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Equivalence and Strong Equivalence between

Sparsest and Least ℓ1-Norm Nonnegative Solutions of

Linear Systems and Their Applications

Yun-Bin Zhao
∗

Abstract. Many practical problems can be formulated as ℓ0-minimization problems with non-

negativity constraints, which seek the sparsest nonnegative solutions to underdetermined linear

systems. Recent study indicates that ℓ1-minimization is efficient for solving ℓ0-minimization

problems. From a mathematical point of view, however, the understanding of the relationship

between ℓ0- and ℓ1-minimization remains incomplete. In this paper, we further address several

theoretical questions associated with these two problems. We prove that the fundamental strict

complementarity theorem of linear programming can yield a necessary and sufficient condition

for a linear system to admit a unique least ℓ1-norm nonnegative solution. This condition leads

naturally to the so-called range space property (RSP) and the ‘full-column-rank’ property, which

altogether provide a new and broad understanding of the equivalence and the strong equivalence

between ℓ0- and ℓ1-minimization. Motivated by these results, we introduce the concept of ‘RSP

of order K’ that turns out to be a full characterization of uniform recovery of all K-sparse non-

negative vectors. This concept also enables us to develop a nonuniform recovery theory for sparse

nonnegative vectors via the so-called weak range space property.

Key words Strict complementarity, linear programming, underdetermined linear system, spars-

est nonnegative solution, range space property, uniform recovery, nonuniform recovery.
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1 Introduction

In this paper, we use ‖·‖0 to denote the number of nonzero components of a vector. We investigate

the following optimization problem with nonnegativity constraints:

min{‖x‖0 : Ax = b, x ≥ 0}, (1)

which is called an ℓ0-minimization problem or ℓ0-problem. It is well known that the nonnegativity

constraints are quite common in mathematical optimization and numerical analysis (see, e.g., [12]

and the references therein). Clearly, the aim of the problem (1) is to find a sparsest nonnegative

solution to a system of linear equations. This problem has found so many applications in such

areas as signal and image processing [16, 2, 6, 34, 42, 17, 44, 29], machine learning [32, 3, 4,

31, 25], pattern recognition and computer vision [42, 40], proteomics [39], to name but a few.

This problem is a special case of the compressed nonnegative sparse coding [26, 43] and rank

minimization with positive semi-definite constraints (see, e.g., [37, 44, 48]). It is closely related

to the so-called nonnegative matrix factorization as well [30, 36, 35].

The ℓ0-minimization problem is NP-hard [33]. The current theory and algorithms for ℓ0-

minimization are mainly developed through heuristic methods and continuous approximations.

A large amount of recent attention is attracted to the ℓ1-problem

min{‖x‖1 : Ax = b, x ≥ 0} (2)

which has been shown efficient for solving (1) in many situations, so does the reweighted ℓ1-

minimization (e.g., [11, 49]). In this paper, the optimal solution to the problem (2) is called the

least ℓ1-norm nonnegative solution to the linear system Ax = b. Any linear programming solver

can be used to solve the problem (2). Various specialized algorithms for this problem have also

been proposed in the literature (e.g., [6, 42, 45, 25]).

Over the past few years, ℓ0-problems without nonnegativity constraints have been extensively

studied in the field of sparse signal and image processing and compressed sensing. Both theory

and numerical methods have been developed for this problem (e.g., [7, 10, 14, 11, 5, 18, 49]). How-

ever, the sparsest solution and sparsest nonnegative solution to a linear system are very different

from a mathematical point of view. The analysis and many results developed for the sparsest

solution to a linear system cannot apply to the sparsest nonnegative solution straightaway. So

far, the understanding of the relationship between (1) and (2), and the ℓ1-method-based recov-

ery theory for sparse nonnegative vectors remains very incomplete. For example, the following

important questions have not well addressed at present:

(a) How to completely characterize the uniqueness of least ℓ1-norm nonnegative solutions to a

linear system?

(b) How to deterministically explain the efficiency and the limitation of the ℓ1-method for

solving ℓ0-problems?

(c) Are there any other matrix properties that are different from the existing ones (such as

restricted isometric property (RIP) [9, 7, 8] and null space property (NSP) [13, 29]) and

can fully characterize the exact recovery of K-sparse nonnegative vectors?
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(d) Is it possible to develop some theory for the exact recovery of sparse nonnegative vectors

that may go beyond the scope of uniform recovery?

In general, for a given pair (A, b), the sparsest nonnegative solution to the system Ax = b is

not unique. So it is important to distinguish the equivalence and the strong equivalence between

(1) and (2). In this paper, ℓ0- and ℓ1-problems are said to be equivalent if the ℓ0-problem has an

optimal solution that coincides with the unique optimal solution to the ℓ1-problem. We say that

the ℓ0- and ℓ1-problems are strongly equivalent if the ℓ0-problem has a unique optimal solution

that coincides with the unique optimal solution to the ℓ1-problem. Clearly, the ‘strong equiva-

lence’ implies the ‘equivalence’, but the converse is not true in general. The ‘equivalence’ does

not require an ℓ0-problem to have a unique optimal solution. Of course, the above-mentioned

questions (a)-(d) can be partially addressed by applying the existing theory based on such con-

cepts as the mutual coherence [19, 15, 20], ERC [21, 41], RIP [9, 7, 8], NSP [46, 13, 29, 47],

outwardly k-neighborliness property [16], and the verifiable condition [27, 28]. However, these

existing conditions are restrictive in the sense that they imply the strong equivalence (instead

of the equivalence) between ℓ0- and ℓ1-problems. For instance, Donoho and Tanner [16] have

given a geometric condition, i.e., the outwardly K-neighborliness property of the sensing matrix,

which guarantees that a K-sparse nonnegative vector is unique to both problems (1) and (2).

An equivalent form of this result was also discovered by Zhang (see Theorem 1 in [46]). From

a null-space perspective, Zhang [47], and Khajehnejad et al [29] have shown that K-sparse non-

negative vectors can be exactly recovered by ℓ1-minimization if and only if the null space of A

satisfies certain property. Thus the outwardly K-neighborliness property [16] and the null space

property [29, 47] imply the strong equivalence between problems (1) and (2). In addition, the

mutual coherence condition (e.g. [19, 20, 24]) and RIP [9, 7, 8] can be extended to guarantee the

uniqueness of least ℓ1-norm nonnegative solutions to a linear system. However, these sufficient

conditions are not necessary conditions for the uniqueness of optimal solutions to the ℓ1-problem

and for the equivalence between ℓ0- and ℓ1-problems. As shown by our later analysis, the ‘equiv-

alence’ concept enables us to deeply and broadly understand the relationship between ℓ0- and

ℓ1-minimization, making it possible to address the aforementioned questions (a)-(d).

The first purpose of this paper is to completely address the question (a) by developing a

necessary and sufficient condition for the uniqueness of least ℓ1-norm nonnegative solutions to a

linear system. We establish this condition through the strict complementarity theory of linear

programming, which leads naturally to the new concept of range space property (RSP) of AT .

Based on this result, we first show that the equivalence between ℓ0- and ℓ1-problems can be

interpreted by the RSP of AT , which is remarkably different from existing analyses in [16, 29].

We prove that the ℓ1-method can guarantee to solve an ℓ0-problem if and only if the RSP holds at

an optimal solution to the ℓ0-problem. The RSP-based analysis can yield a broad understanding

of the efficiency and the restriction of the ℓ1-method for solving ℓ0-problems, and can efficiently

explain the theoretical and actual numerical performance of the ℓ1-method, leading to an answer

to the question (b).

