , if
M,w |= Γ for all w ∈W , then M,w |= ϕ for all w ∈W .

We remind the reader that the above definitions imply that:

• if Γ |=l ϕ, then Γ |=g ϕ (global consequence is a strengthening of the local one);

• ∅ |=l ϕ if and only if ∅ |=g ϕ (the two consequences have the same valid formulas).

Let us now explore the axioms and rules that are valid semantically. The following can
be easily shown to follow from the definition of ✷ (see also [7]).

Proposition 3.2. The following formulas are valid in all models:

(i) ✷t ↔ t

(ii) ✷(ϕ ∧ ψ) ↔ (✷ϕ ∧ ✷ψ),

(iii) ✷(c → ϕ) ↔ (c → ✷ϕ) for all c ∈ {t, f,⊤,⊥}.

As in [7], the last of these schemata will play a prominent role in the axiomatization of
our logic, as will the following rule:

Proposition 3.3 (Monotonicity). The rule ϕ → ψ ⊢ ✷ϕ → ✷ψ is sound with respect to
global consequence. In other words, ϕ→ ψ |=g ✷ϕ→ ✷ψ holds.

Proof. We will use the following property, which holds in any residuated lattice. Let x, y, z ∈
FOUR. If x ≤t y, then z → x ≤t z → y. From this the proposition easily follows. In fact,
assume ϕ → ψ holds at every world w of a model 〈M,R, v〉. Then v(ϕ → ψ,w) ∈ {t,⊤},
which means, as observed above, that v(ϕ,w) ≤t v(ψ,w). To compute v(✷ϕ,w) we take,
according to (1), the t-meet of all expressions R(w,w′) → v(ϕ,w′). By the above property,
each of those is smaller than R(w,w′) → v(ψ,w′), so the t-meets are comparable as well,
that is, v(✷ϕ,w) ≤t v(✷ψ,w). And again this is equivalent to v(✷ϕ,w) → v(✷ψ,w) =
v(✷ϕ→ ✷ψ,w) ∈ {t,⊤}. �

The following is an immediate consequence of monotonicity:

Corollary 3.4. If ϕ→ ψ is valid in all models then so is ✷ϕ→ ✷ψ.

However, necessitation (from ⊢ ϕ derive ⊢ ✷ϕ), which in classical modal logic is equiv-
alent to monotonicity, is not sound, even with respect to global consequence. This is a
consequence of what we observed in the previous section: y ∈ {t,⊤} does not imply x →
y ∈ {t,⊤}. As a counter-example, consider the one-point Kripke model M = 〈W,R, v〉
where W = {w}, R(w,w) = t and v(p, w) = ⊤ for some variable p ∈ V ar. Then
v(✷p, w) = R(w,w) → v(p, w) = t → ⊤ = f. Hence M 6|= ✷p but M |= p. The same
model shows that the following monotonicity rule with respect to weak implication

ϕ ⊃ ψ

✷ϕ ⊃ ✷ψ

is not globally sound. Let q ∈ V ar be such that v(q, w) = t. Then v(q ⊃ p, w) = t ⊃ ⊤ = ⊤,
which means that M |= q ⊃ p. However, v(✷q, w) = R(w,w) → v(q, w) = t → t = t and
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v(✷p, w) = R(w,w) → v(p, w) = t → ⊤ = f. This means that v(✷q ⊃ ✷p, w) = v(✷q, w) ⊃
v(✷p, w) = t → f = f /∈ {t,⊤}. That is, M 6|= ✷q ⊃ ✷p.

The normality axiom, ✷(ϕ → ψ) → (✷ϕ → ✷ψ), also fails. To see this, consider again
a one-point model M = 〈W,R, v〉 where W = {w} and R(w,w) = ⊥. Let v be such that
v(p, w) = ⊥ and v(q, w) = f for p, q ∈ V ar. Then we have that

v(p→ q, w) = ⊥ → f = ⊥

v(✷p, w) = ⊥ → ⊥ = t

v(✷q, w) = ⊥ → f = ⊥

v(✷(p→ q), w) = ⊥ → ⊥ = t

v((✷p→ ✷q), w) = t → ⊥ = ⊥

v(✷(ϕ→ ψ) → (✷ϕ→ ✷ϕ), w) = t → ⊥ = ⊥ /∈ {t,⊤}.

Thus M 6|= ✷(ϕ → ψ) → (✷ϕ → ✷ψ). The same model shows that similar normality
axioms for the weak implication fail as well, that is, we have

6|= ✷(ϕ ⊃ ψ) ⊃ (✷ϕ ⊃ ✷ϕ) and 6|= ✷(ϕ ⊃ ψ) → (✷ϕ ⊃ ✷ϕ).

The modal logic we are studying is thus non-normal: this constitutes one of the main
difficulties in providing a complete axiomatization for it, as the standard canonical model
construction cannot be applied to prove completeness.

4. Axiomatizations

In this section we introduce Hilbert-style calculi which we will prove to be complete with
respect to the global and the local consequence relations, respectively. Our starting point
is the axiomatization of the non-modal fragment of our logic, provided by Arieli and Avron
[2, p. 47]. We present the axiom schemata in stages:

(⊃ 1) p ⊃ (q ⊃ p)

(⊃ 2) (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

(⊃ 3) ((p ⊃ q) ⊃ p) ⊃ p

(¬ ¬) p ⊃ ¬¬p ¬¬p ⊃ p

Note that the schema (¬p ⊃ ¬q) ⊃ (q ⊃ p), usually called contraposition, is absent but
the classical nature of the calculus has been preserved by the inclusion of Peirce’s Law
(⊃ 3) and double negation. In fact, it is not difficult to check that the 〈∧,∨,⊃〉-fragment of
Arieli-Avron logic coincides with the negation-free fragment of classical logic [10, Remark
1.2].

The next set of schemata establishes the link with the truth lattice operations and is
entirely standard:

(∧ ⊃) (p ∧ q) ⊃ p (p ∧ q) ⊃ q

(⊃ ∧) p ⊃ (q ⊃ (p ∧ q))

(⊃ t) p ⊃ t

(⊃ ∨) p ⊃ (p ∨ q) q ⊃ (p ∨ q)

(∨ ⊃) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))

(⊃ f) f ⊃ p
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The analogous schemata for the information lattice operations are:

(⊗ ⊃) (p⊗ q) ⊃ p (p⊗ q) ⊃ q

(⊃ ⊗) p ⊃ (q ⊃ (p⊗ q))

(⊃ ⊤) p ⊃ ⊤

(⊃ ⊕) p ⊃ (p⊕ q) q ⊃ (p⊕ q)

(⊕ ⊃) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p⊕ q) ⊃ r))

(⊃ ⊥) ⊥ ⊃ p

In the absence of contraposition one also has to stipulate how negation interacts with
the other operations:

(¬ ∧) ¬(p ∧ q) ≡ (¬p ∨ ¬q)

(¬ ∨) ¬(p ∨ q) ≡ (¬p ∧ ¬q)

(¬ ⊗) ¬(p⊗ q) ≡ (¬p⊗ ¬q)

(¬ ⊕) ¬(p⊕ q) ≡ (¬p⊕ ¬q)

(¬ ⊃) ¬(p ⊃ q) ≡ (p ∧ ¬q)

(¬ t) ¬t ⊃ p

(¬ f) p ⊃ ¬f

(¬ ⊤) p ⊃ ¬⊤

(¬ ⊥) ¬⊥ ⊃ p

The only rule of the Arieli-Avron calculus is modus ponens :

(mp) p, p ⊃ q ⊢ q

As is shown in [2], this calculus is complete with respect to the semantics based on FOUR
introduced in Section 2.

We now proceed to expand the Arieli-Avron calculus to accommodate the modal necessity
operator, taking our cue from the semantic considerations in the previous subsection. We
begin by adding the axiom schemata

(✷ t) ✷t ↔ t

(✷ ∧) ✷(p ∧ q) ↔ (✷p ∧ ✷q)

(✷ ⊥) ✷(⊥ → p) ↔ (⊥ → ✷p)

Interestingly, the last of these covers only one of the four cases that make up Proposition 3.2
(iii), and indeed, one of the consequences of our completeness result is that the other three
are not needed. In order to capture the closure property expressed in Corollary 3.4, we
need to make sure that we first generate all valid instances of the shape ϕ→ ψ. The official
definition of our logic is therefore slightly more involved than usual:

Definition 4.1. Let Fm be the set of formulas generated by a countable set of variables Var
in the modal language 〈∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤,✷〉. The set Σ of axioms of modal bilattice
logic is the least subset of Fm containing all substitution instances of the schemata exhibited
in this subsection, and closed under

(val-mp) if ϕ and ϕ ⊃ ψ are in Σ, then so is ψ;
(val-mono) if ϕ→ ψ is in Σ, then so is ✷ϕ→ ✷ψ.

The rules of modal bilattice logic are
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ϕ, ϕ ⊃ ψ
(mp)

ψ

ϕ→ ψ
(mono)

✷ϕ→ ✷ψ

Local inference ⊢l employs only (mp), while global inference ⊢g is generated by (mp) and
(mono).

Note that, although structurally similar, the rules (val-mp) and (val-mono) are only ever
applied to valid formulas, while (modus ponens) and (monotonicity) can be applied to
arbitrary assumptions.

5. Algebraic models of the logic

5.1. Modal bilattices. We start by looking at the algebraic models of the non-modal core
of the logic. This will allow us to determine the models of the modal calculi which, as is to
be expected, will turn out to be language expansions of the non-modal algebras.

The second author proved in [36, Theorem 4.2.4] that Arieli-Avron logic is algebraizable
in the sense of [6]. This means in particular that the non-modal calculus introduced in the
previous section enjoys strong algebraic completeness with respect to a class of algebras
introduced in [36, Definition 4.3.1] under the name implicative bilattices1.

Definition 5.1. A (bounded) bilattice is an algebra 〈B,∧,∨,⊗,⊕,¬, f, t,⊥,⊤〉 such that
〈B,∧,∨, f, t〉 and 〈B,⊗,⊕,⊥,⊤〉 are both (bounded) lattices. The order ≤t arising from
∧ or ∨ is called the truth order (t-order), that arising from ⊗ or ⊕ the knowledge order
(k-order) ≤k. The negation operation ¬ is required to satisfy the properties

(i) x ≤t y iff ¬y ≤t ¬x;

(ii) x ≤k y iff ¬x ≤k ¬y;

(iii) ¬¬x = x.

Conditions (i)-(iii) uniquely determine the behaviour of negation on the bounds: ¬t = f,
¬f = t, ¬⊤ = ⊤, and ¬⊥ = ⊥. We note that conditions (i)-(ii) can be expressed by
equations (De Morgan Laws), which implies that bilattices form an equational class (a
variety). Notice also that FOUR is an (in fact, the smallest non-trivial) algebra in this
variety.

Definition 5.2. A (bounded) implicative bilattice is a (bounded) bilattice with an addi-
tional operation ⊃ satisfying the following identities:

(IB1) (x ⊃ x) ⊃ y = y

(IB2) x ⊃ (y ⊃ z) = (x ∧ y) ⊃ z = (x ⊗ y) ⊃ z

(IB3) ((x ⊃ y) ⊃ x) ⊃ x = x ⊃ x

(IB4) (x ∨ y) ⊃ z = (x ⊃ z) ∧ (y ⊃ z) = (x ⊕ y) ⊃ z

(IB5) x ∧ ((x ⊃ y) ⊃ (x⊗ y)) = x

(IB6) ¬(x ⊃ y) ⊃ z = (x ∧ ¬y) ⊃ z.

Implicative bilattices obviously form a variety. Once again, FOUR, viewed as an algebra
in the language 〈∧,∨,⊗,⊕,⊃,¬〉 (possibly also including the bounds) is the smallest non-
trivial implicative bilattice. We also notice that Definition 5.2 implies that each of the four
lattice operations distributes over the other three [36, Proposition 4.3.4.]. This also follows
from the following important fact [36, Theorem 5.2.1].

1These algebras are called classical implicative bilattices in [10, 24]
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Theorem 5.3. The variety of (bounded) implicative bilattices is generated by FOUR.

Algebraizability of the Arieli-Avron calculus introduced in the previous section means
that the derivability relation of this calculus can be faithfully interpreted in the equational
consequence of the variety of implicative bilattices, and vice versa, by mutually inverse
interpretations. Consider a translation τ : Fm → Eq from propositional formulas Fm into
equations Eq over the same language, i.e., 〈∧,∨,⊗,⊕,⊃,¬〉, possibly enriched with the four
constants. For ϕ ∈ Fm, we define

τ : ϕ 7−→ ϕ = ϕ ⊃ ϕ.

This is extended to sets of formulas in the usual way: τ(Γ ) :=
⋃

{τ(γ) : γ ∈ Γ}. Algebraiz-
ability of Arieli-Avron calculus ⊢ then implies the following.

Theorem 5.4. Γ ⊢ ϕ if and only if τ(Γ ) |= τ(ϕ) in the equational consequence of the
variety of (bounded) implicative bilattices.

A translation ρ : Eq → Fm can be defined in order to obtain a “reverse completeness”
theorem that may be seen as a converse to the above one. This is not central in our setting,
but it will be useful to know that the translation can be defined as follows:

ρ(ϕ = ψ) 7−→ ϕ↔ ψ.

Theorem 5.3 tells us that Γ ⊢ ϕ is also equivalent to τ(Γ ) |= τ(ϕ) holding in FOUR.
Combining this result with what we already know from Section 2, we obtain the following
equivalences.

Corollary 5.5. Let Γ ∪ {ϕ} ⊆ Fm. The following are equivalent:

(i) Γ ⊢ ϕ

(ii) τ(Γ ) |= τ(ϕ) holds in FOUR

(iii) τ(Γ ) |= τ(ϕ) holds in any (bounded) implicative bilattice

(iv) Γ |= ϕ holds in the matrix 〈FOUR, {t,⊤}〉.

The last item of the preceding corollary can also be formulated in a more general way,
replacing FOUR by an arbitrary implicative bilattice, and this will be particularly impor-
tant for us. In the standard theory of logical matrices, one considers pairs 〈A, D〉 where
A is an algebra with carrier set A and D ⊆ A. One then defines a notion of consequence
in the same way as we have done in Section 2 for the matrix 〈FOUR, {t,⊤}〉. That is,
we consider the formula algebra Fm freely generated by a countable set of propositional
variables over the appropriate propositional language L and we set Γ |=〈A,D〉 ϕ if and only
if, for all L-homomorphisms h : Fm → A, we have h(ϕ) ∈ D whenever h[Γ ] ⊆ D. We can
then add one more piece of information to the above-stated equivalences:

(v) Γ |= ϕ holds in any matrix 〈B, F0〉, where B is a (bounded) implicative bilattice and
F0 := {x ∈ B : x ⊃ x = x}.

This means that Arieli-Avron logic is complete with respect to the above-defined class of
matrices. This is also a consequence of algebraizability, and one can see that the equation
defining the elements in F0 is determined by the translation τ . It is important for us to
notice that item (v) can be restated in even more general terms:

(vi) Γ |= ϕ holds in any matrix 〈B, F 〉, where B is a (bounded) implicative bilattice and F
is a bifilter of B.
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By a bifilter of B we mean a subset F ⊆ B that is a lattice filter with respect to both the
t- and the k-lattice order (see [10, Proposition 2.11]). Using this terminology, it is easy to
check that the above-defined set F0 is the least bifilter of any implicative bilattice.

Algebraizability is an intrinsic property of a logical calculus that is preserved by exten-
sions and, under certain conditions, by language expansions. These are determined by the
shape of the translation ρ from equations into propositional formulas. In our case, when
adding a modal operator ✷ to the Arieli-Avron calculus, the condition that we need in order
to preserve algebraizability is that ϕ ↔ ψ imply ✷ϕ ↔ ✷ψ. This is an easy consequence
of the monotonicity rule (mono) introduced in the previous section, which is a rule of the
global but not of the local calculus.

Theorem 5.6. The global calculus ⊢g of modal bilattice logic is algebraizable with the same
translations τ and ρ that ensure algebraizability of Arieli-Avron logic.

It is easy to see that the local calculus ⊢l is not algebraizable. In fact, we will see
that if it were algebraizable, then it would coincide with the global one. This situation
mirrors classical modal logic, where local and global consequence share the same algebraic
counterpart, the latter being algebraizable while the former is not.

The general theory of algebraizable logics [6] allows us to straightforwardly determine
the algebraic models of the global calculus. These are algebras in the language

〈∧,∨,⊗,⊕,⊃,¬,✷, f, t,⊥,⊤〉

having an implicative bilattice reduct and satisfying identities and quasi-identities that
are the τ -translations of the new axioms and rules that we have added to the non-modal
calculus. Notice that we have now included the constants in the language, as they appear,
crucially, in the new axioms. We are thus led to introduce the following structures.