Furthermore, we introduce a matrix property, called the RSP of order K, through which

we provide a characterization of uniform recovery of sparse nonnegative vectors. Interestingly,

the variants of this new concept make it possible to extend uniform recovery to non-uniform
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recovery of some sparse nonnegative vectors, to which the uniform recovery does not apply. Such

an extension is important not only from a mathematical point of view, but from the viewpoint

of many practical applications as well. For instance, when many columns of A are important,

the sparsest solution to the linear system Ax = b may not be sparse enough to satisfy the

uniform recovery conditions. The RSP of order K and its variants make it possible to address

the aforementioned questions (c) and (d).

This paper is organized as follows. In Sect. 2, we develop a necessary and sufficient condition

for a linear system to have a unique least ℓ1-norm nonnegative solution. In Sect. 3, we provide

an efficiency analysis for the ℓ1-problem in solving ℓ0-problems through the RSP of AT . In Sect.

4, we develop a guaranteed recovery of K-sparse nonnegative vectors via the so-called RSP of

order K, and conclusions are given in the last section.

2 Uniqueness of least ℓ1-norm nonnegative solutions

Throughout this paper, we use the following notation: Let Rn
+ be the first orthant of Rn, the

n-dimensional Euclidean space. Let e = (1, 1, ..., 1)T ∈ Rn be the vector of ones. For two vectors

u, v ∈ Rn, u ≤ v means ui ≤ vi for every i = 1, ..., n, and in particular, v ≥ 0 means v ∈ Rn
+. For

a set S ⊆ {1, 2, ..., n}, |S| denotes the cardinality of S, and Sc = {1, 2, ..., n}\S is the complement

of S. For a matrix A with columns aj, 1 ≤ j ≤ n, we use AS to denote the submatrix of A

with columns aj, j ∈ S. Similarly, xS denotes the subvector of x with components xj, j ∈ S. For

x ∈ Rn, let ‖x‖1 =
∑n

i=1 |xj | denote the ℓ1-norm of x. For A ∈ Rm×n, we use R(AT ) to denote

the range space of AT , i.e., R(AT ) = {ATu : u ∈ Rm}.
In this section, we develop a necessary and sufficient condition for x to be the unique least

ℓ1-norm nonnegative solution to a linear system. Note that when x is the unique optimal solution

to the problem (2), there is no other nonnegative solution w 6= x such that ‖w‖1 ≤ ‖x‖1. Thus
the uniqueness of the solution x is equivalent to

{w : Aw = b, w ≥ 0, ‖w‖1 ≤ ‖x‖1} = {x}.

Since x ≥ 0 and w ≥ 0, we have ‖w‖1 = eTw and ‖x‖1 = eTx. Thus the above relation can be

further written as {w : Aw = Ax, eTw ≤ eTx, w ≥ 0} = {x}. Consider the following linear

programming (LP) problem with the variable w ∈ Rn :

min{0Tw : Aw = Ax, eTw ≤ eTx, w ≥ 0}, (3)

which is feasible (since w = x is always a feasible solution), and the optimal value of the problem is

finite (equal to zero). From the above discussion, we immediately have the following observation.

Lemma 2.1 x is the unique least ℓ1-norm nonnegative solution to the system Ax = b if and

only if w = x is the unique optimal solution to the problem (3), i.e., (w, t) = (x, 0) is the unique

optimal solution to the following problem:

min{0Tw : Aw = Ax, eTw + t = eTx, (w, t) ≥ 0} (4)

where t is a slack variable introduced into (3).
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Note that the dual problem of (4) is given by

max (Ax)T y + (eTx)β

s.t. AT y + βe ≤ 0, (5)

β ≤ 0,

where y and β are variables. Throughout this section, we use (s, r) ∈ Rn+1
+ to denote the slack

variables of the problem (5), i.e.,

s = −(AT y + βe) ≥ 0, r = −β ≥ 0.

Let us recall a fundamental theorem for LP problems. Let B ∈ Rm×n be a given matrix, and

p ∈ Rm and c ∈ Rn be two given vectors. Consider the linear program (LP)

min{cTx : Bx = p, x ≥ 0}, (6)

and its dual problem

max{pT y : BTy + s = c, s ≥ 0}. (7)

Any optimal solution pair (x, (y, s)) to the problems (6) and (7) satisfies the so-called comple-

mentary slackness condition: xT s = 0, x ≥ 0 and s ≥ 0. Moreover, if a solution pair (x, (y, s))

satisfies that x + s > 0, it is called a strictly complementary solution pair. For any feasible

linear programming problems (6) and (7), there always exists a pair of strictly complementary

solutions.

Lemma 2.2([38]) (i) (Optimality condition) (x, (y, s)) is a solution pair of the LP problems

(6) and (7) if and only if it satisfies the following conditions: Bx = p, BTy+s = c, x ≥ 0, s ≥ 0,

and xT s = 0. (ii) (Strict complementarity) If (6) and (7) are feasible, then there exists a pair

(x∗, (y∗, s∗)) of strictly complementary solutions to (6) and (7).

We now prove the following necessary condition for the problem (2) to have a unique optimal

solution.

Lemma 2.3 If x is the unique least ℓ1-norm nonnegative solution to the system Ax = b,

then there exists a vector η ∈ Rn satisfying

η ∈ R(AT ), ηi = 1 for i ∈ J+, and ηi < 1 for i /∈ J+, (8)

where J+ = {i : xi > 0}.

Proof. Consider the problem (4) and its dual problem (5), both of which are feasible. By

Lemma 2.2, there exists an optimal solution (w∗, t∗) to the problem (4) and an optimal solution

(y∗, β∗) to (5) such that these two solutions constitute a pair of strictly complementary solutions.

Let (s∗, r∗) = (−AT y∗ − β∗e,−β∗) be the value of the associated slack variables of the dual

problem (5). Then by the strict complementarity, we have

(w∗)T s∗ = 0, t∗r∗ = 0, w∗ + s∗ > 0, t∗ + r∗ > 0. (9)
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Since x is the unique least ℓ1-norm nonnegative solution to Ax = b, by Lemma 2.1, (x, 0) is the

unique optimal solution to the problem (4). Thus

(w∗, t∗) = (x, 0), (10)

which implies that w∗
i > 0 for all i ∈ J+ =: {i : xi > 0} and w∗

i = 0 for all i /∈ J+. Thus it follows

from (9) and (10) that

r∗ > 0, s∗i = 0 for all i ∈ J+, and s∗i > 0 for all i /∈ J+.

That is,

β∗ < 0, (AT y∗ + β∗e)i = 0 for i ∈ J+, (AT y∗ + β∗e)i < 0 for i /∈ J+,

which can be written as

β∗ < 0,

[
AT (

y∗

−β∗ )− e

]

i

= 0 for i ∈ J+,

[
AT (

y∗

−β∗ )− e

]

i

< 0 for i /∈ J+.

By setting η = AT y∗/(−β∗), the condition above is equivalent to

η ∈ R(AT ), ηi = 1 for i ∈ J+, and ηi < 1 for i /∈ J+,

as desired. 2

Throughout this paper, the condition (8) is called the range space property (RSP) of AT at

x ≥ 0. So Lemma 2.3 shows that this property is a necessary condition for the ℓ1-problem to

have a unique optimal solution. We now prove another necessary condition.