Definition 5.7. A modal bilattice is a bounded implicative bilattice B having an extra
unary operation ✷ that satisfies the following identities:

(i) ✷t = t

(ii) ✷(x ∧ y) = ✷x ∧ ✷y

(iii) ✷(⊥ → x) = ⊥ → ✷x.

The reader may have noticed that the above equations are not prima facie the τ -translations
of the axioms. For instance, the axiom ✷t ↔ t translates as

✷t ↔ t = (✷t ↔ t) ⊃ (✷t ↔ t).

It is however easy to show that, in an implicative bilattice, the equation x↔ y = (x↔ y) ⊃
(x ↔ y) is equivalent to x = y. Notice also that we have not included the quasi-identity
corresponding to the monotonicity rule because it holds just as a consequence of the second
item (monotonicity of ✷ with respect to the t-lattice order). Returning to a comment we
made above, we note that every modal bilattice satisfies the equation ✷(c → ϕ) = c → ✷ϕ
for each c ∈ {f, t,⊥,⊤}. This can be shown purely algebraically, but it will also follow
from our completeness result. Finally, we notice that (iii) is equivalent, in any implicative
bilattice, to the simpler one

(iii’) ✷(x ⊃ ⊥) = ✸x ⊃ ⊥

where ✸x := ¬✷¬x.

The above considerations immediately imply the following results.
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Theorem 5.8. The global consequence relation ⊢g of modal bilattice logic is algebraizable
with respect to the variety of modal bilattices.

Theorem 5.9. The global consequence relation ⊢g is complete with respect to the class of
all matrices 〈B, F0〉 such that B is a modal bilattice and F0 is the least bifilter of B.

We now want to show that ⊢g and ⊢l indeed share the same algebraic counterpart, that
is, that a similar result to Theorem 5.9 can be proved about the local calculus. For this we
will need a few lemmas.

Following standard algebraic logic terminology [19], we say that a matrix 〈A, D〉 is a
model of a logic ⊢ when Γ ⊢ ϕ implies Γ |=〈A,D〉 ϕ for all formulas Γ ∪ {ϕ} ⊆ Fm. In such
a case we call D a logical filter of ⊢.

Lemma 5.10. For any modal bilattice B, the matrix 〈B, F 〉 is a model of the local calculus
⊢l if and only if F ⊆ B is a bifilter.

Proof. Assume 〈B, F 〉 is such that F ⊆ B is a bifilter of B. In order to prove that 〈B, F 〉
is a model of ⊢l it is sufficient to prove that F contains the image of all axioms and is
closed under the rules of the local consequence. The axioms are the same as those for the
global consequence. Then Theorem 5.8 ensures that B |= h(ψ) = h(ψ) ⊃ h(ψ) for any
axiom ψ and any homomorphism h : Fm → B. This means that h(ψ) belongs to the least
non-empty bifilter of B, namely F0 = {a ∈ B : a = a ⊃ a} [10, Theorem 2.12]. Since F0

is contained in any non-empty bifilter, we easily obtain that h(ψ) ∈ F . As for rules, the
only rule of ⊢l is modus ponens relative to ⊃ and we know that bifilters are closed under
modus ponens [10, Proposition 2.11]. Conversely, if 〈B, F 〉 is a model of ⊢l with B a modal
bilattice and F ⊆ B, then F is non-empty because h(ψ) ∈ F for any theorem ψ of ⊢l and
any homomorphism h : Fm → B. Moreover, F must be closed under modus ponens, which
implies, again by [10, Proposition 2.11], that F is a bifilter. �

We can already notice that the previous lemma indicates that, when considering models
of the local consequence, it is necessary to consider arbitrary bifilters rather than just the
minimal one.

Any logic is complete with respect to the class of all its matrix models. More interestingly,
it is known that any logic is complete with respect to the class of all its reduced matrix
models. We say that a matrix 〈A, D〉 is reduced when identity is the only congruence θ
of A which is compatible with D, by compatible meaning that, for all a, b ∈ A such that
〈a, b〉 ∈ θ, it holds that a ∈ D if and only if b ∈ D. It can be shown that, for any subset
D ⊆ A, there is always a greatest congruence that is compatible with D. This is denoted by
Ω(D) and is called the Leibniz congruence of the matrix 〈A, D〉. Thus, a reduced matrix
can be defined as one whose Leibniz congruence is the identity.

We are going to exploit the completeness result with respect to reduced models to charac-
terize the algebraic counterpart of the local calculus. For an arbitrary logic ⊢ (not necessarily
syntactically defined), we denote

Alg∗(⊢) := {A : 〈A, D〉 is a reduced matrix model of the logic ⊢}.

Algebraizability of ⊢g implies that a matrix 〈A, D〉 is a reduced model of ⊢g if and only if
A is a modal bilattice and D is the least bifilter of A. It follows that Alg∗(⊢g) is exactly
the variety of modal bilattices. This allows us to prove the next lemma that we need.

Lemma 5.11. Alg∗(⊢l) is the variety of modal bilattices.
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Proof. Let us denote by ModBil the class of all modal bilattices. As mentioned above,
Alg∗(⊢g) = ModBil. Moreover, Alg∗(⊢g) ⊆ Alg∗(⊢l), because ⊢g is an extension of ⊢l. Thus,
ModBil ⊆ Alg∗(⊢l). We also know from [19] that V (Alg∗(⊢l)), the variety generated by
Alg

∗(⊢l), coincides with V (Fm/Ω), where

Ω := {〈ϕ, ψ〉 ∈ Fm×Fm : ∅ ⊢g ϕ↔ ψ}.

By Theorem 5.8, we have that Fm/Ω is a modal bilattice. This implies that V (Fm/Ω) =
V (Alg∗(⊢l)) ⊆ ModBil. Hence, Alg∗(⊢l) ⊆ ModBil, which implies that Alg∗(⊢g) = Alg∗(⊢l) =
ModBil. �

The previous lemmas do not yet give us necessary and sufficient conditions for a matrix
to be a reduced model of ⊢l (this issue will be settled in Subsection 5.3, with the help of the
construction introduced in Subsection 5.2). However, they allow us to prove the following
completeness result.

Theorem 5.12. The local consequence relation ⊢l is complete with respect to the class of
all matrices 〈B, F 〉 such that B is a modal bilattice B and F is a bifilter of B.

Proof. Let K be the class of all matrix models 〈B, F 〉 such that B is a modal bilattice
and F ⊆ B a bifilter of B. Denote by |=K the associated consequence relation, defined as
follows: Γ |=K ϕ iff Γ |=〈B,F 〉 ϕ for any matrix 〈B, F 〉 ∈ K. By Lemma 5.10, we have
⊢l ≤ |=K (i.e., |=K is an extension of ⊢l). By Lemma 5.11 we know that K∗ ⊆ K, where K∗

denotes the class of all reduced matrix models of ⊢l. Hence, |=K ≤ |=K∗ and, as mentioned
above, |=K∗ =⊢l is an instance of a result that holds for any logic. Thus, we have that
|=K ≤ |=K∗=⊢l which implies |=K =⊢l. �

Given a finite set of formulas Γ = {γ1, . . . , γn}, we abbreviate
∧

Γ := γ1 ∧ . . . ∧ γn.

Corollary 5.13. Let Γ ∪ {ϕ} ⊆ Fm. The following are equivalent:

(i) Γ ⊢l ϕ,

(ii) there exists a finite Γ0 ⊆ Γ such that Γ0 ⊢l ϕ,

(iii) there exists a finite Γ0 ⊆ Γ such that the equation
∧

Γ0 ∧ ⊤ ≤t ϕ is valid in the
variety of modal bilattices.

Proof. The equivalence between (i) and (ii) follows immediately from the fact that all rules
of the calculus ⊢l involve only finitely many premises. To show that (ii) implies (iii), assume
Γ0 ⊢l ϕ for a finite Γ0. Then

∧

Γ0 ⊢l ϕ, as this already holds in the non-modal fragment
of the calculus. By Theorem 5.12, this means that, for every matrix 〈B, F 〉 and every
homomorphism h : Fm → B, we have that h(

∧

Γ0) ∈ F implies h(ϕ) ∈ F . This implies
that the element h(ϕ) belongs to the bifilter generated by h(

∧

Γ0). By [9, p. 203] this
means h(

∧

Γ0) ≤t h(
∧

Γ0) ⊗ h(ϕ) or, equivalently, h(
∧

Γ0) ∧ ⊤ ≤t h(ϕ). Since this holds
for any homomorphism h, we can conclude that B satisfies the equation

∧

Γ0 ∧ ⊤ ≤t ϕ.
Moreover, B itself being an arbitrary modal bilattice, we have that the equation holds in
the variety. Conversely, assume (iii) holds. Then, if h(

∧

Γ0) ∈ F for some matrix 〈B, F 〉
and some homomorphism h : Fm → B, the equation of (iii) tells us that h(ϕ) belongs to
the bifilter generated by h(

∧

Γ0), which is included in F . Hence, h(ϕ) ∈ F . �

We may ask ourselves what is the analogue of Lemma 5.10 for the global calculus ⊢g,
that is, given a matrix 〈B, F 〉 with B a modal bilattice, which properties must F satisfy in
order for 〈B, F 〉 to be a model of the global calculus? Obviously F must be a bifilter, and
the next proposition indicates that the only further requirement is that F be closed under
rule (mono), that is, if a→ b ∈ F , then ✷a→ ✷b ∈ F .
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Proposition 5.14. For any modal bilattice B, the matrix 〈B, F 〉 is a model of the global
consequence relation ⊢g if and only if F ⊆ B is a non-empty bifilter that is closed under
rule (mono).

Proof. Assume 〈B, F 〉 is such that F ⊆ B is a non-empty bifilter of B closed under the
monotonicity rule. Then we know that 〈B, F 〉 is a model of ⊢l by Proposition 5.10. Since
monotonicity is the only rule that distinguishes ⊢g from ⊢l, the assumption immediately
implies that 〈B, F 〉 is a model of ⊢g as well. Conversely, if 〈B, F 〉 is a model of ⊢g with
B a modal bilattice and F ⊆ B, then F is non-empty because h(ψ) ∈ F for any theorem
ψ of ⊢g and any homomorphism h : Fm → B. Moreover, F must be closed under modus
ponens, which implies, by [10, Proposition 2.11], that F is a bifilter, and it must also clearly
be closed under rule (mono). �

Corollary 5.15. The global consequence relation ⊢g is complete with respect to the class
of all matrices 〈B, F 〉 such that B is a modal bilattice and F ⊆ B a non-empty bifilter of
B that is moreover closed under rule (mono).

Proof. Let K be the class of all matrix models 〈B, F 〉 such that B a modal bilattice and
F ⊆ B a non-empty bifilter of B closed under rule (mono). By algebraizability of ⊢g, we
know that ⊢g is the logic determined by the class of matrices 〈B, F0〉 where B is a modal
bilattice and F0 is the minimal (non-empty) bifilter. Since F0 is closed under monotonicity,
we immediately have |=K ≤⊢g. On the other hand, Proposition 5.14 implies ⊢g ≤ |=K , so
we are finished. �

5.2. Twist-structure representation of modal bilattices. Several classes of bilattices
can be conveniently represented through a construction called twist-structure [29, 8]. In
this section we extend it to obtain a representation for modal bilattices. This will enhance
our understanding of the necessity operator ✷ as well as clarify the connection between
our logic and that of [34], and will eventually allow us to prove completeness of our modal
calculi with respect to the four-valued Kripke semantics.

Definition 5.16. A bimodal Boolean algebra is a structure A = 〈A,⊓,⊔,∼, 0, 1,✷+,✷−〉
such that 〈A,⊓,⊔,∼, 0, 1〉 is a Boolean algebra and both ✷+ and ✷− are unary operators
that preserve finite (possibly empty) meets.

The above definition implies that both 〈A,⊓,⊔,∼, 0, 1,✷+〉 and 〈A,⊓,⊔,∼, 0, 1,✷−〉 are
modal Boolean algebras in the usual sense [13]. Given a bimodal Boolean algebra A, we
consider the (full) twist-structure

A⊲⊳ = 〈A×A,∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤,✷〉
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whose operations are defined, for 〈a1, a2〉, 〈b1, b2〉 ∈ A×A, as follows:

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 ⊓ b1, a2 ⊔ b2〉

〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 ⊔ b1, a2 ⊓ b2〉

〈a1, a2〉 ⊗ 〈b1, b2〉 := 〈a1 ⊓ b1, a2 ⊓ b2〉

〈a1, a2〉 ⊕ 〈b1, b2〉 := 〈a1 ⊔ b1, a2 ⊔ b2〉

〈a1, a2〉 ⊃ 〈b1, b2〉 := 〈∼ a1 ⊔ b1, a1 ⊓ b2〉

¬〈a1, a2〉 := 〈a2, a1〉

f := 〈0, 1〉

t := 〈1, 0〉

⊥ := 〈0, 0〉

⊤ := 〈1, 1〉

✷〈a1, a2〉 := 〈✷+a1 ⊓✷− ∼ a2, ✸+a2〉

where ✸+a2 := ∼✷+ ∼ a2. This construction is obviously related to (and to some extent
generalizes) those of [34, 37, 31]. The term full is meant to distinguish our twist-structures
from those of, e.g., [31], whose underlying set can be a proper subset of the direct square
A ×A (see also the construction considered in Subsection 7.3). Notice that the k-order in
A⊲⊳ is the direct power of the lattice order of A, i.e., ≤k = ≤ × ≤, whereas the t-order is
the direct product of ≤ and its dual: ≤t =≤ × ≥.

We are going to see that every twist-structure A⊲⊳ is indeed a modal bilattice. With
respect to the construction used in [34, 31] to represent so-called BK-lattices, we note
that a twist-structure A⊲⊳ is a BK-lattice precisely when the underlying bimodal Boolean
algebra A satisfies the equation ✷−x = 1, so that ✷〈a1, a2〉 = 〈✷+a1, ✸+a2〉. It is also easy
to check that

✷(〈a1, a2〉 ∨ 〈0, 0〉)⊕ (✷〈a1, a2〉 ∧ 〈0, 0〉) = 〈✷+a1, ✸+a2〉

which explains the relation between our modal operator and that of [31, 34] stated in
Proposition 3.1. Obviously, our modal operator cannot be recovered as a term in the
language of [34], because ✷ is defined using two independent operators ✷+ and ✷− on the
underlying Boolean algebra, while [34] only makes use of one operator (together with its
dual).

Proposition 5.17. Every twist-structure A⊲⊳ is a modal bilattice.

Proof. We do not need to worry about non-modal connectives, as the result has been
proven, e.g., in [8, Proposition 4.11]. Let us check that A⊲⊳ satisfies the axioms defining
modal bilattices, namely:

(i) ✷t = t

(ii) ✷(x ∧ y) = ✷x ∧ ✷y

(iii) ✷(⊥ → x) = ⊥ → ✷x.
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(i) ✷〈1, 0〉 = 〈✷+1 ∧ ✷− ∼ 0, ✸+0〉 = 〈✷+1 ∧✷−1, 0〉 = 〈1, 0〉.
(ii) Given 〈a1, a2〉, 〈b1, b2〉 ∈ A×A, we have

✷(〈a1, a2〉 ∧ 〈b1, b2〉) = ✷ 〈a1 ∧ b1, a2 ∨ b2〉

= 〈✷+(a1 ∧ b1) ∧ ✷− ∼(a2 ∨ b2), ✸+(a2 ∨ b2)〉

= 〈✷+a1 ∧ ✷+b1 ∧ ✷−(∼ a2 ∧ ∼ b2), ✸+a2 ∨✸+b2〉

= 〈✷+a1 ∧ ✷+b1 ∧ ✷− ∼ a2 ∧ ✷−∼ b2, ✸+a2 ∨✸+b2〉

= ✷〈a1, a2〉 ∧ ✷〈b1, b2〉.

(iii) In order to simplify our calculations, we will prove the equation (iii’) ✷(x ⊃ ⊥) = ✸x ⊃
⊥, which we have already noted to be equivalent, in any implicative bilattice, to (iii). Given
〈a1, a2〉 ∈ A×A, we have

✷(〈a1, a2〉 ⊃ 〈0, 0〉) = ✷〈∼ a1, 0〉

= 〈✷+ ∼ a1 ∧ ✷− ∼ 0, ✸+0〉

= 〈✷+ ∼ a1 ∧ ✷−1, 0〉

= 〈✷+ ∼ a1 ∧ 1, 0〉

= 〈∼✸+a1, 0〉

= 〈✸+a1, ✷+a2 ∧ ✷− ∼ a1〉 ⊃ 〈0, 0〉

= ¬〈✷+a2 ∧✷− ∼ a1, ✸+a1〉 ⊃ 〈0, 0〉

= ¬✷¬〈a1, a2〉 ⊃ 〈0, 0〉

= ✸〈a1, a2〉 ⊃ 〈0, 0〉. �

A first and most important example of a twist-structure is FOUR itself, which is iso-
morphic (if we ignore the modal operator) to 2⊲⊳, where 2 is the two-element Boolean
algebra. Concerning the modal operator, given that there are two modal algebras whose
non-modal reduct is the two-element Boolean algebra, we see that there are exactly four
modal bilattices whose non-modal reduct is FOUR.