Lemma 2.4 If x is the unique least ℓ1-norm nonnegative solution to the system Ax = b,

then the matrix

M =

(
AJ+

eTJ+

)
(11)

has full column rank, where J+ = {i : xi > 0}.

Proof. Assume the contrary that the columns of matrix M defined by (11) is linearly depen-

dent. Then there exists a vector u ∈ R|J+| such that

u 6= 0, Mu =

(
AJ+

eTJ+

)
u = 0. (12)

Let (w, t) be given by w = (wJ+ , wJ0) = (xJ+ , 0) and t = 0, where J0 = {i : i 6∈ J+}. Then it

is easy to see that such defined (w, t) is an optimal solution to the problem (4). On the other

hand, let us define (w̃, t̃) as follows:

w̃ = (w̃J+ , w̃J0) = (wJ+ + λu, 0), t̃ = 0.

Since wJ+ = xJ+ > 0, there exists a small λ 6= 0 such that

w̃J+ = wJ+ + λu ≥ 0. (13)

Substituting (w̃, t̃) into the constraints of the problem (4), we see from (12) that (w̃, t̃) satisfies

all those constraints. Thus (w̃, t̃) is also an optimal solution to the problem (4). It follows from
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(13) that w̃J+ 6= wJ+ since λu 6= 0. Therefore, the optimal solution to the problem (4) is not

unique. However, by Lemma 2.1, when x is the unique least ℓ1-norm nonnegative solution to the

system Ax = b, the problem (4) must have a unique optimal solution. This contradiction shows

that M has full column rank. 2

The next result shows that the combination of the necessary conditions developed in Lemmas

2.3 and 2.4 is sufficient for the ℓ1-problem to have a unique optimal solution.

Lemma 2.5 Let x ≥ 0 be a solution to the system Ax = b. If the condition (8) (i.e., the

RSP of AT ) is satisfied at x and the matrix M given by (11) has full column rank, then x is the

unique least ℓ1-norm nonnegative solution to the system Ax = b.

Proof. By Lemma 2.1, to prove that x is the unique least ℓ1-norm nonnegative solution to

the system Ax = b, it is sufficient to prove that the problem (4) has a unique optimal solution

(x, 0). First, the condition (8) implies that there exist η and y such that

AT y = η, ηi = 1 for i ∈ J+, and ηi < 1 for i /∈ J+.

By setting β = −1, the relation above can be written as

(AT y)i + β = 0 for i ∈ J+, and (AT y)i + β < 0 for i /∈ J+, (14)

from which we see that (y, β) satisfies all constraints of the problem (5). We now further verify

that it is an optimal solution to (5). By (14), the objective value of (5) at (y, β) is

(Ax)T y + (eTx)β = xT (AT y) + (eTx)β

=
∑

i∈J+
xi(A

T y)i + β
∑

i∈J+
xi

= −β
∑

i∈J+
xi + β

∑

i∈J+
xi = 0. (15)

Since the optimal value of (4) is zero, by LP duality theory, the maximum value of the dual

problem is also zero. Thus it follows from (15) that the point (y, β) satisfying (14) is an optimal

solution to the problem (5).

We now prove that the optimal solution of (4) is uniquely determined under the assumption

of the theorem. Assume that (w∗, t∗) is an arbitrary optimal solution to the problem (4), which

of course satisfies all constraints of (4), i.e.,

Aw∗ = Ax, eTw∗ + t∗ = eTx, (w∗, t∗) ≥ 0. (16)

Since (y, β), satisfying (14), is an optimal solution of (5), ((w∗, t∗), ((y, β), s)) is a solution pair

to (4) and (5). From (14), we see that the dual slack variables si = −((AT y)i+β) > 0 for i /∈ J+

and r = −β = 1 > 0. By complementary slackness property (Lemma 2.2(i)), we must have that

t∗ = 0, w∗
i = 0 for all i /∈ J+.

By substituting these known components into (16) and noting that xi = 0 for i /∈ J+, we see that

the remaining components of (w∗, t∗) satisfy

AJ+w
∗
J+

= Ax = AJ+xJ+, eTJ+w
∗
J+

= eTx = eTJ+xJ+ , w∗
J+

≥ 0.
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Since the matrix M =

(
AJ+

eT
J+

)
has full column rank, w∗

J+
= xJ+ is the unique solution to the

reduced system above. Therefore, (w∗, t∗) is uniquely given by (x, 0). In other words, the only

optimal solution to the problem (4) is (x, 0). By Lemma 2.1, x must be the unique least ℓ1-norm

nonnegative solution to the system Ax = b. 2

By Lemmas 2.3, 2.4 and 2.5, we summarize the main result of this section as follows.

Theorem 2.6 Let x∗ be a nonnegative solution to the system Ax = b. Then x∗ is the unique

least ℓ1-norm nonnegative solution to the system Ax = b if and only if the RSP (8) holds at x∗

and the matrix M =

(
AJ+

eTJ+

)
has full column rank, where J+ = {i : x∗i > 0}.

Clearly, when AJ+ has full column rank, so does the matrix M given by (11). The converse

is not true, i.e., when the matrix M given by (11) has full column rank, it does not imply that

the matrix AJ+ has full column rank in general. For instance, M=

(
AJ+

eT
J+

)
=




−1 1
0 0
1 1


 has

full column rank, but AJ+
=

(
−1 1
0 0

)
does not. However, when the RSP (8) holds at x, we

see that eJ+ = AT
J+

u for some u ∈ Rn, in which case AJ+ has full column rank if and only if(
AJ+

eTJ+

)
has full column rank. Thus Theorem 2.6 can be further stated as follows.

Theorem 2.7 Let x∗ be a nonnegative solution to the system Ax = b. Then x∗ is the unique

least ℓ1-norm nonnegative solution to the system Ax = b if and only if the RSP (8) holds at x∗

and the matrix AJ+ has full column rank, where J+ = {i : x∗i > 0}.

The above results completely characterize the uniqueness of least ℓ1-norm nonnegative solu-

tions to a system of linear equations, and thus the question (a) in Sect. 1 has been fully addressed.

Note that AJ+ ∈ Rm×|J+|, so when it has full column rank, we must have rank(AJ+) = |J+| ≤ m.

Thus Theorem 2.7 shows that if the ℓ1-problem has a unique optimal solution x, then x must

be m-sparse. We can use the results established in this section to address many other questions

associated with ℓ0- and ℓ1-problems. This will be discussed in later sections of this paper.

We now close this section by giving two examples to show that our necessary and sufficient

condition can be easily used to check the uniqueness of least ℓ1-norm nonnegative solutions of

linear systems.

Example 2.8 Consider the linear system Ax = b with

A =




1 0 −1 −1
0 −1 −1 6
0 0 −1 1


 , b =




1/2
−1/2
0


 ,

to which x∗ = (1/2, 1/2, 0, 0)T is a nonnegative solution. It is easy to see that the submatrix AJ+

associated with this solution has full column rank. Moreover, by taking y = (1,−1, 0)T , we have

η = AT y = (1, 1, 0,−7)T ∈ R(AT ), which clearly satisfies (8). Thus the RSP of AT holds at x∗.

Therefore, by Theorem 2.7 (or Lemma 2.5), x∗ is the unique least ℓ1-norm nonnegative solution

to the system Ax = b.
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Example 2.9 Consider the linear system Ax = b with

A =




1 0 −1 1
1 −0.1 0 −0.2
0 0 −1 1


 , b =




1/2
−1/2

0


 ,

to which x∗ = (1/2, 10/3, 10/3, 10/3)T is a least ℓ1-norm nonnegative solution. By taking y =

(11,−10,−12)T , we have η = AT y = (1, 1, 1, 1)T ∈ R(AT ). Thus the RSP of AT holds at x∗.

However, the matrix

AJ+ =




1 0 −1 1
1 −0.1 0 −0.2
0 0 −1 1




does not have full column rank. By Theorem 2.7, x∗ is NOT the unique least ℓ1-norm nonnegative

solution to the system Ax = b. In fact, we have another least ℓ1-norm nonnegative solution given

by x̃ = (1/2, 10, 0, 0)T (for which the associated matrix AJ+ has full column rank, but the RSP

of AT does not hold at x̃).

3 RSP-based efficiency analysis for ℓ1-minimization

For linear systems without nonnegativity constraints, some sufficient conditions for the strong

equivalence between ℓ0- and ℓ1-problems have been developed in the literature. If these sufficient

conditions are applied directly to sparsest nonnegative solutions of linear systems, the resulting

criteria would be very restrictive. For instance, by applying the mutual coherence condition, we

immediately conclude that if a nonnegative solution x obeys ‖x‖0 < (1 + 1/µ(A))/2 where µ(A)

denotes the mutual coherence of A (i.e., µ(A) = maxi 6=j a
T
i aj/(‖ai‖2‖aj‖2) where ai, 1 ≤ i ≤ n,

are the columns of A), then x is the unique sparsest solution and the unique least ℓ1-norm solution

to the linear system Ax = b. In this case, the unique sparsest nonnegative solution coincides with

the unique sparsest solution and the unique least ℓ1-norm solution of the linear system. Clearly,

such a sufficient condition is too restrictive. In fact, a sparsest nonnegative solution is usually not

the sparsest one to the linear system, and the sparsest nonnegative ones can be also multiple (as

shown by Example 3.4 in this section). Although some conditions have been developed specifically

for the sparsest nonnegative solutions (see e.g. [16, 6, 29]), these conditions still imply the strong

equivalence between ℓ0- and ℓ1-problems. They can only partially explain the efficiency of the

ℓ1-method for solving ℓ0-problems. In this section, we show that Theorems 2.6 and 2.7 enable

us to broadly understand the relationship between ℓ0- and ℓ1-problems and to deeply interpret

the efficiency of the ℓ1-method through the RSP of AT . First, we have the following property for

sparsest nonnegative solutions.

Lemma 3.1 If x is a sparsest nonnegative solution to the linear system Ax = b, then

M =

(
AJ+

eT
J+

)
has full column rank, where J+ = {i : xi > 0}.

Proof. Let x be a sparsest nonnegative solution to the linear system and let J+ = {i : xi > 0}.
Assume by contrary that the columns of the matrix M are linearly dependent. Then there exists
a vector v 6= 0 in R|J+| such that (

AJ+

eT
J+

)
v = 0.
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It follows from eTJ+v = 0 and v 6= 0 that v must have at least two nonzero components with

different signs, i.e., vivj < 0 for some i 6= j. Define the vector ṽ ∈ Rn as follows: ṽJ+ = v and

ṽi = 0 for all i /∈ J+. We consider the vector

y(λ) = x+ λṽ, λ ≥ 0.

Note that y(λ)i = 0 for all i /∈ J+, and that

Ay(λ) = Ax+A(λṽ) = b+ λAJ+v = b.

Thus y(λ) is also a solution to the linear system Ax = b. By the definition of ṽ, ṽ has at least

one negative component. Thus let

λ∗ =
xi0
−ṽi0

= min

{
xi
−ṽi

: ṽi < 0

}
,

where λ∗ must be a positive number and i0 ∈ J+. By such a choice of λ∗ and the definition of

y(λ∗), we conclude that y(λ∗) ≥ 0, y(λ∗)i = 0 for i 6∈ J+, and y(λ∗)i0 = 0 with i0 ∈ J+. Thus

y(λ∗) is a nonnegative solution to the linear system Ax = b, which is sparser than x. This is a

contradiction. Therefore, M must have full column rank. 2

By Theorem 2.6 and Lemma 3.1, we immediately have the following result.

Theorem 3.2 ℓ0- and ℓ1-problems are equivalent if and only if the RSP (8) holds at an

optimal solution of the ℓ0-problem. (In other words, a sparsest nonnegative solution x to the

system Ax = b is the unique least ℓ1-norm nonnegative solution to the system if and only if the

RSP (8) holds at x.)

Proof. Assume that problems (1) and (2) are equivalent. So the ℓ0-problem has an optimal

solution x that is the unique least ℓ1-norm nonnegative solution to the system Ax = b. Thus, by

Theorem 2.6 (or Lemma 2.3), the RSP (8) must hold at x. Conversely, assume that the RSP (8)

holds at an optimal solution x to the ℓ0-problem. Since x is a sparsest nonnegative solution to the

system Ax = b, by Lemma 3.1, the matrix

(
AJ+

eT
J+

)
has full column rank. Thus by Lemma 2.5

(or Theorem 2.6) again, x must be the unique least ℓ1-norm nonnegative solution to the system

Ax = b. Hence ℓ0- and ℓ1-problems are equivalent. 2

The above result indicates that the RSP (8) at an optimal solution of ℓ0-problem is a neces-

sary and sufficient condition for the equivalence between ℓ0- and ℓ1-problems. Thus all existing

sufficient conditions for strong equivalence or equivalence between these two problems must imply

the RSP (8), but the converse is clearly not true in general, as shown by the following example.

Example 3.3 (When existing criteria fail, the RSP may still succeed).

A =




0 −1 1√
3

0 1√
2

− 1√
2

0 0 1√
3

−1 0 0

−1 0 1√
3

0 1√
2

− 1√
2


 , b =




1
1
0


 .

For this example, the system Ax = b does not have a solution x with ‖x‖0 = 1. So x∗ =

(1, 0,
√
3, 0, 0, 0)T is a sparsest nonnegative solution to this linear system. Note that the mutual
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coherence µ(A) = maxi 6=j a
T
i aj/‖ai‖2‖aj‖2 =

√
2/
√
3. Thus the mutual coherence condition

‖x‖0 < 1
2(1+ 1/µ(A)) = (

√
2+

√
3)/(2

√
2) ≈ 1.077 fails for this example. The RIP [8] fails since

the last two columns of A are linearly dependent. This example also fails to comply with the

definition of the NSP. Let us now check the RSP of AT at x∗. By taking y = (12 +
√
3, 12 ,−1)T ,

we have

η = AT y =

(
1,−(

1

2
+

√
3), 1,−1

2
,
2
√
3− 1

2
√
2

,−2
√
3− 1

2
√
2

)T

∈ R(AT ),

where the first and third components of η are equal to 1 (corresponding to J+ = {1, 3} determined

by x∗) and all other components of η are less than 1. Thus the RSP (8) holds at x∗. By Theorem

3.2, ℓ1-minimization guarantees to locate this solution.

This example indicates that even if the existing sufficient conditions fail, the RSP can still

interpret the efficiency of the ℓ1-method for solving ℓ0-problems. To further understand the effi-

ciency of the ℓ1-method, let us decompose the class of linear systems with nonnegative solutions,

denoted by G, into three subclasses. That is, G = G1
⋃G2

⋃G3 where Gi’s are defined as follows:

G1 : The system Ax = b has a unique least ℓ1-norm nonnegative solution and a unique sparsest

nonnegative solution.

G2 : The system Ax = b has a unique least ℓ1-norm nonnegative solution and multiple sparsest

nonnegative solutions.