Our next aim is to show that, as happens with (non-modal) bilattices, every modal
bilattice is isomorphic to a twist-structure.

First of all, let us notice that, if we leave out the modal operator, then we know that every
bounded implicative bilattice is isomorphic to a twist-structure A⊲⊳, where A is a Boolean
algebra [8, Theorem 4.13]. Given a (modal) bilattice B, we can recover the associated
Boolean algebra by defining an equivalence relation as follows: for a, b ∈ B, we let

a ≈ b iff a ⊃ f = b ⊃ f.

This relation, which can be defined in several alternative ways (cf. [9, Definition 3.7]), is
not only an equivalence relation, but also a congruence with respect to all the algebraic
operations of a bounded implicative bilattice except negation. This means that we can
consider the quotient 〈B,∧,∨,⊃,f, t〉/≈ which is a Boolean algebra. Notice that in the
quotient the t-meet and the k-meet coincide, and likewise for the two joins. Also, for
a ∈ B, the Boolean negation of its corresponding class [a] ∈ B/≈ is defined as usual:
∼[a] := [a] ⊃ [f].

However, the relation ≈ need not be a congruence with respect to ✷. In order to define
modal operators on the quotient B/≈, we thus need slightly more involved definitions: for
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an equivalence class [a] ∈ B/≈, we let

✷+[a] := [✸(a ⊃ f) ⊃ f]

✷−[a] := [✷(¬(a ⊃ f) ∨ ⊤)]

✸+[a] := [✸a]

where ✸ abbreviates ¬✷¬. Notice that ✷+[a] = ∼✸+∼[a]. We can thus view ✷+ as a
defined operation.

Let us prove that our definitions are sound. Assume then a ≈ b, and notice that this is
equivalent to a ⊃ ⊥ = b ⊃ ⊥ (this can be checked in any implicative bilattice, for instance
using the twist-structure representation). Then, ✷(a ⊃ ⊥) = ✷(b ⊃ ⊥). Now we can
apply equation (iii) of Definition 5.7, in its equivalent form (iii’), to conclude ✸a ⊃ ⊥ =
✸b ⊃ ⊥. Thus we have ✸a ≈ ✸b. We omit the proofs of the other two cases as they
are straightforward. It remains to prove that ✷− is indeed a meet-preserving operator and
✸+ is a join preserving operator (from which it will follow that ✷+ is a meet-preserving
operator). It is immediate to see that ✸+[f] = [f]. That ✸+ preserves joins follows easily
from De Morgan Laws. That ✷−[t] = [t] is also immediate. To see that ✷− preserves meets,
we notice that any implicative bilattice satisfies the following equation:

(3) ¬((x ∧ y) ⊃ f) = ¬(x ⊃ f) ∧ ¬(y ⊃ f).

This can be checked in FOUR (relying on Theorem 5.3) or using the twist-structure repre-
sentation of implicative bilattices. We can now easily check that

✷−[a ∧ b] = [✷(¬((a ∧ b) ⊃ f) ∨ ⊤)]

= [✷((¬(a ⊃ f) ∧ ¬(b ⊃ f)) ∨ ⊤)] by (3)

= [✷((¬(a ⊃ f) ∨⊤) ∧ (¬(b ⊃ f) ∨⊤))] by distributivity

= [✷(¬(a ⊃ f) ∨ ⊤) ∧ ✷(¬(b ⊃ f) ∨ ⊤)] ✷ preserves meets

= [✷(¬(a ⊃ f) ∨ ⊤)] ∧ [✷(¬(b ⊃ f) ∨ ⊤)]

= ✷−[a] ∧ ✷−[b].

We have thus shown that we can obtain a bimodal Boolean algebra B/≈ as a quotient of
our modal bilattice B. It remains to prove that B is isomorphic to the full twist-structure
(B/≈)⊲⊳. The isomorphism is defined by the same map jB as employed in the non-modal
case (cf. [8, Theorem 4.13]): for all a ∈ B,

jB(a) := 〈[a], [¬a]〉.

Building on the representation result for non-modal bilattices, we only need to check that
jB(✷a) = ✷(jB(a)). We will use the fact that the following equation holds in any bounded
implicative bilattice:

(4) x = ((x ⊃ f) ⊃ ⊥) ∧ (¬((¬x ⊃ f) ⊃ f) ∨ ⊤).

This can be directly checked in FOUR or using the twist-structure representation of im-
plicative bilattices.
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We then have

jB(✷a) = 〈[✷a], [¬✷a]〉

= 〈[✷a], [¬✷¬¬a]〉 x = ¬¬x

= 〈[✷(((a ⊃ f) ⊃ ⊥) ∧ (¬((¬a ⊃ f) ⊃ f) ∨ ⊤))], [✸¬a]〉 by (4)

= 〈[✷((a ⊃ f) ⊃ ⊥) ∧ ✷(¬((¬a ⊃ f) ⊃ f) ∨ ⊤)], [✸¬a]〉 ✷(x ∧ y) = ✷x ∧ ✷y

= 〈[✷((a ⊃ f) ⊃ ⊥)] ∧ [✷(¬((¬a ⊃ f) ⊃ f) ∨ ⊤)], [✸¬a]〉

= 〈[✸(a ⊃ f) ⊃ ⊥] ∧ [✷(¬((¬a ⊃ f) ⊃ f) ∨ ⊤)], [✸¬a]〉 by Def. 5.7 (iii)

= 〈[✸(a ⊃ f)] ⊃ [⊥] ∧ [✷(¬((¬a ⊃ f) ⊃ f) ∨ ⊤)], [✸¬a]〉

= 〈[✸(a ⊃ f)] ⊃ [f] ∧ [✷(¬((¬a ⊃ f) ⊃ f) ∨ ⊤)], [✸¬a]〉

= 〈[✸(a ⊃ f) ⊃ f] ∧ ✷−[¬a ⊃ f], [✸¬a]〉

= 〈✷+[a] ∧ ✷− ∼[¬a],✸+[¬a]〉

= ✷〈[a], [¬a]〉

= ✷(jB(a)).

Theorem 5.18. Any modal bilattice B is isomorphic to the modal twist-structure (B/≡)⊲⊳

through the map jB defined by jB(a) := 〈[a], [¬a]〉 for all a ∈ B.

Thanks to Theorem 5.18, from now on, when it is convenient to do so, we will be able to
view a modal bilattice as a twist-structure. The correspondence between modal bilattices
and twist-structures can be extended to an equivalence between two naturally associated
categories, as was done for non-modal bilattices in [27, 8]. For what follows, it will be
useful to recall a property of twist-structures that does not depend on the presence of
modal operators [9, Proposition 3.18]:

Proposition 5.19. Assume B = A⊲⊳ is a (modal) bilattice, viewed as a twist-structure
over a (bimodal) Boolean algebra A, and F ⊆ B is a bifilter. Then F = ∇×A, where ∇ is
a lattice filter of A.

A consequence of the twist-structure representation which is particularly important from
a logical point of view is that it makes it possible to translate formulas from the language
of modal bilattice logic into that of classical bimodal logic (studied, e.g., in [26]). This
is quite straightforward. Let us consider the language of modal bilattice logic. Drawing
inspiration from [22], we define a translation ν that maps the formulas of this language to
pairs of formulas in the language of classical bimodal logic 〈⊓,⊔,∼, 0, 1,✷+,✷−〉 as follows.
First we assign to every propositional variable p a pair of different propositional variables
〈p1, p2〉 in such a way that if p is different from q, then p1 is different from q1 nad p2 is
different from q2. Then we define ν inductively by:

ν1(p) := p1 and ν2(p) := p2

ν1(f) := ν1(⊥) := ν2(⊥) := ν2(t) := 0 and ν2(f) := ν2(⊤) := ν1(⊤) := ν1(t) := 1

ν1(¬ϕ) := ν2(ϕ) and ν2(¬ϕ) := ν1(ϕ)

ν1(✷ϕ) := ✷+ν1(ϕ) ⊓ ✷− ∼ ν2(ϕ) and ν2(✷ϕ) := ∼✷+ ∼ ν2(ϕ)

ν1(ϕ ∧ ψ) := ν1(ϕ⊗ ψ) := ν1(ϕ) ⊓ ν1(ψ) and ν2(ϕ ∧ ψ) := ν2(ϕ⊕ ψ) := ν2(ϕ) ⊔ ν2(ψ)

ν1(ϕ ∨ ψ) := ν1(ϕ⊕ ψ) := ν1(ϕ) ⊔ ν1(ψ) and ν2(ϕ ∨ ψ) := ν2(ϕ⊗ ψ) := ν2(ϕ) ⊓ ν2(ψ)

ν1(ϕ ⊃ ψ) := ∼ ν1(ϕ) ⊔ ν1(ψ) and ν2(ϕ ⊃ ψ) := ν1(ϕ) ⊓ ν2(ψ).

Using the twist-structure representation we immediately obtain the following result (the
proof is essentially the same as that of [22, Proposition 4.1]).
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Proposition 5.20. A modal bilattice B = A⊲⊳ satisfies an equation ϕ = ψ if and only if
the bimodal Boolean algebra A satisfies the equations ν1(ϕ) = ν1(ψ) and ν2(ϕ) = ν2(ψ).

We will see a concrete application of the translation to particular equations in Subsec-
tion 6.3, when we look at extensions of the least modal bilattice logic. For now we would
like to point out the following remarkable consequence. Let us denote the global and lo-
cal consequence relations of classical bimodal logic by ⊢cbg and ⊢cbl. We then have the
following:

Proposition 5.21. Let Γ ∪ {ϕ} ⊆ Fm be formulas of modal bilattice logic. Then

(i) Γ ⊢g ϕ if and only if ν1(Γ ) ⊢cbg ν1(ϕ),

(ii) Γ ⊢l ϕ if and only if ν1(Γ ) ⊢cbl ν1(ϕ).

Proof. (i) Algebraizability of ⊢g (Theorem 5.6) implies that Γ ⊢g ϕ if and only if τ(Γ ) |=
τ(ϕ) holds in the equational consequence of the class of modal bilattices, that is, {γ = γ ⊃
γ : γ ∈ Γ} |= ϕ = ϕ ⊃ ϕ. In any implicative bilattice, this is equivalent to {γ ∧ ⊤ = ⊤ :
γ ∈ Γ} |= ϕ ∧ ⊤ = ⊤. By Proposition 5.20, we then have that {ν1(γ ∧ ⊤) = ν1(⊤) : γ ∈
Γ} |= ν1(ϕ∧⊤) = ν1(⊤) and {ν2(γ ∧⊤) = ν2(⊤) : γ ∈ Γ} |= ν2(ϕ∧⊤) = ν2(⊤) hold in the
class of bimodal Boolean algebras. The latter condition is vacuous, because ν2(ψ ∧ ⊤) =
ν2(ψ)⊔1 = 1 = ν2(⊤) for all ψ ∈ Fm. As to the former, since ν1(ψ∧⊤) = ν1(ψ)⊓1 = ν1(ψ)
for all ψ ∈ Fm, we can rewrite it as {ν1(γ) = 1 : γ ∈ Γ} |= ν1(ϕ) = 1. By algebraizability
of the global consequence of classical bimodal logic [26, Corollary 4.2.12], this is exactly
equivalent to ν1(Γ ) ⊢cbg ν1(ϕ).
(ii) Assume Γ ⊢l ϕ. By Corollary 5.13, this means that Γ0 ⊢l ϕ for a finite Γ0 ⊆ Γ and that
the equation

∧

Γ0 ∧ ⊤ ≤t ϕ holds in the variety of modal bilattices. This is a shorthand
for (

∧

Γ0 ∧ ⊤) ∨ ϕ = ϕ. We apply ν to both sides and we obtain ν1(
∧

Γ0) ⊔ ν1(ϕ) = ν1(ϕ)
and (ν2(

∧

Γ0) ⊔ 1) ⊓ ν2(ϕ) = ν2(ϕ). By Proposition 5.20, these equations are valid in
any bimodal Boolean algebra (although the latter is obviously vacuous). By algebraic
completeness of classical bimodal logic, this means that ν1(

∧

Γ0) ⊢cbl ν1(ϕ), which clearly
implies ν1(Γ ) ⊢cbl ν1(ϕ). Conversely, assuming ν1(Γ ) ⊢cbl ν1(ϕ), we invoke finiteness of
classical bimodal logic to find a finite subset ν1(Γ0) = {ν1(γ) : γ ∈ Γ0 ⊆ Γ} ⊆ ν1(Γ ) such
that ν1(Γ0) ⊢cbl ν1(ϕ). By algebraic completeness of classical bimodal logic, this means that
the equation

d
ν1(Γ0) ⊔ ν1(ϕ) = ν1(ϕ) is valid in the variety of bimodal Boolean algebras,

where l
ν1(Γ0) := ν1(γ1) ⊓ . . . ⊓ ν1(γn) = ν1(γ1 ∧ . . . ∧ γn) = ν1(

∧

Γ0).

We can thus rewrite the left-hand side of the previous equation as follows:
l
ν1(Γ0) ⊔ ν1(ϕ) = ν1(

∧

Γ0) ⊔ ν1(ϕ)

= (ν1(
∧

Γ0) ⊓ 1) ⊔ ν1(ϕ)

= (ν1(
∧

Γ0) ⊓ ν1(⊤)) ⊔ ν1(ϕ)

= ν1((
∧

Γ0 ∧ ⊤) ∨ ϕ).

Thus, we have ν1((
∧

Γ0∧⊤)∨ϕ) = ν1(ϕ). As we have observed above, ν2((
∧

Γ0∧⊤)∨ϕ) =
ν2(ϕ) is trivially true, so we can apply Proposition 5.20 to conclude that (

∧

Γ0∧⊤)∨ϕ = ϕ
holds in any modal bilattice. Hence, by Corollary 5.13, we have

∧

Γ0 ⊢l ϕ, which implies
Γ ⊢l ϕ. �

Classical bimodal logic has both the local and the global finite model property [26, Theo-
rems 2.7.9 and 3.1.10]. This means that if Γ 6⊢cbg ϕ (or Γ 6⊢cbl ϕ), then this is witnessed by a
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Kripke model whose underlying set of points is finite. This property, together with the fact
that both logics are finitely axiomatizable, implies that they are decidable. Proposition 5.21
allows us to transfer these results to our logics:

Theorem 5.22. Both calculi ⊢l and ⊢g of modal bilattice logic have the finite model prop-
erty, and are therefore decidable.

Proof. We only consider local consequence, as the proof for the global one is completely
analogous. Assume Γ 6⊢l χ. By Proposition 5.21, we then have ν1(Γ ) 6⊢cbl ν1(χ). Since
classical bimodal logic enjoys the finite model property, there is a finite Kripke model
M = 〈W,R+, R−, v〉 witnessing this, where R+, R− ⊆ W ×W are accessibility relations
corresponding to the two operators ✷+,✷− and v : Fmcb → P (W ) is a valuation from the
formula algebra Fmcb over the language of classical bimodal logic 〈⊓,⊔,∼, 0, 1,✷+,✷−〉.
There is thus a point w0 ∈ W such that M,w0 |= ν1(Γ ) but M,w0 6|= ν1(χ), that is,
w0 ∈ v(ν1(γ)) for each γ ∈ Γ but w0 /∈ v(ν1(χ)). This is enough to establish the claim that
⊢l (and similarly ⊢g) is decidable, but notice that M is not a four-valued Kripke model of
the kind introduced in Section 3. Thus, in order to conclude the proof, we need to turn M
into a four-valued model. It is clear that we can combine the relations R+ and R− into a
single four-valued relation R4 : W ×W → FOUR by defining, for all w,w′ ∈W ,

R4(w,w
′) :=



















t iff 〈w,w′〉 ∈ R+ and 〈w,w′〉 ∈ R−

⊤ iff 〈w,w′〉 ∈ R+ and 〈w,w′〉 /∈ R−

⊥ iff 〈w,w′〉 /∈ R+ and 〈w,w′〉 ∈ R−

f iff 〈w,w′〉 /∈ R+ and 〈w,w′〉 /∈ R−.

This gives us a four-valued Kripke frame 〈W,R4〉. In order to define a four-valued valuation,
we let, for each formula ϕ in the language of modal bilattice logic 〈∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤,✷〉,

v4(ϕ,w) =



















t iff w ∈ v(ν1(ϕ)) and w /∈ v(ν2(ϕ))

⊤ iff w ∈ v(ν1(ϕ)) and w ∈ v(ν2(ϕ))

⊥ iff w /∈ v(ν1(ϕ)) and w /∈ v(ν2(ϕ))

f iff w /∈ v(ν1(ϕ)) and w ∈ v(ν2(ϕ)).

Checking that v4 acts homomorphically on non-modal formulas is straightforward: we have,
for instance,

v4(ϕ ∧ ψ,w) = t ⇔ w ∈ v(ν1(ϕ ∧ ψ)) and w /∈ v(ν2(ϕ ∧ ψ))

⇔ w ∈ v(ν1(ϕ) ⊓ ν1(ψ)) and w /∈ v(ν2(ϕ) ⊔ ν2(ψ))

⇔ w ∈ v(ν1(ϕ)) ∩ v(ν1(ψ)) and w /∈ v(ν2(ϕ)) ∪ v(ν2(ψ))

⇔ w ∈ v(ν1(ϕ)), w ∈ v(ν1(ψ)) and w /∈ v(ν2(ψ)), w /∈ v(ν2(ψ))

⇔ v4(ϕ,w) = t and v4(ψ,w) = t.

Concerning modal formulas, we need to check that

v4(✷ϕ,w) =
∧

{R4(w,w
′) → v4(ϕ,w

′) : w′ ∈W}.

This amounts to showing that

(i)
∧

{R4(w,w
′) → v4(ϕ,w

′) : w′ ∈W} ∈ {t,⊤} iff
w ∈ v(ν1(✷ϕ)) = v(✷+ν1(ϕ) ⊓ ✷− ∼ ν2(ϕ)) = v(✷+ν1(ϕ)) ∩ v(✷− ∼ ν2(ϕ))

(ii)
∧

{R4(w,w
′) → v4(ϕ,w

′) : w′ ∈W} ∈ {f,⊤} iff
w ∈ v(ν2(✷ϕ)) = v(∼✷+ ∼ ν2(ϕ)) = ∼ v(✷+ ∼ ν2(ϕ)) = (v(✷+ ∼ ν2(ϕ)))

c.
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(i) Recall that v(✷+δ) := {w ∈ W : R+[w] ⊆ v(δ)} for all δ ∈ Fmcb and the definition
v(✷−δ) is similar. Now, on the one hand,

∧

{R4(w,w
′) → v4(ϕ,w

′) : w′ ∈ W} ∈ {t,⊤}
means that R4(w,w

′) → v4(ϕ,w
′) ∈ {t,⊤} for all w′ ∈ W . By residuation, this is equivalent

to R4(w,w
′) ≤t v4(ϕ,w

′). In FOUR, this means thatR4(w,w
′) ∈ {t,⊤} implies v4(ϕ,w

′) ∈
{t,⊤} and that R4(w,w

′) ∈ {t,⊥} implies v4(ϕ,w
′) ∈ {t,⊥}. According to our definitions,

these conditions translate as follows: 〈w,w′〉 ∈ R+ implies w′ ∈ v(ν1(ϕ)) and 〈w,w′〉 ∈ R−

implies w′ /∈ v(ν2(ϕ)). On the other hand, w ∈ v(✷+ν1(ϕ)) ∩ v(✷− ∼ ν2(ϕ)) means that
R+[w] ⊆ v(ν1(ϕ)) and R−[w] ⊆ (v(∼ ν2(ϕ))) = (v(ν2(ϕ)))

c. The former says that 〈w,w′〉 ∈
R+ implies w′ ∈ v(ν1(ϕ)), while the latter says that 〈w,w′〉 ∈ R− implies w′ /∈ v(ν2(ϕ)).
We see then that the two conditions are equivalent.
(b). Notice that

∧

{R4(w,w
′) → v4(ϕ,w

′) : w′ ∈W} ∈ {f,⊤} implies, in FOUR, that there
is w′′ ∈ W such that R4(w,w

′′) → v4(ϕ,w
′′) ∈ {f,⊤}. The table of strong implication in

FOUR (Table 1) shows that, if a → b ∈ {f,⊤}, then a ∈ {t,⊤} and b ∈ {f,⊤}. So,
R4(w,w

′′) ∈ {t,⊤} and v4(ϕ,w
′′) ∈ {f,⊤}. According to our definitions, these mean that

〈w,w′′〉 ∈ R+ and w′′ ∈ v(ν2(ϕ)). It is then sufficient to realize that

(v(✷+ ∼ ν2(ϕ)))
c = {w ∈W : ∃w′′ ∈ v(ν2(ϕ)) s.t. 〈w,w

′′〉 ∈ R+}

to see that the two conditions are equivalent.
We thus conclude thatM4 = 〈W,R4, v4〉 is indeed a four-valued Kripke model. To finish the
proof, it is sufficient to check that M4, w0 |= Γ but M4, w0 6|= χ, that is, v4(γ, w0) ∈ {t,⊤}
for each γ ∈ Γ but v4(χ,w0) ∈ {t,⊤}. According to our definitions, this amounts to proving
that w0 ∈ v(ν1(γ)) for all γ ∈ Γ but w0 /∈ v(ν1(χ)), which are exactly the assumptions we
started from. �

The proof of Theorem 5.22 already suffices to establish completeness of our calculi with
respect to the four-valued Kripke semantics introduced in Section 3, although only through
completeness of classical bimodal logic. We are going to see in Subsection 6.2 that, thanks
to duality, the same argument can be used to establish the result without relying on com-
pleteness of classical bimodal logic.

5.3. Congruences and reduced models. As we have anticipated, the twist-structure
representation will allow us to characterize the reduced models of ⊢l. In order to obtain
this, we will use twist-structures to obtain further information on models of ⊢g also and on
congruences of modal bilattices.

Firstly we are going to prove an analogue of Proposition 5.19 concerning those bifilters
which are logical filters of ⊢g, that is, those F ⊆ B such that 〈B, F 〉 is a model of the
global calculus. In order to do this, we introduce the following definition. Given a bimodal
Boolean algebra 〈A,✷+,✷−〉, we define an open filter (cf., e.g., [26, Definition 3.1.4]) to be
a lattice filter ∇ ⊆ A that satisfies: if a ∈ ∇, then ✷+a, ✷−a ∈ ∇.

Proposition 5.23. Let B = A⊲⊳ be a modal bilattice, viewed as a twist-structure over a
bimodal Boolean algebra A. Then F ⊆ B is a logical filter of ⊢g if and only if F = ∇×A
and ∇ is an open filter of A.

Proof. Assume F = ∇ × A, with ∇ an open filter of A. We already know that F is a
bifilter, so, by Proposition 5.14, we only need to check that it is closed under the rule
(mono). Assume then 〈a1, a2〉 → 〈b1, b2〉 ∈ F for some 〈a1, a2〉, 〈b1, b2〉 ∈ B, which means
a1 → b1, b2 → a2 ∈ ∇. We need to show that ✷〈a1, a2〉 → ✷〈b1, b2〉 ∈ F , which amounts
to showing that the first component of ✷〈a1, a2〉 → ✷〈b1, b2〉 belongs to ∇, i.e., (✷+a1 ∧
✷− ∼ a2) → (✷+b1 ∧ ✷−∼ b2), ✸+b2 → ✸+a2 ∈ ∇. The assumption b2 → a2 ∈ ∇ allows
us to conclude ✷+(b2 → a2) because ∇ is open. Moreover, ✷+(b2 → a2) ≤ ✸+b2 → ✸+a2
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holds in any (bi)modal Boolean algebra. So we have ✸+b2 → ✸+a2 ∈ ∇. Since (✷+a1 ∧
✷− ∼ a2) → (✷+b1 ∧ ✷− ∼ b2) = (✷− ∼ a2 → (✷+a1 → ✷+b1)) ∧ (✷+a1 → (✷− ∼ a2 →
✷− ∼ b2)), it remains to show that ✷− ∼ a2 → (✷+a1 → ✷+b1), ✷+a1 → (✷− ∼ a2 →
✷− ∼ b2) ∈ ∇. For this, it is sufficient to note that we have, on the one hand, ✷+(a1 →
b1) ∈ ∇ by assumption and ✷+(a1 → b1) ≤ ✷+a1 → ✷+b1 ≤ ✷− ∼ a2 → (✷+a1 → ✷+b1).
Similarly, on the other hand, we have ✷−(b2 → a2) = ✷−(∼ a2 → ∼ b2) ≤ ✷− ∼ a2 →
✷− ∼ b2 ≤ ✷+a1 → (✷− ∼ a2 → ✷−∼ b2), so the result follows from the assumption that
b2 → a2 ∈ ∇, which implies ✷−(b2 → a2) ∈ ∇. Hence we conclude that F is a ⊢g filter.
Conversely, assume F is a ⊢g filter, i.e., by Proposition 5.14, a non-empty bifilter that is
closed under rule (mono). Then we know that F = ∇ × A, with ∇ a lattice filter. We
need to prove that ∇ is open. Assume a ∈ ∇. This means that 〈a, 1〉 ∈ F . Then we
also have 〈1, 0〉 → (¬(〈a, 1〉 ⊃ 〈0, 1〉) ∨ 〈1, 1〉) ∈ F . To see this, we only need to compute
the first component of this expression, which is (1 → 1) ∧ ((a → 0) → 0) = a ∈ ∇. We
can then apply (mono) to conclude ✷〈1, 0〉 → ✷(¬(〈a, 1〉 ⊃ 〈0, 1〉) ∨ 〈1, 1〉) = 〈1, 0〉 →
✷(¬(〈a, 1〉 ⊃ 〈0, 1〉)∨〈1, 1〉) ∈ F . We compute the first component of this expression, which
is (✷+1 ∧ ✷− ∼∼ a) ∧ (✸+ ∼ a → 0) = ✷−a ∧ ✷+a. We have thus ✷−a ∧ ✷+a ∈ ∇, which
shows that ∇ is open. �

In order to obtain more information on reduced models, we need to look at congruences
of modal bilattices, in particular at those congruences that are compatible with a given
logical filter. To this end, we will extend to the modal setting a known result of implicative
bilattices, namely that the congruences of a twist-structure A⊲⊳ are isomorphic, as a lattice,
to the congruences of A [8, Theorem 4.13].

The existence of an isomorphism between congruences of a modal bilattice B (viewed as a
twist-structureA⊲⊳) and the underlying bimodal Boolean algebraA follows from the general
theory of algebraizable logics. In fact, algebraizability of ⊢g with respect to the variety of
modal bilattices implies that the congruences of any modal bilattice B are isomorphic to
the lattice of logical filters of ⊢g on B. Now, by Proposition 5.23, we have that Con(B)
is isomorphic to the lattice of open filters of A. Classical modal logic, even when two
independent necessity operators are present in the language, is algebraizable (see [26]), and
the logical filters of this logic are precisely the open filters. Thus we have that the lattice
of open filters of A is isomorphic to Con(A). Putting these results together, we obtain
Con(B) ∼= Con(A).

In order to see how this isomorphism can be concretely established, consider a modal
bilattice B = A⊲⊳ and define a map H : Con(A⊲⊳) → Con(A), for all θ ∈ Con(B), as follows:

(5) H(θ) := {〈x, y〉 ∈ A2 : 〈〈x, 1〉, 〈y, 1〉〉 ∈ θ}.

Let us check that this definition is sound.

Lemma 5.24. Let θ ∈ Con(A⊲⊳) and 〈〈x, x′〉, 〈y, y′〉〉 ∈ θ. Then 〈〈x, z〉, 〈y, z〉〉 ∈ θ for any
z ∈ A.

Proof. From the assumption we obtain 〈〈x, x′〉 ∧ 〈1, 1〉, 〈y, y′〉 ∧ 〈1, 1〉〉 = 〈〈x, 1〉, 〈y, 1〉〉 ∈ θ.
Then, 〈〈x, 1〉 ∨ 〈0, z〉, 〈y, 1〉 ∨ 〈0, z〉〉 = 〈〈x, z〉, 〈y, z〉〉 ∈ θ. �

Proposition 5.25. For all θ ∈ Con(A⊲⊳), H(θ) is a congruence of A.

Proof. Clearly H(θ) is an equivalence relation, and it is easy to check that it is compatible
with the algebraic operations of A. One needs, for instance, to show that 〈x, y〉, 〈x′, y′〉 ∈
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H(θ), that is, 〈〈x, 1〉, 〈y, 1〉〉, 〈〈x′, 1〉, 〈y′, 1〉〉 ∈ θ, implies 〈x ⊓ x′, y ⊓ y′〉 ∈ H(θ). By defini-
tion, the latter means that 〈〈x⊓x′, 1〉, 〈y⊓y′, 1〉〉 ∈ θ, which easily follows from the assump-
tions. Concerning the modal operators, we need to check that 〈〈x, 1〉, 〈y, 1〉〉 ∈ θ implies
〈〈✷+x, 1〉, 〈✷+y, 1〉〉, 〈〈✷−x, 1〉, 〈✷−y, 1〉〉 ∈ θ. From the assumption, using Lemma 5.24, we
obtain 〈〈x, 0〉, 〈y, 0〉〉 ∈ θ. From this we have

〈✷〈x, 0〉,✷〈y, 0〉〉 = 〈〈✷+x ⊓ ✷−∼ 0,✸0〉, 〈✷+y ⊓ ✷− ∼ 0,✸0〉〉 = 〈〈✷+x, 0〉, 〈✷+y, 0〉〉 ∈ θ

and again by the Lemma we obtain 〈〈✷+x, 1〉, 〈✷+y, 1〉〉 ∈ θ as desired. The case of ✷− is
analogous. �

The inverse map H−1 : Con(A) → Con(A⊲⊳) can be defined, for η ∈ Con(A), by

(6) H−1(η) := {〈〈x1, x2〉, 〈y1, y2〉〉 ∈ (A×A)2 : 〈x1, y1〉, 〈x2, y2〉 ∈ η}.

Proposition 5.26. For all η ∈ Con(A), H−1(η) is a congruence of A⊲⊳.

Proof. As before, it is clear that H−1(η) is an equivalence relation and compatibility
with the algebraic operations of A⊲⊳ is also easy to prove. Let us check the case of the
modal operator. Assume 〈〈x1, x2〉, 〈y1, y2〉〉 ∈ H−1(η), i.e., 〈x1, y1〉, 〈x2, y2〉 ∈ η. We
need to prove that 〈✷〈x1, x2〉,✷〈y1, y2〉〉 ∈ H−1(η), i.e., that 〈✷+x1 ⊓ ✷− ∼ x2,✷+y1 ⊓
✷− ∼ y2〉, 〈✸+x2,✸+x2y2〉 ∈ η, and these follow easily from the fact that η is a congruence
of A. �

Theorem 5.27. H and H−1 are mutually inverse order isomorphisms between the lattices
〈Con(A⊲⊳),⊆〉 and 〈Con(A),⊆〉.

Proof. Let us check that θ = H−1(H(θ)) for all θ ∈ Con(A⊲⊳). Using (5) and (6), we
have 〈〈x1, x2〉, 〈y1, y2〉〉 ∈ H−1(H(θ)) if and only if 〈x1, y1〉, 〈x2, y2〉 ∈ H(θ) if and only if
〈〈x1, 1〉, 〈y1, 1〉〉, 〈〈x2, 1〉, 〈y2, 1〉〉 ∈ θ. Assume the latter condition holds. Note that 〈x1, 1〉 =
〈x1, x2〉∧〈1, 1〉, 〈y1, 1〉 = 〈y1, y2〉∧〈1, 1〉, 〈x2, 1〉 = ¬〈x1, x2〉∧〈1, 1〉 and 〈y2, 1〉 = ¬〈y1, y2〉∧
〈1, 1〉. Then in the quotientA⊲⊳/θ, which is a modal bilattice, we have [〈x1, x2〉]θ∧[〈1, 1〉]θ =
[〈x1, x2〉]θ∧〈1, 1〉 = [〈y1, y2〉]θ∧〈1, 1〉 and, similarly, ¬[〈x1, x2〉]θ∧〈1, 1〉 = ¬[〈y1, y2〉]θ∧〈1, 1〉.
It is easy to show that, in any twist-structure, this implies [〈x1, x2〉]θ = [〈y1, y2〉]θ. Hence,
〈〈x1, x2〉, 〈y1, y2〉〉 ∈ θ, which shows that H−1(H(θ)) ⊆ θ. The converse inclusion is easy,
for 〈〈x1, x2〉, 〈y1, y2〉〉 ∈ θ implies 〈〈x1, x2〉 ∧ 〈1, 1〉, 〈y1, y2〉 ∧ 〈1, 1〉〉 = 〈〈x1, 1〉, 〈y1, 1〉〉 ∈ θ
and 〈¬〈x1, x2〉 ∧ 〈1, 1〉, ¬〈y1, y2〉 ∧ 〈1, 1〉〉 = 〈〈x2, 1〉, 〈y2, 1〉〉 ∈ θ. Thus, θ = H−1(H(θ)).
It is obvious that η = H(H−1(η)) for all η ∈ Con(A). In fact, applying the definitions, we
have 〈x, y〉 ∈ H(H−1(η)) if and only if 〈〈x, 1〉, 〈y, 1〉〉 ∈ H−1(η) if and only if 〈x, y〉, 〈1, 1〉 ∈ η.
It is also clear that θ ⊆ θ′ implies H(θ) ⊆ H(θ′). Conversely, if H(θ) ⊆ H(θ′), then
H−1(H(θ)) = θ ⊆ H−1(H(θ′)) = θ′. So H : Con(A⊲⊳) ∼= Con(A) is actually an order
isomorphism. �

We are now going to use the insight given by the previous theorem to look at congruences
of a modal bilattice that are compatible with logical filters.