G3 : The system Ax = b has multiple least ℓ1-norm nonnegative solutions.

Clearly, every linear system with a nonnegative solution falls into one of these categories. Since

many existing sufficient conditions (such as the mutual coherence, RIP and NSP) imply the

strong equivalence between ℓ0- and ℓ1-problems, these conditions can apply only to (and explain

the efficiency of the ℓ1-method only for) a subclass of linear systems in G1. However, the RSP

(8) defined in this paper goes far beyond this scope of linear systems. An important feature of

the RSP (8) is that it does not require a linear system to have a unique sparsest nonnegative

solution in order to achieve the equivalence between ℓ0- and ℓ1-problems, as shown by the next

example.

Example 3.4 (The ℓ1-method may guarantee to solve an ℓ0-problem with multiple optimal

solutions.) Consider the system Ax = b with

A =




0.2 0 −0.3 −0.1 0.5 −0.25
0 0.2 0.5 0.2 −0.9 0.05

0.2 0 −0.3 −0.1 0.5 −0.25


 , b =




0.1
−0.1
0.1


 .

For this example, it is easy to verify that Ax = b has multiple sparsest nonnegative solutions:

x(1) = (0,
2

5
, 0, 0,

1

5
, 0)T , x(2) = (0, 0, 0, 4, 1, 0)T , x(3) = (

2

9
, 0, 0, 0,

1

9
, 0)T .

Since ‖x(1)‖1 > ‖x(3)‖1 and ‖x(2)‖1 > ‖x(3)‖1, by Theorem 3.2, the RSP of AT is impossible to

hold at x(1) and x(2). So we only need to check the RSP at x(3). Taking y = (5, 5/3, 0)T yields

η = AT y = (1, 1/3,−2/3,−1/6, 1,−7/6)T ∈ R(AT ) where the first and fifth components are 1,
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and all others are strictly less than 1. Thus the RSP (8) holds at x(3), which (by Theorem 3.2)

is the unique least ℓ1-norm nonnegative solution to the linear system. So the ℓ1-method solves

the ℓ0-problem, although this ℓ0-problem has multiple optimal solutions.

The following corollary is an immediate consequence of Theorem 3.2, which claims that when

an ℓ0-problem has multiple sparsest nonnegative optimal solutions, only one of them can satisfy

the RSP of AT .

Corollary 3.5 For any underdetermined system of linear equations, there exists at most one

sparsest nonnegative solution satisfying the RSP (8).

Theorem 3.2, together with Example 3.4, shows that ℓ0- and ℓ1-problems can be equivalent

provided that the RSP (8) is satisfied at an optimal solution to the ℓ0-problem, irrespective of

the multiplicity of optimal solutions to the ℓ0-problem. The RSP-based analysis has shown that

the success of the ℓ1-method can be guaranteed not only for a subclass of linear systems in G1,

but also for a wide range of linear systems in G2. Note that for a linear system in G3, there is no

guarantee for the success of the ℓ1-method when solving an ℓ0-problem, due to the multiplicity

of ℓ1-minimizers in this case. As a result, the RSP-based analysis has actually identified the

broadest class of ℓ0-problems (in G1 + G2) that can be guaranteed to be solved by using the

ℓ1-method. This analysis not only indicates the guaranteed efficiency of the ℓ1-method, but also

sheds light on the restriction of this method for solving ℓ0-problems. So the question (b) in Sect.

1 has been addressed to a large extent by this analysis.

Since many existing conditions imply the strong equivalence between ℓ0- and ℓ1-problems,

they can only explain the success of ℓ1-methods for solving some ℓ0-problems in G1. These

strong-equivalence-based conditions cannot apply to any ℓ0-problem in G2 which has multiple

sparsest optimal solutions, and hence they cannot interpret the numerical efficiency of the ℓ1-

method in these situations. Different from these existing methods, the RSP-based analysis has

shown that the guaranteed success of the ℓ1-method not only takes place for problems in G1, but

for a wide range of linear systems in G2 as well. This does show that the actual success rate of the

ℓ1-method for solving ℓ0-problems is remarkably higher than what the strong-equivalence-based

theory can predict. So the RSP-based theory can efficiently interpret the actual performance of

the ℓ1-method.

Remark 3.6 We have seen from the above discussions that Theorem 3.2 is more powerful

than the existing theory to interpret the guaranteed success of the ℓ1-method for solving ℓ0-

problems, and it enables us to broadly understand the relationship between these two problems.

However, Theorem 3.2 does not actually provide an explicit criterion for checking the tractability

of ℓ0-problems, since the prior knowledge of the optimal solution to ℓ0-problems may not be

available. Several tractability conditions for ℓ0-problems have been developed in the literature,

such as the RIP of order 2K and NSP of order 2K (under which ℓ0- and ℓ1-problems are strongly

equivalent). Thus one may ask whether there is any possibility to derive certain equivalent

conditions for ℓ0- and ℓ1-problems by using RSP type property without prior knowledge of the

optimal solution to ℓ0-problems. Our analysis in Sect. 4 will show that the RSP of AT at

individual points can be strengthened to guarantee the strong equivalence between ℓ0- and ℓ1-

problems without prior knowledge of the optimal solution to ℓ0-problems, leading to a RSP
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type tractability condition for ℓ0-problems.(See Theorem 4.3 and Corollary 4.4 in Sect. 4 for

details.) However, a common feature of tractability conditions developed for ℓ0-problems so far

is that all these conditions are very restrictive. Whether there exists a less restrictive tractability

condition, which does not rely on any prior knowledge of optimal solutions to ℓ0-problems and can

guarantee equivalence (instead of only strong equivalence) between ℓ0- and ℓ1-problems, remains

a worthwhile research topic in this field.

Remark 3.7 While we focus on the relationship between ℓ0- and ℓ1-problems in this paper, it

is worth noting that our results can be easily generalized to interpret the relationship between the

ℓ0- and weighted ℓ1-problems as well. More specifically, let us consider the weighted ℓ1-problem

min{‖Wx‖1 : Ax = b, x ≥ 0}, (17)

where W = diag(w) and w > 0. By the nonsingular linear transformation, u = Wx, the above

weighted ℓ1-problem is equivalent to

min{‖u‖1 : (AW−1)u = b, u ≥ 0}. (18)

Clearly, x is the unique optimal solution to the weighted problem (17) if and only if u = Wx

is the unique optimal solution to the ℓ1-problem (18), and u and x have the same supports.

Thus any weighted ℓ1-problem with weight W = diag(w), where w is a positive vector in Rn, is

nothing but a normal ℓ1-problem with a scaled matrix AW−1. As a result, applying Theorems

2.7 to the ℓ1-problem (18), we conclude that u is the unique optimal solution to (18) if and only

if (AW−1)J+(u) has full column rank, and there exists a vector ζ ∈ R((AW−1)T ) such that ζi = 1

for ui > 0 and ζi < 1 for ui = 0. By the one-to-one correspondence between solutions of (17)

and (18), and by transforming back to the weighted ℓ1-problem using u = Wx and η = Wζ, we

immediately conclude that x is the unique optimal solution to the weighted ℓ1-problem (17) if and

only if (i) AJ+ has full column rank where J+ = {i : xi > 0}, and (ii) there exists an η ∈ R(AT )

such that ηi = wi for xi > 0, and ηi < wi for xi = 0. We may call the property (ii) above as the

weighted RSP of AT at x. Thus the results in this paper can be easily generalized to weighted

ℓ1-methods. For instance, the counterpart of Theorem 3.2 for the equivalence between ℓ0- and

weighted ℓ1-problems can be also stated by using the above-mentioned weighted RSP property,

and the efficiency of weighted ℓ1-methods for solving ℓ0-problems can be adequately understood

from this new angle.