Proposition 5.28. Let 〈B, F 〉 be a matrix such that B = A⊲⊳ is a modal bilattice and
F = ∇×A is a bifilter. Then a congruence θ ∈ Con(B) is compatible with F if and only if
H(θ) ∈ Con(A) is compatible with ∇.

Proof. Assume θ ∈ Con(B) is compatible with F and let x, y ∈ A be such that 〈x, y〉 ∈ H(θ)
and x ∈ ∇. By (5), 〈x, y〉 ∈ H(θ) iff 〈〈x, 1〉, 〈y, 1〉〉 ∈ θ. Since x ∈ ∇, we have 〈x, 1〉 ∈ F ,
which implies, by compatibility, 〈y, 1〉 ∈ F . This means that y ∈ ∇, as required.
Conversely, assume H(θ) ∈ Con(A) is compatible with ∇, 〈x, y〉 ∈ F and 〈〈x, y〉, 〈x′, y′〉〉 ∈
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θ. From the last assumption, using Lemma 5.24, we obtain 〈〈x, 1〉, 〈x′, 1〉〉 ∈ θ. This
means that 〈x, x′〉 ∈ H(θ). Since 〈x, y〉 ∈ F , we have x ∈ ∇, hence x′ ∈ ∇. This implies
〈x′, y′〉 ∈ F . �

Corollary 5.29. Let 〈B, F 〉 be a matrix such that B = A⊲⊳ is a modal bilattice and F =
∇×A is a bifilter. Then 〈B, F 〉 is reduced if and only if 〈A,∇〉 is reduced.

Corollary 5.30. A matrix 〈B, F 〉 is a reduced model of ⊢l if and only if B is a modal
bilattice and F is a bifilter such that F0 = {a ∈ B : a = a ⊃ a} is the only logical filter of
⊢g contained in F .

Proof. Assume 〈B, F 〉 is a reduced model of ⊢l. Then B is a modal bilattice (Proposi-
tion 5.11) and F is a bifilter (Proposition 5.10). Suppose G is a filter of ⊢g (hence, a
fortiori, a filter of ⊢l) such that F0 ⊆ G ⊆ F . Since ⊢l is protoalgebraic, the Leibniz
operator is monotone on filters of ⊢l. This means that Ω(G) ⊆ Ω(F ) = IdB , therefore
Ω(G) = {〈a, b〉 ∈ B × B : a ↔ b ∈ G} = IdB . Assume a ∈ G. Since the equation
x ↔ (x ⊃ x) = x holds in any implicative bilattice, we have a = a ↔ (a ⊃ a) ∈ G. This
means that 〈a, a ⊃ a〉 ∈ Ω(G) and therefore a = a ⊃ a. Hence, G = F0. Conversely, assume
B is a modal bilattice and F is a bifilter such that F0 is the only filter of ⊢g contained in F .
By Proposition 5.10, 〈B, F 〉 is a model of ⊢l. Let G := {a ∈ B : 〈a, a ⊃ a〉 ∈ Ω(F )}. We are
going to prove that G is a filter of ⊢g. It is clear that b ∈ G for all b ∈ F0, that is, F0 ⊆ G.
Moreover,G is closed under modus ponens, i.e., b, b ⊃ c ∈ G imply c ∈ G. To see this, notice
that in the quotient B/Ω(F ) we have [b] = [b] ⊃ [b] and [b] ⊃ [c] = ([b] ⊃ [c]) ⊃ ([b] ⊃ [c]),
which implies, in any implicative bilattice, [c] = [c] ⊃ [c]. Thus, G is a bifilter. Assume
b → c ∈ G, i.e., 〈b → c, (b → c) ⊃ (b → c)〉 ∈ Ω(F ). Reasoning as before, in the quotient
B/Ω(F ) we have [b] → [c] = ([b] → [c]) ⊃ ([b] → [c]), which implies [b] = [b] ∧ [c]. Hence,
〈b, b∧c〉 ∈ Ω(F ). SinceΩ(F ) is a congruence ofB, we have 〈✷b,✷(b∧c)〉 ∈ Ω(F ), from which
we can derive 〈✷b→ ✷c,✷(b∧c) → ✷c〉 ∈ Ω(F ) and 〈(✷b → ✷c) ⊃ (✷b→ ✷c), (✷(b∧c) →
✷c) ⊃ (✷b → ✷c)〉 ∈ Ω(F ). Since (✷(b ∧ c) → ✷c) ⊃ (✷b → ✷c) = ✷b → ✷c, we obtain
〈(✷b → ✷c) ⊃ (✷b → ✷c),✷b → ✷c〉 ∈ Ω(F ). This means that ✷b → ✷c ∈ G, so we
conclude that G is a filter of ⊢g. Then, by assumption, G = F0. Now, if 〈a, b〉 ∈ Ω(F ),
then 〈(a ↔ b) ⊃ (a ↔ b), (b ↔ b) ⊃ (a ↔ b)〉 = 〈(a ↔ b) ⊃ (a ↔ b), a ↔ b〉 ∈ Ω(F ), which
means that a↔ b ∈ G = F0. This implies a = b, so indeed Ω(F ) = IdB as required. �

6. Duality and completeness

In this section we develop a topological duality for bimodal Boolean algebras, which will
essentially turn out to be just an application of Jónsson-Tarski duality for modal algebras
[5, Chapter 5]. Since, as mentioned earlier, bimodal Boolean algebras are equivalent (as a
category) to modal bilattices, this will give us a duality for modal bilattices as well. More
importantly, we will prove that the relational semantics obtained through duality is not
only equivalent to the algebraic semantics for our calculi given in Section 5, but also to
the four-valued Kripke semantics introduced in Section 3, and this will allow us to prove
completeness of our modal calculi with respect to Kripke semantics.

6.1. Duality. As mentioned before, a bimodal Boolean algebraA = 〈A,⊓,⊔,∼, 0, 1,✷+,✷−〉
can be viewed as a pair of standard modal algebras 〈A,⊓,⊔,∼, 0, 1,✷+〉 and 〈A,⊓,⊔,∼, 0, 1,✷−〉.
According to Jónsson-Tarski duality, to these algebras correspondmodal spaces 〈X(A), τA, R✷+

〉
and 〈X(A), τA, R✷−

〉 constructed as follows:

• X(A) is the set of ultrafilters of A;
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• τA is the topology on X(A) having as basis the family of sets Φ(a) := {P ∈ X(A) :
a ∈ P} for each a ∈ A;

• R✷+
⊆ X(A) ×X(A) is defined, for all P,Q ∈ X(A), as follows: 〈P,Q〉 ∈ R+ iff

✷
−1
+ [P ] ⊆ Q;

• R✷−
⊆ X(A)×X(A) is defined in the same way as R+: 〈P,Q〉 ∈ R− iff ✷

−1
− [P ] ⊆ Q.

We remind the reader that a modal space is a structure 〈X, τ,R〉, where R ⊆ X ×X , such
that

• 〈X, τ〉 is a Stone space, i.e., a compact Hausdorff space having a basis of clopen sets;

• R[x] is a closed set for every x ∈ X ;

• R−1[U ] is clopen for every clopen set U ⊆ X .

The following definition seems thus to be the most natural one in our context.

Definition 6.1. A bimodal space is a structure X = 〈X, τ,R+, R−〉 such that both 〈X, τ,R+〉
and 〈X, τ,R−〉 are modal spaces.

It is clear that to each bimodal space X = 〈X, τ,R+, R−〉 a bimodal Boolean algebra can
be associated in the way prescribed by Jónsson-Tarski duality. We denote this algebra by

A(X ) = 〈A(X),∩,∪,∼,✷R+
,✷R−

, ∅, X〉

where 〈A(X ),∩,∪,∼, ∅, X〉 is the Boolean algebra of clopens of the Stone space 〈X, τ〉 and,
for each U ∈ A(X ) and for • ∈ {+,−},

(7) ✷R•
U := {x ∈ X : R•[x] ⊆ U}

The above correspondence between bimodal Boolean algebras and bimodal spaces can
be extended to a dual equivalence of categories by defining suitable notions of morphisms.
For the algebras, we adopt the obvious definition: morphisms of bimodal Boolean algebras
are algebraic homomorphisms. On the topological side we follow once again Jónsson-Tarski
duality.

Definition 6.2. A bimodal function f : X → X ′ between bimodal spacesX = 〈X, τ,R+, R−〉
and X ′ = 〈X ′, τ ′, R′

+, R
′
−〉 is a continuous function such that, for • ∈ {+,−},

(i) 〈x, y〉 ∈ R• implies 〈f(x), f(y)〉 ∈ R′
• for all x, y ∈ X ;

(ii) for all x ∈ X and z ∈ X ′, if 〈f(x), z〉 ∈ R′
•, then there is y ∈ X such that f(y) = z

and 〈x, y〉 ∈ R•.

We thus have a category of bimodal Boolean algebras with algebraic homomorphisms on
the one side, and a category of bimodal spaces with bimodal functions on the other. The
same functors involved in Jónsson-Tarski duality will establish our duality. To an algebraic
homomorphism of bimodal Boolean algebras h : A → A′ corresponds a bimodal function
X(h) : X(A′) → X(A) defined by X(h)(P ) := h−1[P ] for all P ∈ X(A′). Similarly, to
a bimodal function f : X → X ′ one associates a bimodal Boolean algebra homomorphism
A(f) : A(X ′) → A(X ) defined by A(f)(U) := f−1[U ] for all U ∈ A(X ′). Thus we have:

Theorem 6.3. The category of bimodal spaces and bimodal functions is dually equivalent
to the category of bimodal Boolean algebras and algebraic homomorphisms.

As mentioned before, this result can be easily used to obtain a duality for modal bilattices
(see also [8], where this strategy is applied to several classes of non-modal bilattices viewed
as twist-structures).
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Corollary 6.4. The category of bimodal spaces and bimodal functions is dually equivalent
to the category of modal bilattices and algebraic homomorphisms.

6.2. Completeness. We are now going to use our duality, together with the algebraic
results of Section 5, to prove completeness of our modal calculi with respect to the four-
valued Kripke semantics introduced in Section 3.

We are going to expound the details of the completeness proof for the local calculus,
which is essentially the same as that for the global calculus, and we will point out where the
differences lie as we go along. The overall strategy is the following. Assuming Γ 6⊢l ϕ, we first
look for an algebraic counter-model, using the algebraic completeness results established in
Section 5. Then, using duality, we turn the algebraic counter-model into a topological one.
Finally, we will show how to view the topological model thus constructed as a four-valued
Kripke model, and so our proof will be complete.

Theorem 6.5. For all Γ ∪ {ϕ} ⊆ Fm, the following are equivalent:

(i) Γ ⊢l ϕ;

(ii) for every four-valued Kripke model M = 〈W,R, v〉 and every w ∈ W , it holds that
M,w |= Γ implies M,w |= ϕ.

Theorem 6.6. For all Γ ∪ {ϕ} ⊆ Fm, the following are equivalent:

(i) Γ ⊢g ϕ;

(ii) for any four-valued Kripke model M = 〈W,R, v〉, if M,w |= Γ for all w ∈ W , then
M,w |= ϕ for all w ∈ W .

Proof. Assume Γ 6⊢l ϕ. Thanks to algebraic completeness (Theorem 5.12), we can find
an algebraic counter-model, i.e., a matrix 〈B, F 〉, with B a modal bilattice and F ⊆ B a
bifilter of B, and a homomorphism h : Fm → B such that h[Γ ] ⊆ F but h(ϕ) /∈ F . In
the case of ⊢g, we moreover know that F = F0 is the least bifilter of B. Thanks to the
twist-structure representation (Theorem 5.18), we may assume that B = A⊲⊳, with A a
bimodal Boolean algebra. We also know, by Proposition 5.19, that F = ∇× A, with ∇ a
lattice filter of A. In the case of the global calculus, we have F = F0 = {1} × A, where
1 is the top element of A. As before, we denote by π1 the first projection mapping, so
that π1[F ] = ∇. Clearly, π1[h[Γ ]] ⊆ ∇ but π1(h(ϕ)) /∈ ∇. By the Ultrafilter Theorem,
we can extend ∇ to an ultrafilter P such that π1(h(ϕ)) /∈ P . Then, by duality, we have
P ∈ Φ(π1(h(γ))) for all γ ∈ Γ and P /∈ Φ(π1(h(ϕ))). We thus obtain a topological counter-
model by considering the bimodal space 〈X(A), τA, R✷+

, R✷−
〉 which is dual to A. From

this point on we follow the proof of Theorem 5.22, which showed that a model of classical
bimodal logic can be turned into a four-valued Kripke model. We first define a four-valued
relation R4 : X(A)×X(A) → FOUR as follows: for all Q,Q′ ∈ X(A),

R4(Q,Q
′) :=



















t iff 〈Q,Q′〉 ∈ R✷+
and 〈Q,Q′〉 ∈ R✷−

⊤ iff 〈Q,Q′〉 ∈ R✷+
and 〈Q,Q′〉 /∈ R✷−

⊥ iff 〈Q,Q′〉 /∈ R✷+
and 〈Q,Q′〉 ∈ R✷−

f iff 〈Q,Q′〉 /∈ R✷+
and 〈Q,Q′〉 /∈ R✷−

We thus have a four-valued Kripke frame 〈X(A), R4〉. Next, we need to define a four-valued
valuation to obtain a Kripke model. We do this in two stages. We first define two standard
(two-valued) valuations v+, v− : V ar → P (X(A)) as follows: for all p ∈ V ar,

v+(p) := {Q ∈ X(A) : Q ∈ Φ(π1(h(p)))}

v−(p) := {Q ∈ X(A) : Q ∈ Φ(π1(¬h(p)))}.
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These are extended to arbitrary formulas ψ, χ ∈ Fm as follows:

v+(ψ ∧χ) := v+(ψ⊗χ) := v+(ψ)∩ v+(χ) and v−(ψ ∧χ) := v−(ψ⊕χ) := v−(ψ)∪ v−(χ)

v+(ψ ∨χ) := v+(ψ⊕χ) := v+(ψ)∪ v+(χ) and v−(ψ ∨χ) := v−(ψ⊗χ) := v−(ψ)∩ v−(χ)

v+(ψ ⊃ χ) := ∼ v+(ψ) ∪ v+(χ) and v−(ψ ⊃ χ) := v+(ψ) ∩ v−(χ)

v+(¬ψ) := v−(ψ) and v−(¬ψ) := v+(ψ)

v+(✷ψ) := ✷R✷+
v+(ψ) ∩✷R✷

−

∼ v−(ψ) and v−(✷ψ) := ∼✷R✷+
∼ v−(ψ)

v+(f) := v+(⊥) := v−(⊥) := v−(t) := ∅ and v−(f) := v−(⊤) := v+(⊤) := v+(t) :=
X(A).

We then combine v+ and v− into one four-valued valuation v4 : Fm ×X(A) → FOUR as
follows: for all ψ ∈ Fm and Q ∈ X(A),

v4(ψ,Q) =



















t iff Q ∈ v+(ψ) and Q /∈ v−(ψ)

⊤ iff Q ∈ v+(ψ) and Q ∈ v−(ψ)

⊥ iff Q /∈ v+(ψ) and Q /∈ v−(ψ)

f iff Q /∈ v+(ψ) and Q ∈ v−(ψ).

The same argument used in the proof of Theorem 5.22 shows that v4 acts homomorphically
on both non-modal and modal formulas. We may thus conclude that MA = 〈X(A), R4, v4〉
is indeed a four-valued Kripke model. It only remains to show that MA is a witness that
Γ does not imply ϕ. This is easy, for P ∈ v+(γ) for all γ ∈ Γ but P /∈ v+(ϕ). According to
our definition of v4, this means that v4(γ, P ) ∈ {t,⊤} for all γ ∈ Γ and v4(ϕ, P ) /∈ {t,⊤}.
That is, MA, P |= Γ but MA, P 6|= ϕ. Thus, Γ 6|=l ϕ. Applying the same reasoning we can
show that Γ 6|=g ϕ, if we take into account that in this case Q ∈ Φ(π1(h(γ))) for all γ ∈ Γ
and for all Q ∈ X(A), which means that Γ holds globally in MA. �

We would now like to show that the completeness results of Theorems 6.5 and 6.6 apply
to a more general semantics than the one introduced at the beginning of Section 3.