Remark 3.8 The RSP-based analysis and results developed in this section can be also

applied to the sparsest optimal solution to the linear program (LP)

min{cTx : Ax = b, x ≥ 0}. (19)

The sparsest optimal solution of (19) is meaningful. For instance, in production planning scenar-

ios, the decision variables xi ≥ 0, i = 1, ..., n, represent what production activities/events that

should take place and how much resources should be allocated to them in order to achieve an

optimal objective value. The sparsest optimal solution of a linear program provides the smallest

number of activities to achieve the optimal objective value. In many situations, reducing the

number of activities is vital for efficient planning, management and resource allocations. We
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denote by d∗ the optimal value of (19), which can be obtained by solving the LP by simplex

methods, or interior point methods. We assume that (19) is feasible and has a finite optimal

value d∗. Thus the optimal solution set of the LP is given by {x : Ax = b, x ≥ 0, cTx = d∗}. So
a sparsest optimal solution to the LP is an optimal solution to the ℓ0-problem

min

{
‖x‖0 :

(
A
cT

)
x =

(
b
d∗

)
, x ≥ 0

}
, (20)

associated with which is the ℓ1-problem

min

{
‖x‖1 :

(
A
cT

)
x =

(
b
d∗

)
, x ≥ 0

}
. (21)

Therefore all developed results for sparsest nonnegative solutions of linear systems in this paper

can be directly applied to (20) and (21). For instance, from Theorems 2.7 and 3.2, we immediately

have the following statements: x is the unique least ℓ1-norm optimal solution to LP (19) if and

only if the matrix H =

(
AJ+

cT
J+

)
has full column rank, and there exists a vector η ∈ Rn obeying

η ∈ R([AT , c]), ηi = 1 for all i ∈ J+, and ηi < 1 for all i /∈ J+ (22)

where J+ = {i : xi > 0}. Moreover, a sparsest optimal solution to LP (19) is the unique least

ℓ1-norm optimal solution to the LP if and only if the range space property (22) holds at this

optimal solution. Note that a degenerated optimal solution has been long studied since 1950s

(see [22, 23] and the references therein). It is well known that finding a degenerated optimal

solution requires extra effort than nondegenerated ones. Finding the most degenerated optimal

solution or the sparsest optimal solution becomes even harder. By applying the RSP theory to

(20) and (21), we may obtain a new understanding for the most degenerated or the sparsest

optimal solutions of LPs.

4 Application to compressed sensing

One of the tasks in compressed sensing is to exactly recover a sparse vector (representing a signal

or an image) via an underdetermined system of linear equations [7, 14, 8, 18]. In this section,

we consider the exact recovery of an unknown sparse nonnegative vector x∗ by ℓ1-minimization.

For this purpose, we assume that an m × n (m < n) sensing matrix A and the measurements

y = Ax∗ are available. A nonnegative solution x to the system Ax = b is said to have a

guaranteed recovery (or to be exactly recovered) by ℓ1-minimization if x is the unique least ℓ1-

norm nonnegative solution to the linear system. To guarantee the success of recovery, the current

compressed sensing theory assumes that the matrix A ∈ Rm×n(m < n) satisfies some conditions

(e.g., RIP or NSP of order 2K) which imply the following properties: (i) x∗ is the unique least

ℓ1-norm nonnegative solution to the system Ax = y = Ax∗ (where the components of y are

measurements); (ii) x∗ is the unique sparsest nonnegative solution to the system Ax = y. So

the ℓ0- and ℓ1-problems involved must be strongly equivalent. Most of the recovering conditions

developed so far are for the so-called uniform recovery.
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4.1 Uniform recovery of sparse nonnegative vectors

The exact recovery of all K-sparse nonnegative vectors (i.e., {x : x ≥ 0, ‖x‖0 ≤ K}) by a single

sensing matrix A is called the uniform recovery of K-sparse nonnegative vectors. To develop a

RSP-based recovery theory, let us first introduce the following concept.

Definition 4.1 (RSP of order K). Let A be an m × n matrix with m < n. AT is said to

satisfy the range space property of order K if for any subset S ⊆ {1, ..., n} with |S| ≤ K, R(AT )

contains a vector η such that ηi = 1 for all i ∈ S, and ηi < 1 for all i ∈ Sc = {1, 2, ..., n}\S.

We first show that if AT has the RSP of order K, then K must be bounded by the spark of A,

denoted by Spark(A), which is the smallest number of columns of A that are linearly dependent

(see e.g. [15, 5]).

Lemma 4.2 If AT has the RSP of order K, then any K columns of A are linearly indepen-

dent, so K < Spark(A).

Proof. Let S = {s1, ..., sK}, with |S| = K, be an arbitrary subset of {1, ..., n}. Suppose that

AT has the RSP of order K. We now prove that AS has full column rank. It is sufficient to show

that zS = 0 is the only solution to ASzS = 0. Indeed, let ASzS = 0. Then z = (zS , zSc
= 0) ∈ Rn

is in the null space of A. By the RSP of order K, there exists a vector η ∈ R(AT ) such that every

component of ηS is 1, i.e., ηsi = 1 for i = 1, ...,K. By the orthogonality of the null and range

spaces, we have

zs1 + zs2 + · · · + zsK = zTS ηS = zT η = 0. (23)

Now let k be an arbitrary number with 1 ≤ k ≤ K, and Sk = {s1, s2, ..., sk} ⊆ S. Since

|Sk| ≤ |S| = K, it follows from the definition of RSP of order K, there exists a vector η̃ ∈ R(AT )

with η̃si = 1 for every i = 1, ..., k and η̃j < 1 for every j /∈ Sk. By the orthogonality again, it

follows from zT η̃ = 0 that

(zs1 + · · ·+ zsk) + (η̃sk+1
zsk+1

+ · · ·+ η̃sKzsK ) = 0.

This is equivalent to

(zs1 + · · · + zsk) + (zsk+1
+ · · ·+ zsK ) + [zsk+1

(η̃sk+1
− 1) + · · ·+ zsK (η̃sK − 1)] = 0

which, together with (23), implies that

(η̃sk+1
− 1)zsk+1

+ · · ·+ (η̃sK − 1)zsK = 0

where η̃si < 1 for i = k+1, ...,K. Since such relations hold for every specified k with 1 ≤ k ≤ K.

In particular, for k = K − 1, the relation above is reduced to (η̃sK − 1)zsK = 0 which implies

that zsK = 0 since η̃sK < 1. For k = K − 2, the relation above is of the form

(η̃sK−1
− 1)zsK−1

+ (η̃sK − 1)zsK = 0

which, together with zsK = 0 and η̃sK−1
< 1, implies that zsK−1

= 0. Continuing this process

by considering k = K − 3, ..., 1, we deduce that all components of zS are zero. Thus AS has full

column rank. By the definition of Spark(A), we must have K < Spark(A). 2
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The RSP of order K can completely characterize the uniform recovery of all K-sparse non-

negative vectors by ℓ1-minimization, as shown by the next result.

Theorem 4.3 Let the measurements of the form y = Ax be taken. Then any x ≥ 0 with

‖x‖0 ≤ K can be exactly recovered by the ℓ1-method (i.e., min{‖z‖1 : Az = y, z ≥ 0}) if and

only if AT has the RSP of order K.