Consider a Kripke model 〈W,R, v〉 where both R and v are B-valued instead of FOUR-
valued, where B is an implicative bilattice. That is, we define R : W×W → B and
v : Fm×W → B. Notice that valuations are still required to preserve the four lattice
bounds, which are included in the signature of implicative bilattices. As in Section 3, we
can define the modal operator by

v(✷ϕ,w) :=
∧

{R(w,w′) → v(ϕ,w′) : w′ ∈W}

where the algebraic operations are now those of B. In order for this definition to make
sense, we need to further require that the t-lattice reduct of B be complete in the usual
lattice-theoretical sense. It is easy to show (using the twist-structure representation, for
instance), that the k-lattice reduct of B will be complete as well.

We can now define (global and local) modal consequence relations determined by the class
of B-valued Kripke models as we did in Section 3. All definitions are the same, replacing
FOUR with B and the set {t,⊤} with F0, the least bifilter of B. The non-modal core of
these logics will thus be the consequence determined by the matrix 〈B, F0〉. It is an easy
consequence of [36, Theorem 4.1.4, Proposition 4.3.14] that this logic coincides with that
of the matrix 〈FOUR, {t,⊤}〉. This result holds true even when we move to the modal
setting.

Theorem 6.7. B-valued and FOUR-valued modal logics coincide.
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Proof. To see that B-valued modal consequence is weaker than FOUR-valued one, it is
sufficient to notice that FOUR is a subalgebra of any implicative bilattice [36, Proposition
4.3.12]. Thus, any FOUR-valued Kripke model can be viewed as a B-valued one, namely
one where both R and v only take values in {f, t,⊥,⊤}. The logics (both global and
local) determined by the class of all B-valued Kripke models are obviously weaker than
those of a subclass of it, hence the result follows. In order to prove that FOUR-valued
is weaker than the B-valued one, we will need completeness of our Hilbert calculi with
respect to FOUR-valued modal consequence. Let us notice that all axioms and rules of
our calculi are sound with respect to B-valued modal consequence. This can be checked
directly, and also easily follows from the considerations of [7, Section 3.1]. Soundness
implies that the consequence determined by our calculus ⊢g (or ⊢l) is weaker than B-valued
modal consequence. By completeness (Theorems 6.5 and 6.6), ⊢g and ⊢l coincide with the
corresponding semantically defined FOUR-valued consequence, so we are done. �

6.3. Extensions. We have mentioned in the proof of Proposition 6.7 the possibility of
imposing restrictions on the values that the accessibility relation can take. These determine
subclasses of frames and, therefore, extensions (strengthenings) of the four-valued modal
logic that we have been considering throughout the paper. One may ask, as the authors
of [7] do, whether it is possible to axiomatize the logic corresponding to these frames. In
our case, this turns out to be quite straightforward, and we will see that in this respect too
the splitting of the modal operator ✷ into two operators ✷+ and ✷− is a great help. Taking
inspiration from [7], we focus on:

1) Idempotent frames, i.e., those where the value of R is restricted to those elements of
FOUR that are idempotent with respect to fusion, that is, R(w,w′)∗R(w,w′) = R(w,w′)
for for all w,w′ ∈W . As mentioned at the end of Section 2, in our case this amounts to
the requirement that R(w,w′) 6= ⊥.

2) Consistent frames, where R(w,w′) 6= ⊤.

3) Classical frames, where R is allowed to take only classical values: R(w,w′) ∈ {f, t}.
These are exactly the frames that are at the same time idempotent and consistent.

1) Idempotent frames. It is straightforward (if tedious) to check that in idempotent
frames the normality axiom

✷(p→ q) → (✷p→ ✷q)

is valid. In fact, as happens in [7], this axiom characterizes the class of idempotent frames.
That is, it is possible to show that, if we add the axiom to our calculus ⊢l (⊢g), we obtain
a sound and complete axiomatization for the local (global) consequence determined by the
class of idempotent FOUR-valued frames. We will not pursue this, instead we adopt a
simpler axiomatization. We add to ⊢l (or ⊢g) the following version of normality:

(✷ ⊃) ✷(p ⊃ q) ⊃ (✷p ⊃ ✷q)

Again, it is easy (and slightly less tedious) to check that (✷ ⊃) is valid in idempotent
frames. Thus, our enriched calculi are sound with respect to the intended semantics. In
order to prove completeness, it will be sufficient to show that, repeating the proof strategy
of Theorems 6.5 and 6.6, we obtain as a counter-model a Kripke frame that is idempotent.
In order to see this, we are going to look once more at algebraic models of our enriched
calculi.

Any axiomatic extension of an algebraizable logic is itself algebraizable with the same
translations. The corresponding algebraic semantics is a subvariety of the original one,
axiomatized by adding the equations that result as the translation of the new logical axioms.
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Thus, we see that the algebraic semantics of ⊢g + (✷ ⊃) is precisely the class of modal
bilattices that satisfy the equation

✷(x ⊃ y) ⊃ (✷x ⊃ ✷y) = (✷(x ⊃ y) ⊃ (✷x ⊃ ✷y)) ⊃ (✷(x ⊃ y) ⊃ (✷x ⊃ ✷y))

which can be equivalently and conveniently rewritten as

✷(x ⊃ y) ⊃ (✷x ⊃ ✷y) ≥t ⊤.

This implies that reduced models of ⊢g + (✷ ⊃) are matrices 〈B,F0〉 with B a modal
bilattice satisfying the above equation and F0 the minimal bifilter of B. The same argument
of Lemma 5.11 and Theorem 5.12 shows that the local calculus ⊢l + (✷ ⊃) is complete
with respect to the class of matrices 〈B,F 〉 with B a modal bilattice satisfying the above
equation and F a bifilter. In order to obtain more information on this class of modal
bilattices, we once more exploit the twist-structure representation.

Proposition 6.8. A modal bilattice B = A⊲⊳ satisfies ✷(x ⊃ y) ⊃ (✷x ⊃ ✷y) ≥t ⊤ if and
only if the underlying bimodal Boolean algebra A satisfies the equation ✷+x ≤ ✷−x.

Proof. Assume A⊲⊳ satisfies ✷(x ⊃ y) ⊃ (✷x ⊃ ✷y) ≥t ⊤. According to the twist-structure
construction, this means that the first component of

✷(〈a1, a2〉 ⊃ 〈b1, b2〉) ⊃ (✷〈a1, a2〉 ⊃ ✷〈b1, b2〉)

is 1. We instantiate the above equation by taking b1 = ∼ a2 = 1 and b2 = ∼ a1, so that it
becomes ✷(〈a1, 0〉 ⊃ 〈1,∼ a1〉) ⊃ (✷〈a1, 0〉 ⊃ ✷〈1,∼ a1〉). We compute the first component,
which is

∼(✷+(∼ a1 ⊔ 1) ⊓ ✷−(∼ a1 ⊔ ∼∼ a1)) ⊔ (∼(✷+a1 ⊓ ✷− ∼ 0) ⊔ (✷+1 ⊓ ✷− ∼∼ a1)).

This simplifies as ∼(1 ⊓ 1) ⊔ (∼✷+a1 ⊔ ✷−a1) = ∼✷+a1 ⊔ ✷−a1. Given that a1 is an
arbitrary element of A, we see that ∼✷+a1⊔✷−a1 = 1 means that A satisfies the equation
∼✷+x ⊔✷−x = 1, i.e., ✷+x ≤ ✷−x.
Conversely, assume A satisfies ✷+x ≤ ✷−x. We need to prove that

∼(✷+(∼ a1 ⊔ b1) ⊓✷−(∼ a1 ⊔ ∼ b2)) ⊔ (∼(✷+a1 ⊓ ✷− ∼ a2) ⊔ (✷+b1 ⊓ ✷− ∼ b2)) = 1

which is equivalent, in any Boolean algebra, to

✷+(∼ a1 ⊔ b1) ⊓ ✷−(∼ a1 ⊔ ∼ b2) ⊓ ✷+a1 ⊓ ✷− ∼ a2 ≤ ✷+b1 ⊓✷− ∼ b2.

Since ✷+ and ✷− preserve meets, we can simplify the left-hand side of the inequality as
follows: ✷+(∼ a1⊔b1)⊓✷−(∼ a1⊔∼ b2)⊓✷+a1⊓✷− ∼ a2 = ✷+(a1⊓(∼ a1⊔b1))⊓✷−(∼ a2⊓
(∼ a1 ⊔∼ b2)) = ✷+(a1 ⊓ b1) ⊓ ✷−(∼ a2 ⊓ (∼ a1 ⊔∼ b2)). Obviously

✷+(a1 ⊓ b1) ⊓ ✷−(∼ a2 ⊓ (∼ a1 ⊔ ∼ b2)) ≤ ✷+b1

so it only remains to prove that

✷+(a1 ⊓ b1) ⊓✷−(∼ a2 ⊓ (∼ a1 ⊔ ∼ b2)) ≤ ✷− ∼ b2.

By our assumption that ✷+x ≤ ✷−x, we have

✷+(a1 ⊓ b1) ⊓✷−(∼ a2 ⊓ (∼ a1 ⊔ ∼ b2)) ≤ ✷−(a1 ⊓ b1) ⊓✷−(∼ a2 ⊓ (∼ a1 ⊔ ∼ b2)).

The right-hand side of the inequality can be rewritten as follows:

✷−(a1 ⊓ b1) ⊓ ✷−(∼ a2 ⊓ (∼ a1 ⊔ ∼ b2)) = ✷−(a1 ⊓ b1 ⊓∼ a2 ⊓ (∼ a1 ⊔ ∼ b2))

= ✷−(a1 ⊓ ∼ b2 ⊓ b1 ⊓ ∼ a2).

We thus have

✷+(a1 ⊓ b1) ⊓ ✷−(∼ a2 ⊓ (∼ a1 ⊔ ∼ b2)) ≤ ✷−(a1 ⊓ ∼ b2 ⊓ b1 ⊓ ∼ a2) ≤ ✷− ∼ b2

which finishes our proof. �
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We are now in a position to prove completeness of ⊢l + (✷ ⊃) and of ⊢g + (✷ ⊃)
with respect to the consequence determined by idempotent Kripke frames. We assume that
Γ + (✷ ⊃) 6⊢l ϕ. By algebraic completeness, we know that this is witnessed by a matrix
〈B, F 〉, with B = A⊲⊳ and F a bifilter of B. By Proposition 6.8, we moreover know that A
satisfies ✷+x ≤ ✷−x. This means that the bimodal space 〈X(A), τA, R✷+

, R✷−
〉 will satisfy

R✷−
⊆ R✷+

. To see this, assume 〈P,Q〉 ∈ R✷−
for some P,Q ∈ X(A). By definition, this

means ✷
−1
− [P ] ⊆ Q, that is, ✷−a ∈ P implies a ∈ Q for all a ∈ A. Now, if ✷+b ∈ P for

some b ∈ A, then ✷−b ∈ P as well, because ✷+b ≤ ✷−b and P is an up-set with respect to
the lattice order of A. Then, by assumption, b ∈ Q and this means that 〈P,Q〉 ∈ R✷+

as
claimed.

By looking at the proofs of Theorems 6.5 and 6.6, we see that the relation R4 : X(A)×
X(A) → FOUR that we constructed can only take value ⊥ in case 〈Q,Q′〉 /∈ R✷+

and
〈Q,Q′〉 ∈ R✷−

for some Q,Q′ ∈ X(A). In our case, as we have seen, this is impossible. We
conclude that the model that we have constructed is actually idempotent. Hence, if ϕ is
not derivable from Γ in ⊢l + (✷ ⊃), then there is an idempotent model witnessing that Γ
does not semantically entail ϕ. The same obviously holds for ⊢g + (✷ ⊃). We have thus
the following.

Theorem 6.9. The calculus ⊢l + (✷ ⊃) is sound and complete with respect to the local
consequence determined by the class of idempotent Kripke models.

Theorem 6.10. The calculus ⊢g + (✷ ⊃) is sound and complete with respect to the global
consequence determined by the class of idempotent Kripke models.

2) Consistent frames. The same strategy will allow us to axiomatize the consequence
determined by the class of all consistent frames.

As before, we begin by conjecturing an axiomatization. By looking at the truth table
of strong implication in FOUR (Table 1), one easily notices that, if the relation R is not
allowed to take value ⊤, then no implication of the form R(w,w′) → v(ϕ,w′) can ever take
value ⊤. By looking at the definition of ✷ given in Equation (1) of Section 3, we see that
this implies that no modal formula can evaluate to ⊤. This means that a formula such as
✷p ⊃ ✷p, which is obviously valid in the logic, can only evaluate to t. This suggest that a
sensible axiom to add to our calculi is the following:

(→ ✷) t → (✷p ⊃ ✷p)

We are going to prove that this is in fact enough to axiomatize the consequence of consistent
frames. As before, we look at the equation resulting from the translation of the new axiom,
which is

t → (✷x ⊃ ✷x) = (t → (✷x ⊃ ✷x)) ⊃ (t → (✷x ⊃ ✷x))

or, equivalently,

✷x ⊃ ✷x = t.

Proposition 6.11. A modal bilattice B = A⊲⊳ satisfies ✷x ⊃ ✷x = t if and only if the
underlying bimodal Boolean algebra A satisfies the equation ✷−x ≤ ✷+x.

Proof. Assume A⊲⊳ satisfies ✷x ⊃ ✷x = t, which means that ✷〈a1, a2〉 ⊃ ✷〈a1, a2〉 = 〈1, 0〉
for all a1, a2 ∈ A. This only gives us information about the second component, given that
the first component of any expression of the form x ⊃ x is always 1 in an implicative bilattice.
The part corresponding to the second components is ✷+a1 ⊓✷− ∼ a2 ⊓∼✷+ ∼ a2 = 0. We
instantiate the equation by taking a1 = 1, so that it becomes

✷+1 ⊓ ✷− ∼ a2 ⊓∼✷+ ∼ a2 = ✷− ∼ a2 ⊓ ∼✷+ ∼ a2 = 0.
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This is equivalent, in any Boolean algebra, to ✷− ∼ a2 ≤ ✷+ ∼ a2. Given that the element a2
is arbitrary, we conclude that A satisfies ✷−x ≤ ✷+x.
Conversely, if A satisfies ✷−x ≤ ✷+x, then ✷− ∼ a2 ⊓∼✷+ ∼ a2 = 0 for all a1, a2 ∈ A and,
a fortiori, ✷+a1 ⊓✷− ∼ a2 ⊓ ∼✷+∼ a2 = 0, which concludes our proof. �

From this point on the completeness proof for consistent frames is analogous to the one
for idempotent frames. We just need to observe that, if a bimodal Boolean algebra satisfies
✷−x ≤ ✷+x, then in the dual bimodal space we will have R✷+

⊆ R✷−
. This means that the

relation R4 : X(A) ×X(A) → FOUR that we constructed in the proofs of Theorems 6.5
and 6.6 will never take value ⊤, as this corresponds to the case where 〈Q,Q′〉 ∈ R✷+

and
〈Q,Q′〉 /∈ R✷−

for some Q,Q′ ∈ X(A). The following completeness results immediately
follow.

Theorem 6.12. The calculus ⊢l + (→ ✷) is sound and complete with respect to the local
consequence determined by the class of consistent Kripke models.

Theorem 6.13. The calculus ⊢g + (→ ✷) is sound and complete with respect to the
global consequence determined by the class of consistent Kripke models.

3) Classical frames. This case is now an easy consequence of the previous ones. We just
need to add both axioms (✷ ⊃) and (→ ✷) to the logic to obtain a sound and complete
axiomatization.

Proposition 6.14. A modal bilattice B = A⊲⊳ satisfies both ✷(x ⊃ y) ⊃ (✷x ⊃ ✷y) ≥t ⊤
and ✷x ⊃ ✷x = t if and only if the underlying bimodal Boolean algebra A satisfies the
equation ✷+x = ✷−x.

Theorem 6.15. The calculus ⊢l + (✷ ⊃) + (→ ✷) is sound and complete with respect to
the global consequence determined by the class of classical Kripke models.

Theorem 6.16. The calculus ⊢g + (✷ ⊃) + (→ ✷) is sound and complete with respect
to the global consequence determined by the class of classical Kripke models.

It is perhaps interesting to note that none of the restrictions considered above corresponds
to the logic of [34], viewed as a particular case of ours (see Proposition 3.1). As we observed
in Subsection 5.2, the requirement is in this case that the equation ✷−x = 1 be satisfied in
the underlying bimodal Boolean algebra. This corresponds to adding the axiom ✷(p ⊃ p)
to the logic, and this is in fact one of the axioms that appear in the calculus of [34]. If a
bimodal Boolean algebra A satisfies ✷−x = 1, then R✷−

= ∅ in the dual bimodal space
X (A). As a consequence, the valuation R4 : X(A) ×X(A) → FOUR constructed in our
completeness proof is only allowed to take values in {f,⊤}. This also shows that the class
of frames corresponding to ⊢l + ✷(p ⊃ p) is a subclass of the idempotent frames, and hence
the logic of [34] is normal, i.e., satisfies our axiom (✷ ⊃).

For completeness’ sake, let us mention that the symmetric equation ✷+x = 1 entails that
R4 can only take values in {f,⊥}, hence the corresponding frames are also consistent. The
consequence determined by this class of frames can be axiomatized by adding the logical
axiom ✸p ⊃ f to our base calculi.

We conclude the section with some considerations on the finite model property and de-
cidability. By examining the proof of Theorem 5.22, it is easy to realize that all the lemmas
involved are still true when we move from the base logics to their axiomatic extensions.
This involves in particular restricting Corollary 5.13 and Proposition 5.20 to subvarieties of
modal bilattices and of bimodal Boolean algebras corresponding to idempotent frames, clas-
sical frames etc. In fact, Proposition 5.20 can be used to show that there is an isomorphism
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between the lattices of subvarieties of modal bilattices and of bimodal Boolean algebras
(cf. [22, Proposition 4.2]). This one-to-one correspondence extends to a correspondence
between extensions of the least modal bilattice logic and extensions of classical bimodal
logic. The only reason why analogues of Theorem 5.22 may fail is then that the extension
of classical bimodal logic corresponding to a given modal bilattice logic may not itself enjoy
the finite model property. This can happen, for the finite model property is not necessarily
preserved under axiomatic extensions, as shown in [26], to which we also refer for several
examples of logic which do enjoy it.

7. A more general approach

In this section we introduce an alternative and more general semantics for our four-valued
modal logic, which makes a more explicit use of the insight gained from the twist-structure
representation of modal bilattices. This alternative semantics is also closer to, and is a more
direct generalization of, that of [34].

Let us first of all explain why we are interested in introducing an alternative semantics.
This brings us back to the four-element algebra FOUR. As mentioned in Section 2, we
can view this structure as an algebra in different algebraic signatures, which correspond to
different logics, each one being a conservative expansion of the previous one: Belnap-Dunn
logic, paraconsistent Nelson logic, bilattice logic. The authors of [34], for instance, took four-
valued paraconsistent Nelson logic as their non-modal core logic and axiomatized the least
modal expansion of it, assuming that the accessibility relation of Kripke frames remains
classical. We, instead, have worked throughout this paper with four-valued bilattice logic,
and we managed to axiomatize the least modal expansion of it, allowing both valuations
and the accessibility relation to be themselves four-valued (or, indeed, B-valued, for any
complete implicative bilattice B). As we have seen, the restriction that the accessibility
relation be classical corresponds to an extension of the least logic, which we have also
axiomatized.

At this point we may ask ourselves if, analogously, it is possible to axiomatize the least
modal expansion of four-valued paraconsistent Nelson logic, if we also allow the accessibility
relation to be four-valued. This would be a logic in the language 〈∧,∨,⊃,¬,✷, f, t〉 as op-
posed to the one we have been considering throughout the paper, namely 〈∧,∨,⊗,⊕,⊃,¬,✷, f, t,⊥,⊤〉
or, equivalently, 〈∧,∨,⊃,¬,✷, f, t,⊥,⊤〉. We see that the only difference lies in the presence
of the constants ⊥ and ⊤, and it is no coincidence that they play a quite crucial role in
both our axiomatization for the logic and our twist-structure representation. Interestingly,
the role of constants is also crucial in [7], the completeness proofs of which are based on a
completely different strategy from ours. From a mathematical point of view, such a result
would be desirable because it would be more general than the one we have proved in the
previous section. In logic it is, as a rule, best to work with a language that is as restricted
as possible, for results on language expansions will then follow just as special cases.

Unfortunately, we have not been able to achieve this. We do not know if four-valued
modal logic can be axiomatized without including ⊤ as a logical constant; however, we do
know that ⊥ is not necessary. Indeed, we can show that axiom (✷ ⊥) from Section 4 can
be replaced in the logic by equivalent ones that only involve ⊤ and the t-constants, and
similarly the twist-structure representation can be obtained without using ⊥ as an algebraic
constant. The reason why this is so can be best understood by looking at the proof of the
twist-structure representation, which indeed appears to be the main hinge on which our
whole completeness proofs rely.
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As we have seen, the twist-structure representation tells us that the behaviour of the
modal operator ✷ on a modal bilattice B is determined by a pair of operators ✷+ and ✷−

on the underlying Boolean algebra B/≈ which is a quotient of the 〈∧,∨,⊃,f, t〉-reduct of B.
The two operators are obtained on B/≈ as

✷+[a] := [✸(a ⊃ f) ⊃ f]

✷−[a] := [✷(¬(a ⊃ f) ∨⊤)]

where ✸x is a shorthand for ¬✷¬x. This definition obviously relies on the existence of
certain terms in the language of modal bilattices, namely ✸(x ⊃ f) ⊃ f and ✷(¬(x ⊃ f)∨⊤),
and notice that neither of these involves ⊥. Other properties are required, for instance that
the terms respect the relation ≈ in the sense that a ≈ b entails ✸(a ⊃ f) ⊃ f ≈ ✸(b ⊃ f) ⊃ f

and ✷(¬(a ⊃ f) ∨ ⊤) ≈ ✷(¬(b ⊃ f) ∨ ⊤). It is not difficult to check that, for the purpose
of the twist-structure representation, other terms would have worked as well. In the same
way as one could define [a]⊓ [b] := [a⊗ b] instead of [a]⊓ [b] := [a∧ b] because a∧ b ≈ a⊗ b
for all a, b ∈ B, we could have defined, for instance,

✷+[a] := [✷(a ∨⊥)]

✷−[a] := [✷(¬(a ⊃ ⊥) ∨ ⊤)].

While the definition of ✷+ does not pose any problem, it seems that, in order to define a
term that will allow us to recover to ✷− in the quotient B/≈, at least ⊤ is required.

The above analysis suggests, if not yet a solution to the problem, at least a possible
way of approximating it. Indeed, if we cannot construct the algebraic terms that we need
in the language 〈∧,∨,⊃,¬,✷, f, t〉, we can assume that they already exist, i.e., introduce
them as primitive algebraic operations. That is, we can augment the non-modal language
〈∧,∨,⊃,¬, f, t〉 with two operators, which will be denoted by ⊞ and ⊟, that will allow us
to simply define (in a suitably defined quotient algebra):

✷+[a] := [⊞a]

✷−[a] := [⊟a].

As mentioned earlier, the above requirement leaves us a certain freedom in the choice of
the two operators. Our particular choice will depend on two criteria. On the one hand,
we would like to relate our approach to that of [34], preserving in some way the property
stated in Proposition 3.1. For this reason, we will choose ⊞ to be defined on twist-structures
exactly in the same way as the modal operator of [34]. A pleasing consequence of this is
that ⊞ is in this way guaranteed to be a normal and finite meet-preserving operator. In
a similar spirit, we will define ⊟ in such a way that (i) we obtain another finite meet-
preserving operator and (ii) our original operator ✷ will not have to be included in the
primitive language, because we will be able to define ✷x := ⊞x ∧⊟x.

We are now going to describe this approach in more detail, but we will allow ourselves
to only sketch the parts which do not essentially differ from the constructions we have
described in the previous sections.

7.1. Axiomatization. Let us begin by recalling that the non-modal core of the logic, which
is the consequence determined by the matrix 〈FOUR, {t,⊤}〉 in the language 〈∧,∨,⊃,¬, f, t〉,
is four-valued paraconsistent Nelson logic, which is an extension of paraconsistent Nelson
logic [1, 28, 30] obtained by adding Peirce’s axiom ((p ⊃ q) ⊃ p) ⊃ p. A complete ax-
iomatization of this logic can be obtained by taking all the axiom schemata introduced in
Section 4 that only involve connectives in 〈∧,∨,⊃,¬, f, t〉. The only rule is also the same,
that is, modus ponens relative to weak implication. This calculus, which is going to supply
the non-modal core of the Hilbert-style presentation for our new logic, is algebraizable. Its
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algebraic semantics is the variety of bounded N4-lattices [28] satisfying Peirce’s equation
((x ⊃ y) ⊃ x) ⊃ x = x ⊃ x. For us, the most straightforward way to introduce this
class of algebras is to say that they are exactly the 〈∧,∨,⊃,¬, f, t〉-subreducts of implicative
bilattices. This means, on the one hand, that this class is precisely the variety generated
by FOUR viewed as an algebra in the language 〈∧,∨,⊃,¬, f, t〉. On the other hand, it
entails that each algebra in the variety can be represented as a 〈∧,∨,⊃,¬, f, t〉-subalgebra
of a twist-structure A⊲⊳ over a Boolean algebra A.

Then, when expanding this logic with a modal operator, we obtain a logic whose algebraic
models (at least for the non-modal reduct) can be viewed as twist-structures. In fact, as
mentioned in Subsection 5.2, Odintsov and Wansing [34] proved that their modal operator ✷
is represented, using our notation, as follows: ✷〈a1, a2〉 = 〈✷+a1, ✸+a2〉. We have also
seen that this operator can be defined as a term (that crucially uses the constant ⊥ and
the ⊕ operation) in four-valued bilattice modal logic. The idea is then to take this term as
primitive in our new logic, that is, we are going to introduce an operator ⊞ which will be
represented, on twist-structures, as ⊞〈a1, a2〉 = 〈✷+a1, ✸+a2〉. Given that this operator
coincides, on twist-structures, with the Odintsov-Wansing one, there is a natural candidate
for its axiomatization in our logic, namely axiom schemata employed in [34]:

(⊞ ⊃) ⊞ (p ⊃ p)

(⊞ ∧) ⊞ (p ∧ q) ⊃ (⊞p ∧⊞q)

(∼ ⊞) ∼⊞p ≡ ¬⊞ ¬∼ p

(⊞ ∼) ⊞∼ p ≡ ∼¬⊞ ¬p

where ∼ p := p ⊃ f. Alternatively, if we wanted to adopt an axiomatization that is closer
to the one we introduced for modal bilattice logic, we could replace (⊞ ⊃) and (⊞ ∧) by:

(⊞ t) ⊞ t ↔ t

(⊞ ∧) ⊞ (p ∧ q) ↔ (⊞p ∧⊞q).

In analogy with the previous case, in order to find suitable axioms for ⊟ we are guided
by the term which will correspond to it on the algebraic models. We adopt the following
term from the language of modal bilattices:

✷(x ∨ ⊤)

which is particularly simple and meets the requirements explained above. In a twist-
structure, this gives us

⊟〈a1, a2〉 := 〈✷− ∼ a2,✸+a2〉.

This operator can be captured through the following axioms:

(⊟ t) ⊟ t ↔ t

(⊟ ∧) ⊟ (p ∧ q) ↔ (⊟p ∧⊟q)

(⊞ ⊟) ¬⊞ p ≡ ¬⊟ p

(⊟ ∼ ¬) ⊟ p ≡ ⊟∼¬p.

From the above axioms modal syntactic consequences ⊢l and ⊢g can be obtained as we did
in Definition 4.1.

Definition 7.1. Let Fm be the set of formulas generated by a countable set of variables Var
in the modal language 〈∧,∨,⊃,¬, f, t,⊞,⊟〉. The set Σ of axioms of modal N4-logic is the
least subset of Fm containing all substitution instances of the schemata exhibited in this
subsection, and closed under

(val-mp) if ϕ and ϕ ⊃ ψ are in Σ, then so is ψ;
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(val-mono) if ϕ→ ψ ∈ Σ, then ⊞ϕ→ ⊞ψ, ⊟ϕ→ ⊟ψ ∈ Σ.

The rules of modal bilattice logic are

ϕ, ϕ ⊃ ψ
(mp)

ψ

ϕ→ ψ
(mono ⊞)

⊞ϕ→ ⊞ψ

ϕ→ ψ
(mono ⊟)

⊟ϕ→ ⊟ψ

Local inference ⊢∗
l employs only (mp), while global inference ⊢∗

g is generated by (mp),
(mono ⊞) and (mono ⊟).

We note that for ⊢g we could alternatively use the rules of [34]

ϕ ⊃ ψ

⊞ϕ ⊃ ⊞ψ

ϕ ⊃ ψ

¬⊞ ¬ϕ ⊃ ¬⊞ ¬ψ

but only for ⊞, as they would not be sound with respect to the semantics of ⊟.

One first pleasing feature of the axiomatization that we have proposed for ⊞ and ⊟ is
that it allows us to recover the logic of [34] as an axiomatic extension of ours, and thus
its algebraic counterpart [31] as a subclass of our algebraic models. The logic of Odintsov-
Wansing is obtained by adding the following axiom:

(⊟ ⊞) ⊟ p↔ ∼¬⊞ p

which means, as was to be expected, that we can essentially ignore ⊟ as it can be viewed
as just a shorthand for ∼¬⊞.

7.2. Relational semantics. We have seen that the algebraic (twist-structure) semantics
has suggested us an axiomatization for the logic. Proceeding somehow in reverse order to
what we have done in the previous sections, we are now going to see how the algebraic
semantics also suggests a Kripke-style semantics. In fact, the latter will be essentially an
adaptation of the semantics of [34] to the modal operators that we have chosen.

Consider a four-valued Kripke model 〈W,R, v〉 defined as in Section 3, i.e., such that
R : W×W → FOUR and v : Fm×W → FOUR. As observed in Subsection 6.1, we can
view R as a pair of two-valued relations R+, R− ⊆ W × W defined as follows: for all
w,w′ ∈W ,

〈w,w′〉 ∈ R+ iff R(w,w′) ∈ {t,⊤}

〈w,w′〉 ∈ R− iff R(w,w′) ∈ {t,⊥}.

Similarly (but, as in Subsection 6.1, not symmetrically), we view v as a pair of valuations
v+, v− : V ar → P (W ) defined, for all w ∈ W and p ∈ V ar, by

w ∈ v+(p) iff v(p, w) ∈ {t,⊤}

w ∈ v−(p) iff v(p, w) ∈ {f,⊤}.

Models will thus be structures M = 〈W,R+, R−, v+, v−〉. The valuations are extended to
arbitrary formulas ϕ, ψ ∈ Fm as follows:

v+(ϕ ∧ ψ) := v+(ϕ) ∩ v+(ψ) and v−(ϕ ∧ ψ) := v−(ϕ) ∪ v−(ψ)

v+(ϕ ∨ ψ) := v+(ϕ) ∪ v+(ψ) and v−(ϕ ∨ ψ) := v−(ϕ) ∩ v−(ψ)

v+(ϕ ⊃ ψ) := ∼ v+(ϕ) ∪ v+(ψ) and v−(ϕ ⊃ ψ) := v+(ϕ) ∩ v−(ψ)

v+(¬ϕ) := v−(ϕ) and v−(¬ϕ) := v+(ϕ)

v+(f) := v−(t) := ∅ and v−(f) := v+(t) :=W

v+(⊞ϕ) := {w ∈ W : R+[w] ⊆ v+(ϕ)} and v−(⊞ϕ) := {w ∈ W : R+[w] ∩ v−(ϕ) 6= ∅}
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v+(⊟ϕ) := {w ∈ W : R−[w] ∩ v−(ϕ) = ∅} and v−(⊟ϕ) := v−(⊞ϕ).

Let us point out that the somehow unusual semantics of ⊟ simply reflects the algebraic
definition introduced above, ⊟〈a1, a2〉 := 〈✷− ∼ a2,✸+a2〉, which only considers the second
component (hence only v− appears) and in the first component operates on the Boolean
complement of it.

Satisfaction, local and global consequence are defined in the way to be expected. We
say that a point w ∈W of a model M = 〈W,R+, R−, v+, v−〉 satisfies a formula ϕ ∈ Fm if
w ∈ v+(ϕ) and we write M,w |= ϕ. For a set of formulas Γ ⊆ Fm, we write M,w |= Γ to
mean that M,w |= γ for each γ ∈ Γ . Local and global consequence relation, denoted |=∗

l

and |=∗
g, are then defined as in Section 3.

Soundness of the axioms concerning ⊞ with respect to this semantics follows from [34].
As to ⊟, let us consider, for instance, the last axiom:

⊟p ≡ ⊟∼¬p.

This is a shorthand for the two axioms ⊟p ⊃ ⊟(¬p ⊃ f) and ⊟(¬p ⊃ f) ⊃ ⊟p. We need to
prove that

v+(⊟p ⊃ ⊟(¬p ⊃ f)) = v+(⊟(¬p ⊃ f) ⊃ ⊟p) =W

for any model M = 〈W,R+, R−, v+, v−〉. According to the semantics of weak implication,
this means v+(⊟(¬p ⊃ f)) = v+(⊟p). Applying the definitions, we see that the right-hand
side of this equation is

v+(⊟(¬p ⊃ f)) = {w ∈W : R−[w] ∩ v−(¬p ⊃ f) = ∅}

= {w ∈W : R−[w] ∩ v+(¬p) ∩ v−(f) = ∅}

= {w ∈W : R−[w] ∩ v−(p) ∩W = ∅}

= {w ∈W : R−[w] ∩ v−(p) = ∅}

= v+(⊟p).