Proof. Assume that the RSP of order K is satisfied. Let x∗ ≥ 0 be an arbitrary vector with

‖x∗‖0 ≤ K. Let S = J+ = {i : x∗i > 0}. Since |S| = ‖x∗‖0 ≤ K, by the RSP of order K, there

exists a vector η ∈ R(AT ) such that ηi = 1 for all i ∈ S, and ηi < 1 for all i ∈ Sc. This implies

that the RSP (8) holds at x∗ ≥ 0. Moreover, it follows from Lemma 4.2 that AS has full column

rank. Hence, by Theorem 2.7, x∗ is the unique least ℓ1-norm nonnegative solution to the system

Ax = y = Ax∗. So x∗ can be exactly recovered by the ℓ1-method.

Conversely, assume that any x ≥ 0 with ‖x‖0 ≤ K can be exactly recovered by the ℓ1-method.

We now prove that the RSP of order K must be satisfied. Let S = J+ = {i : xi > 0}. Under the
assumption, x is the unique optimal solution to the ℓ1-problem

min{‖z‖1 : Az = y = Ax, z ≥ 0}.

By Theorem 2.7, the RSP (8) holds at x, i.e., there exists a vector η ∈ R(AT ) such that ηi = 1

for all i ∈ S = J+, and ηi < 1 otherwise. Since x can be any K-sparse nonnegative vectors, this

implies that S = J+ can be any subset of {1, ..., n} with |S| ≤ K, and for every such a subset

there exists accordingly a vector η satisfying the above property. By Definition 4.1, AT has the

RSP of order K. 2

Let aj , 1 ≤ j ≤ n, be the columns of A and let a0 = 0. Let P denote the convex hull of aj, 0 ≤
j ≤ n. Donoho and Tanner [16] introduced the following concept: The polytope P is outwardly

K-neighborly if every subset ofK vertices not including a0 = 0 spans a face of this polytope. They

have shown that the polytope P is outwardly K-neighborly if and only if any nonnegative solution

x to the system Ax = b with ‖x‖0 ≤ K is the unique optimal solution to the ℓ1-problem. In other

words, the outwardly K-neighborly property is a full geometric characterization of the uniform

recovery of K-sparse nonnegative vectors. Some equivalent properties, such as the strictly half

k-balanced and the strictly half k-thick, were also introduced by Zhang [46]. These are certain

properties imposed on the range space of a matrix, and they are largely defined from a geometric

point of view. Clearly, these properties are different from the RSP of order K which is derived

from the LP strict complementarity theory. Moreover, Khajehnejad et al [29] characterized the

uniform recovery by using the property of N (A), the null space A. They have showed that all

nonnegative K-sparse vector can be exactly recovered if and only if for every vector w 6= 0 in

N (A), and every index set S ⊆ {1, ..., n} with |S| = K such that wSc
≥ 0, it holds that eTw > 0.

Different from the geometric description by Donoho and Tanner [16] and the null-space-based

analysis by Khajehnejad et al [29], the RSP of order K introduced in this section provides an

alternative full characterization of the uniform recovery from the perspective of the range space

of AT . Clearly, while from different perspectives, all the above-mentioned properties (outwardly

K-neighborly, strictly half k-balanced, null space, and range space) are equivalent since all these

properties are necessary and sufficient conditions for the uniform recovery of all K-sparse vectors.
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As a result, all these properties imply the strong equivalence between ℓ0- and ℓ1-problems, so

the RSP of order K is also a sufficient condition for the tractability of ℓ0-problems. It is easy to

verify that if the matrix A has the RIP of order 2K, or the NSP of order 2K, then its transpose

AT must have the RSP of order K.

We now close this section by stressing the difference between the RSP of order K and the

RSP (8). Such a difference can be easily seen from the following result.

Corollary 4.4 If AT has the RSP of order K, then any x̂ ≥ 0 with ‖x̂‖0 ≤ K is both the

unique least ℓ1-norm nonnegative solution and the unique sparsest nonnegative solution to the

linear system Ax = y = Ax̂.

Proof. By Theorem 4.3, under the RSP of order K, any x̂ ≥ 0 with ‖x̂‖0 ≤ K can be exactly

recovered by ℓ1-minimization, i.e, x̂ is the unique least ℓ1-norm nonnegative solution to the system

Ax = y = Ax̂. We now prove that x̂ is also the sparsest nonnegative solution to this system.

Assume that there exists another solution z ≥ 0 such that ‖z‖0 ≤ ‖x̂‖0. Let S = {i : zi > 0}.
Since |S| = ‖z‖0 ≤ ‖x̂‖0 ≤ K, by the RSP of order K, there exists an η ∈ R(AT ) such that

ηi = 1 for all i ∈ S, and ηi < 1 for all i ∈ Sc. Thus the individual RSP (8) holds at z. By Lemma

4.2, any K columns of A are linearly independent. Since the number of the columns of AS , where

S = {i : zi > 0}, is less than K, this implies that AS has full column rank. By Theorem 2.7, z

is also the unique least ℓ1-norm nonnegative solution to the system Ax = y = Ax̂. Thus z = x̂,

which implies that x̂ is the unique sparsest nonnegative solution to this system. 2

This result shows that the RSP of order K is much more restrictive than the individual RSP

(8) which is defined at a single point. The former requires that the RSP (8) hold at every K-

sparse nonnegative solution. By contrast, the individual RSP (8) is only a local property, and it

does not imply that the underlying linear system has a unique sparsest nonnegative solution, as

we have shown in Sect. 3.

4.2 Non-uniform recovery of sparse nonnegative vectors

The purpose of uniform recovery is to exactly recover all k-sparse vectors. So some strong

assumptions (such as the RIP, NSP and the RSP of certain orders) must be imposed on the

matrix. These strong assumptions for achieving uniform recovery imply that the unknown sparse

vector x must be the unique optimal solution to both ℓ0- and ℓ1-problems (hence, the strong

equivalence between these two problems are actually required by the uniform recovery). In this

subsection, we extend the uniform-recovery theory to the nonuniform one by using the RSP-

based theory. So far, there exists some limited literature handling the non-uniform recovery of

sparse signals. From a geometric perspective, Donoho and Tanner [16] introduced the so-called

weak neighborliness conditions for nonuniform recovery by ℓ1-minimization, and they have shown

under such a condition that most nonnegative K-sparse vectors can be exactly recovered by the

ℓ1-method. Ayaz and Rauhut [1] focused on the non-uniform recovery of signals with given

sparsity and given signal length by ℓ1-minimization. Different from their methods, we introduce

the so-called Weak RSP of order K in this subsection, which is a range space property of AT

that can guarantee the exact recovery of some vectors which may have high sparsity level, going
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beyond the scope of normal uniform recoveries.