7.3. Algebraic models. As in the case of bilattices, it is immediate to conclude that
the global calculus ⊢∗

g is algebraizable with the same translations that ensure algebraiz-
ability of paraconsistent Nelson logic (see, e.g., [37, Theorem 2.6]), which are those of
Theorem 5.6. The equivalent algebraic semantics of ⊢∗

g is a class of algebras in the language
〈∧,∨,⊃,¬,⊞,⊟, f, t〉, which we call modal N4-lattices. A (quasi)equational presentation of
this class is given by the τ -translation of the axioms and rules introduced in the preceding
Subsection. Clearly, the non-modal reduct of any modal N4-lattice is a bounded N4-lattice
satisfying Peirce’s equation, that is, a member of the variety generated by FOUR viewed
as an algebra in the language 〈∧,∨,⊃,¬, f, t〉. Instead of introducing modal N4-lattices
through an abstract presentation, we will directly look at their concrete representation.

Let us first consider the non-modal reduct. Let A = 〈A,⊓,⊔,∼, 0, 1〉 be a Boolean al-
gebra with associated (full) twist-structure A⊲⊳ = 〈A×A,∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤〉, defined
as in Subsection 5.2. We define a Peirce N4-lattice to be any 〈∧,∨,⊃,¬, f, t〉-subalgebra
of A⊲⊳. We say that a Peirce N4-lattice B is a (non-full) twist-structure over A, and we
write B ≤ A⊲⊳. An equational presentation for this class of algebras can be easily obtained
by adding Peirce’s equation and equations for the lattice bounds to the presentation of
N4-lattices introduced in [28]. The following results from [28, 29] will also be useful:

Theorem 7.2. Any Peirce N4-lattice B can be viewed as a twist-structure B ≤ A⊲⊳, where
A is a Boolean algebra, such that:

(i) π1[B] := {x ∈ A : ∃y ∈ A s.t. 〈x, y〉 ∈ B} = A,
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(ii) B = {〈x, y〉 ∈ A × A : x ⊔ y ∈ ∇, x ⊔ y ∈

∇

}, where ∇ ⊆ A is a lattice filter of A
and

∇

⊆ A is a lattice ideal,

(iii) ∇ = π1[A
∗], where A∗ := {a ∨ ¬a : a ∈ B},

(iv)

∇

= π2[A
∗] := {y ∈ A : ∃x ∈ A s.t. 〈x, y〉 ∈ A∗}.

The non-modal reduct of any modal N4-lattice is a Peirce N4-lattice, which we can view
as a twist-structure B ≤ A⊲⊳ defined as above. On B, the modal operators will be defined
as explained in Subsection 7.1, that is, for a1, a2 ∈ A×A,

⊞〈a1, a2〉 = 〈✷+a1, ✸+a2〉 ⊟ 〈a1, a2〉 := 〈✷− ∼ a2,✸+a2〉

where ✷+ and ✷− are finite meet-preserving operators that turn A into a bimodal Boolean
algebra. The representation of ⊞ simply follows from [34, 31]. For that of ⊟, axioms (⊞ ⊟)
and (⊟ ∼ ¬) are crucial. The former tells us that ⊞ and ⊟ agree on the second component,
while the latter takes care of the first component. The remaining axioms (⊟ t) and (⊟ ∧)
ensure that the operator ✷− actually preserves finite meets.

We can thus extend the twist-structure construction to obtain a representation of modal
N4-lattices. It is also possible to obtain an analogue of Theorem 7.2: items (i), (iii) and (iv)
are the same, whereas (ii) has to be adapted by imposing further restrictions on ∇ and

∇

.

Theorem 7.3. Any modal N4-lattice B can be viewed as a twist-structure B ≤ A⊲⊳, where
A is a bimodal Boolean algebra, such that:

(i) π1[B] = A,

(ii) B = {〈x, y〉 ∈ A × A : x ⊔ y ∈ ∇, x ⊔ y ∈

∇

}, where ∇ ⊆ A is a lattice filter of A
and

∇

⊆ A is a lattice ideal such that
(1) x ∈ ∇ implies ✷+x ∈ ∇
(2) x ∈

∇
implies ✸+x ∈

∇

(3) ✷−x ∨ ∼✷+x ∈ ∇ and ✷−x ∧ ∼✷+x ∈

∇

for all x ∈ A,

(iii) ∇ = π1[A
∗], where A∗ := {a ∨ ¬a : a ∈ B},

(iv)

∇

= π2[A
∗].

Algebraic completeness theorems analogous to those of Subsection 5.1 can be obtained
in the same way. In the case of global consequence, algebraizability immediately implies
the following.

Theorem 7.4. The global consequence relation ⊢∗
g is complete with respect to the class of

all matrices 〈B, F0〉 such that B is a modal N4-lattice and F0 := {a ∈ B : a ⊃ a = a}.

Similarly to the case of modal bilattices, the above theorem can be used to prove that
Alg∗(⊢∗

l ) = Alg∗(⊢∗
g) is precisely the variety of modal N4-lattices. In order to obtain an

analogue of Theorem 5.12, we need to replace bifilters by special filters, which can be
defined as follows (see also [29]). A special filter of a (modal) N4-lattice B is a subset
F ⊆ B such that

(i) F0 := {a ∈ B : a ⊃ a = a} ⊆ F ,

(ii) F is closed under (mp), that is, a, a ⊃ b ∈ F imply b ∈ F .

It is easy to check that the definition implies that any special filter is a non-empty lattice
filter of 〈B,∧,∨〉, and that F0 is the least special filter of B. A characterization of special
filters, which generalizes that of bifilters of Proposition 5.19, can be obtained as well. In
this case we have that any special filter F ⊆ B of a (modal) N4-lattice B ≤ A⊲⊳ is of the
form F = (∇×A) ∩B, where ∇ is a lattice filter of A.
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Theorem 7.5. The local consequence relation ⊢∗
l is complete with respect to the class of

all matrices 〈B, F 〉 such that B is a modal N4-lattice and F is a special filter of B.

We will not pursue this here, but it is possible to combine the twist-structure represen-
tation of modal N4-lattices with the above results to obtain more information on reduced
models of ⊢∗

g and ⊢∗
l as we have done in Subsection 5.3 with modal bilattice logic.

Similarly, one may also ask if ⊢∗
g and ⊢∗

l enjoy the finite model property and are therefore
decidable. This can be shown following essentially the same proof as Theorem 5.22. The
translation ν, restricted to formulas in the language of modal N4-lattices, is defined in
the same way. However, some adjustments are needed, because Proposition 5.20 is no
longer true for non-full twist-structures. This is essentially due to the restriction imposed
by Theorem 7.3 on the elements of the direct product A × A that belong to the universe
B ⊆ A×A of the twist-structure. Because of this, the only implication of Proposition 5.20
that still holds true is the leftward one. In fact, if a bimodal Boolean algebra A satisfies
the equations ν1(ϕ) = ν1(ψ) and ν2(ϕ) = ν2(ψ), then the full twist-structure A⊲⊳ satisfies
the equation ϕ = ψ and therefore every subalgebra B ≤ A⊲⊳ will also satisfy ϕ = ψ.
Fortunately, this direction of the implication (by contraposition) is the only one that is
needed in the proof of Theorem 5.22. For the local consequence Corollary 5.13 also needs
to be adapted, but this is not a problem. The equation appearing in the second item of
the corollary can be replaced by an equivalent one in the language of modal N4-lattices,
obtaining the equivalence of the following:

(i) Γ ⊢∗
l ϕ,

(ii) Γ0 ⊢∗
l ϕ for a finite Γ0 ⊆ Γ ,

(iii) the equation
∧

Γ0 ⊃ ϕ = (
∧

Γ0 ⊃ ϕ) ⊃ (
∧

Γ0 ⊃ ϕ) is valid in the variety of modal
bilattices.

The rest of the proof of Theorem 5.22 can be straightforwardly adapted to the new logics.
The relational semantics introduced in Subsection 7.2 no longer requires us to combine the
two relations R+, R− of a classical model 〈W,R+, R−, v〉 into a single four-valued one, so
this part is even easier than in the original proof. We do need to duplicate the classical
valuation v : Fmcb → P (W ), which we can do by defining, for each formula ϕ in the language
〈∧,∨,⊃,¬, f, t,⊞,⊟〉 and each w ∈W ,

w ∈ v+(p) iff w ∈ v(ν1(ϕ))

w ∈ v−(p) iff w ∈ v(ν2(ϕ)).

Checking that v+ and v− act homomorphically on both non-modal and modal formulas
is straightforward (see the next section), as is to conclude that 〈W,R+, R−, v+, v−〉 is the
counter-model we were looking for. We thus obtain both a method for proving completeness
of ⊢∗

g and ⊢∗
l , which again relies on completeness of classical bimodal logic, and the desired

finite model property result.

7.4. Duality and completeness. As we did in Subsection 6.1, we can obtain a duality
for modal N4-lattices through the duality for bimodal Boolean algebras. In fact, the corre-
spondence between modal N4-lattices and twist-structures is still one-to-one, provided we
associate to a given modal N4-lattice a triple 〈A,∇,

∇

〉 with A a bimodal Boolean algebra
and ∇,

∇

⊆ A being respectively, a filter and an ideal satisfying the property stated in
item (ii) of Theorem 7.3. Of course, the duality for bimodal Boolean algebras must itself be
adjusted to account for the additional structure given by ∇ and

∇

. This is rather straight-
forward and can be done along the lines of [23], where a duality of this type is developed
for non-modal N4-lattices viewed as twist-structures.



40 UMBERTO RIVIECCIO, ACHIM JUNG, AND RAMON JANSANA

A full duality is anyway not needed for proving completeness of ⊢∗
l and ⊢∗

g with respect
to the relational semantics introduced in Subsection 7.2. The proof strategy is the same as
that of the proofs of Theorems 6.5 and 6.6. Let us see the case of local consequence.

We assume Γ 6⊢∗
l ϕ. By Theorem 7.5, we can find a modal N4-lattice B, a special

filter F ⊆ B and a homomorphism h : Fm → B such that h[Γ ] ⊆ F but h(ϕ) /∈ F . By
Theorem 7.3, we can assume that B ≤ A⊲⊳ with A a bimodal Boolean algebra. In this
case we also know that F = (∇ × A) ∩ B, with ∇ a lattice filter of A. Then π1[h[Γ ]] ⊆
∇ but π1(h(ϕ)) /∈ ∇. By the Ultrafilter Theorem, there is an ultrafilter P ⊇ ∇ such
that π1(h(ϕ)) /∈ P . Then, the bimodal space X (A) = 〈X(A), τA, R✷+

, R✷−
〉 gives us a

topological counter-model, for P ∈ Φ(π1(h(γ))) for all γ ∈ Γ but P /∈ Φ(π1(h(ϕ))). In
this case 〈X(A), R✷+

, R✷−
〉 is already a Kripke frame of the kind defined in Subsection 7.2.

We turn it into a model as we have done in Subsection 6.2, that is, defining two standard
(two-valued) valuations v+, v− : V ar → P (X(A)), for all p ∈ V ar, as

v+(p) := {Q ∈ X(A) : Q ∈ Φ(π1(h(p)))}

v−(p) := {Q ∈ X(A) : Q ∈ Φ(π1(¬h(p)))}.

These are extended to arbitrary formulas in the language 〈∧,∨,⊃,¬, f, t〉 in the same way
as in Subsection 6.2. As for modal formulas, we let

v+(⊞ϕ) := ✷+v+(ϕ) and v−(⊞ϕ) := ∼✷+ ∼ v−(ϕ)

v+(⊟ϕ) := ✷− ∼ v−(ϕ) and v−(⊟ϕ) := v−(⊞ϕ).

It is obvious that v+ and v− act homomorphically on both modal and non-modal formulas.
That is, MA = 〈X(A), R✷+

, R✷−
, v+, v−〉 is a Kripke model such that MA, P |= Γ but

MA, P 6|= ϕ. Hence, Γ 6|=∗
l ϕ as desired.

Axiomatizing the extensions of ⊢∗
l and ⊢∗

g corresponding to restrictions on the accessi-
bility relations considered in Subsection 6.3 is also straightforward. Consider, for example,
idempotent frames, which are frames 〈W,R+, R−〉 such that R− ⊆ R+. As we have seen
in Subsection 6.3, this corresponds to requiring that, for any algebraic model B ≤ A⊲⊳, the
bimodal Boolean algebraA satisfy the identity ✷+x ≤ ✷−x. It is easy to check that A satis-
fies ✷+x ≤ ✷−x if and only if B satisfies ∼¬⊞x ⊃ ⊟x = (∼¬⊞x ⊃ ⊟x) ⊃ (∼¬⊞x ⊃ ⊟x),
which corresponds to the logical axiom ∼¬ ⊞ p ⊃ ⊟p. Thus, if we add this axiom to our
axiomatization of ⊢∗

l (or ⊢∗
g), we obtain a sound and complete axiomatization for the local

(global) consequence determined by the class of idempotent frames. Analogously, consistent
frames are axiomatized by adding the axiom ⊟p ⊃ ∼¬⊞ p and classical frames correspond
to ⊟p ≡ ∼¬ ⊞ p. The latter is easily seen to be equivalent to ⊟p ↔ ∼¬ ⊞ p, that is, to
axiom (⊟ ⊞) of Subsection 7.1. This tells us that, as expected, the logic of [34] can now be
viewed as the extension of our logic that corresponds to classical frames.

8. Further work

We list below a few open problems and what we believe might be interesting directions
for future work.

• We have axiomatized extensions of the base logic that correspond to restrictions on
the four-valued accessibility relation. We now know that the base logic can be equiva-
lently defined starting from an arbitrary implicative bilattice. Thus, we might apply
the restrictions considered in Subsection 6.3, suitably generalized, to an accessibility
relation that is, instead of four-valued, B-valued, B being any complete implicative
bilattice. The definitions of idempotent and classical frames can be applied as they
are, whereas it may make sense to consider a more liberal formulation for consistent
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frames. For instance, we could adopt the definition of consistent element of a bilat-
tice given in [15, Definition 3.6] and say that a frame is consistent when the value
of the accessibility relation is always a consistent element of the underlying bilattice.
At this point we do not know whether and how it would be possible to axiomatize
these extensions.

• We have dealt with the logic of the four-element bilattice or, equivalently, of any
complete bilattice belonging to the variety generated by it. From a technical point
of view, the semantic definition of the logic given in Section 3 could be recast replac-
ing the four-element bilattice with any Brouwerian bilattice [8] or even one of the
more general bilattices considered in [22]. One may thus wonder if it is possible to
axiomatize these logics by the same methods as applied in this paper. This may not
be straightforward, even in the case of Brouwerian bilattices, for these correspond to
intuitionistic logic in the same way as implicative bilattices correspond to classical
logic; and intuitionistic modal logic is at present far from being as well understood
as the classical one.

• The semantics introduced in Section 7, unlike that of Section 3, does not require
the presence of an implication in the logical language. This means that it might be
possible to define a modal expansion of Belnap-Dunn logic whose non-modal core is
a logic in the conjunction-disjunction-negation language, which is the one originally
considered in [3, 4]. Algebraically, this would mean working with De Morgan lattices
(see, e.g., [18]) instead of N4-lattices or bilattices. At this point it is not at all obvious
whether the methods of this paper would be immediately applicable in this more
general setting, because Belnap-Dunn logic in this language is not algebraizable [18,
Theorem 2.11] and, moreover, a twist-structure representation is not available for De
Morgan lattices.

• One problem that is left unsolved in [7] is whether it is possible to axiomatize the
least modal logic over a finite residuated lattice in a language that does not include
all the elements of the lattice as logical constants. As mentioned before, in the case
of the four-element Belnap lattice we know that it is at least possible to dispense
with one constant, namely ⊥. Although we believe that the approach described in
Section 7 is indeed an approximation to a solution of this question, we must point
out that a fully general solution is yet to be found. As mentioned at the beginning
of Section 7, the core of the problem seems to be that of devising a twist-structure
representation that does not use any algebraic constant in an essential way.

• As mentioned before, our methods seem to be more powerful that those of [7] in the
sense that the same strategy allowed us to prove completeness for both the global
and the local consequence relation, whereas the proofs of [7] only work for local
consequence. However, the scope of [7] is more general than ours as the authors
were able to axiomatize the logic of an arbitrary finite residuated lattice (the four-
element Belnap lattice being but one example, except the fact that it is not integral,
which is however not essential). It is thus natural to ask ourselves if our methods
could be applied to find an alternative and hopefully more satisfactory solution to
the problems posed in [7]. The main obstacle in this respect seems to be that a
topological duality theory for (non-modal) residuated lattices is not immediately
available. However, if we restrict our attention to finitely-generated varieties of
residuated lattices (which is the same setting as [7], too), then the theory of natural
dualities [14] might provide a suitable basis to work on.
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