Given a sensing matrix A, Theorem 2.7 claims that a vector x∗ can be exactly recovered by

ℓ1-minimization provided that the RSP(8) hold at x∗ and that the matrix AJ+, where J+ = {i :
x∗i > 0}, has full-column rank. Such an x∗ is not necessarily the unique sparsest nonnegative

solution to the linear system as shown by Example 3.4, and it may not even be a sparsest

nonnegative solution as well. For instance, let

A =




6 4 1.5 4 −1
6 4 −0.5 4 0
0 −2 31.5 −1 −1.5


 , y =




4
4

−1


 = Ax∗

where x∗ = (1/3, 1/2, 0, 0, 0)T . It is easy to see that x̃ = (0, 0, 0, 1, 0)T is the unique sparsest

nonnegative solution to the system Ax = y, while x∗ is the unique least ℓ1-norm nonnegative

solution to the system Ax = y. Although x∗ is not the sparsest nonnegative solution, it can

be exactly recovered by the ℓ1-method. Because of this, it is interesting to develop a recovery

theory without requiring that the targeted unknown sparse vector be a sparsest or be the unique

sparsest solution to a linear system. This is also motivated by some practical applications. In fact,

a real sparse signal or image may not be sparse enough to be recovered by the uniform recovery,

and partial information for the unknown sparse vector may be available in some situations, for

example, the support of an unknown vector may be known. The concept of RSP of order K can

be easily adapted to handle these cases. So we introduce the following concept.

Definition 4.5(WRSP of order K) Let A be an m × n matrix with m < n. AT is said

to satisfy the weak range space property (WRSP) of order K if the following two properties are

satisfied:

(i) There exists a subset S ⊆ {1, ..., n} such that |S| = K and AS has full column rank;

(ii) For any subset S ⊆ {1, ..., n} such that |S| ≤ K and AS has full column rank, the space

R(AT ) contains a vector η such that ηi = 1 for i ∈ S, and ηi < 1 otherwise.

The WRSP of order K only requires that the individual RSP hold for those subsets S ⊆
{1, ..., n} with |S| ≤ K and AS being full-column-rank, while the RSP of order K requires that

the individual RSP hold for any subset S ⊆ {1, ..., n} with |S| ≤ K. So the WRSP of order K is

less restrictive than the RSP of order K. By Theorem 2.6, we have the following result.

Theorem 4.6 Let the measurements of the form y = Ax be taken. Suppose that there exists

a subset S ⊆ {1, ..., n} such that |S| = K and AS has full column rank. Then AT has the WRSP

of order K if and only if any x ≥ 0, satisfying that ‖x‖0 ≤ K and AJ+ has full-column-rank

where J+ = {i : xi > 0}, can be exactly recovered by the ℓ1-minimization min{‖z‖1 : Az = y =

Ax, z ≥ 0}.

Proof. Assume that AT has the WRSP of order K. Let x be an arbitrary nonnegative vector

such that ‖x‖0 ≤ K and AJ+ has full-column-rank, and let S = J+ = {i : xi > 0}. Since AT has

the WRSP of order K, there exists an η ∈ R(AT ) such that ηi = 1 for i ∈ S = J+, and ηi < 1

otherwise. This implies that the RSP(8) holds at x. Since AJ+ has full column rank, by Theorem

2.7, x must be the unique least ℓ1-norm nonnegative solution to the linear system Az = y (= Ax).

In other words, x can be exactly recovered by ℓ1-minimization. Conversely, we assume that any
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x ≥ 0, satisfying that ‖x‖0 ≤ K and AJ+ has full-column-rank, can be exactly recovered by

ℓ1-minimization. We now prove that AT must have the WRSP of order K. In fact, let x ≥ 0 be

a vector such that ‖x‖0 ≤ K and AJ+ has full-column-rank. Denote by S = J+ = {i : xi > 0}.
Since x can be exactly recovered by the ℓ1-method, it is the unique least ℓ1-norm nonnegative

solution to the system Az = y = Ax. By Theorem 2.7, the RSP (8) holds at x, i.e., there exists

an η ∈ R(AT ) such that ηi = 1 for i ∈ J+ = S, and ηi < 1 otherwise. Since x can be any

vector such that ‖x‖0 ≤ K and AJ+ has full column rank, this implies that the condition (ii) of

Definition 4.5 holds, thus AT has the WRSP of order K. 2

We may further relax the concept of RSP and WRSP, especially when partial information

available to the unknown vector. For instance, when ‖x‖0 = K is known, we may introduce the

next two concepts.

Definition 4.7 (PRSP of order K). We say that AT has the partial range space property

(PRSP) of order K if for any subset S of {1, ..., n} with |S| = K, the range space R(AT ) contains

a vector η such that ηi = 1 for all i ∈ S, and ηi < 1 otherwise.

Definition 4.8 (PWRSP of order K). AT is said to have partial weak range space property

(PWRSP) of order K if for any subset S ⊆ {1, ..., n} such that |S| = K and AS has full column

rank, R(AT ) contains a vector η such that ηi = 1 for all i ∈ S, and ηi < 1 otherwise.

Different from the RSP of order K, the PRSP of order K only requires that the individual

RSP hold for the subset S with |S| = K. Similarly, the PWRSP of order K is also less restrictive

than WRSP. Based on such definitions, we have the next result which follows from Theorem 2.7

straightaway.

Theorem 4.9 (i) The matrix AT has the partial range space property (PRSP) of order

K if and only if any x ≥ 0, with ‖x‖0 = K, can be exactly recovered by the ℓ1-minimization

min{‖z‖1 : Az = y = Ax, z ≥ 0}.
(ii) AT has the PWRSP of order K if and only if any x ≥ 0, satisfying that ‖x‖0 = K and AJ+

has full-column-rank where J+ = {i : xi > 0}, can be exactly recovered by the ℓ1-minimization

min{‖z‖1 : Az = y = Ax, z ≥ 0}.

When AS has full column rank, we have |S| ≤ m. Thus the WRSP and PWRSP of order K

imply that K ≤ m. Moreover, the PRSP of order K implies that K < Spark(A). In fact, the

proof of this fact is identical to that of Lemma 4.1. Theorems 4.6 and 4.9(ii) indicate that a

portion of vectors with ‖x‖0 ≤ m can be exactly recovered if a sensing matrix satisfies certain

properties milder than the RSP of order K (and thus milder than RIP and NSP of order 2K).

Since the PRSP, WRSP and PWRSP of order K do not require that the individual RSP hold

for all subsets S with |S| ≤ K, by Theorem 4.3, these properties are nonuniform-type recovering

conditions developed through the range space property of AT .

It is worth mentioning that when a priori information, such as the sign restriction, is avail-

able, Juditsky, Karzan, and Nemirovski [28] have developed some exact recovery criteria for

ℓ1-minimization based on the so-called s-semigoodness. Clearly, their concepts and recovery

conditions are remarkably different from the ones developed in this section.
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5 Conclusions

In this paper, we have addressed several questions associated with the ℓ0- and ℓ1-problems with

nonnegativity constraints. More specifically, through the range space property of AT , we have

characterized the conditions for the ℓ1-problem to have a unique optimal solution, for ℓ0- and

ℓ1-problems to be equivalent, and for sparse vectors to be uniformly and non-uniformly recovered.

We have shown the following main results: (i) A vector x ≥ 0 is the unique optimal solution to

the ℓ1-problem if and only if the RSP holds at this vector, and the associated submatrix AJ+

has full column rank; (ii) ℓ0- and ℓ1-problems are equivalent if and only if the RSP (8) holds at

an optimal solution of the ℓ0-problem; (iii) All K-sparse vectors can be exactly recovered by a

single sensing matrix A if and only if AT has the RSP of order K. From our analysis, we see

that the RSP originates naturally from the strict complementarity property of linear program-

ming problems. Via the RSP-based analysis, the relationship between ℓ0- and ℓ1-problems can

be broadly understood. This analysis has indicated that the uniqueness of optimal solutions

of the ℓ0-problem is not the reason for the problem to be computationally tractable, and the

multiplicity of optimal solutions of the ℓ0-problem is also not the reason for the problem to be

hard. The RSP may hold in both situations.
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