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Abstract 

Introduction:  Research and routine laboratory assessment of clot integrity can be time 

consuming, expensive, and cannot be batched as it is generally performed in real time. To 

address these issues, we developed and validated a micro-titre based assay to quantify 

thrombogenesis and fibrinolysis, the purpose being to assess patients at risk of cardiovascular 

events by virtue of hypercoagulability. In further validation, thrombogenesis results were 

compared to similar indices from the thrombelastograph (TEG). 

Methods: Our assay determines three indices of thrombogenesis (lag time to the start of 

thrombus formation (LT), rate of clot formation (RCF), and maximum clot density (MCD)) 

and two of fibrinolysis (rate of clot dissolution (RCD) and time for 50% of the clot to lyse 

(T50).  Plasma was tested fresh and again after being frozen at -70
o
C. Some samples were 

tested immediately, others after being left at room temperature for up to 24 hours.  

Results: The intra-assay coefficients of variation (CVs) of the three thrombogenesis measures 

(LT, RCF, MCD) and two fibrinolysis measures (RCD, T50) varied between 2.7-12.0% in 

fresh plasma and between 1.3%-10.8% in frozen plasma respectively.  Similarly, the inter-

assay coefficients of variation of the thrombogenesis and fibrinolysis measures were 4.9-

10.8% in fresh plasma and 2.2-6.5% in frozen plasma respectively. TEG assays intra- and 

inter assay CVs were around 25%.  There were no significant differences in all plate assay 

indices up to 6 hours at room temperature. Certain plate assay thrombogenesis data were 

comparable to TEG indices after analysis by Pearson’s correlation. The reagent processing 

cost per sample is £15 for TEG and £2 for the plate assays. 

Conclusion: Our micro-titre based assay assessing plasma thrombogenesis and fibrinolysis 

has good intra- and inter-assay CVs, can assess plasma up to 6 hours after venepuncture, is 

more efficient (in terms of throughput) and is more economical than that of the TEG. 
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Introduction 

Correct haemostasis functioning (the balance between thrombosis and fibrinolysis) is an 

essential physiological process. Increased thrombosis and/or impaired fibrinolysis leads to 

life-threatening conditions such as ischaemic stroke, myocardial infarction and pulmonary 

embolism. Conversely, failure of thrombosis (perhaps to due over-anticoagulation) and/or 

excessive fibrinolysis leads to life threatening haemorrhage, such as of the gastro-intestinal 

tract and in causing haemorrhagic stroke (1,2). The need for information regarding the 

potential occurrence of these events, their treatment with anti-coagulants, in stable thrombotic 

disease such as coronary artery disease and atrial fibrillation, in critical conditions such as 

disseminated intravascular coagulopathy and trauma, and in investigating cardiovascular 

pharmacology, such as the effects of anti-coagulants, call for reliable laboratory tests of 

haemostasis (3,4). 

 

The thrombelastograph (TEG) is an established laboratory tool for the investigation and 

management of haemostasis, simultaneous delivering numerous indices on various aspects of 

clot formation and fibrinolysis, a selection of which are shown in table 1 (5,6). Despite its 

flexibility in being able to assess haemostasis in trauma, haemorrhage and the effects of 

anticoagulation and fibrinolysis (7-9), it has several disadvantages. These include the 

requirement of whole blood to be assessed in real time, a maximum of two samples to be 

assessed per analyser at the same time, relatively high coefficients of variation, poorly 

standardized methodologies, quality control/assurance issues, and limitations on the stability 

of whole blood samples (10-12). These issues also mean it is a poor choice of assay in 

clinical research and drug development. Although used most commonly with whole blood, 

some of these problems may be addressed by using plasma, and the use of frozen plasma 

allows non-urgent assessments to be batched, possibly to be processed out of hours. 
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However, slow and limited throughput of samples, and other problems leave room for 

alternative technologies.    

The insoluble nature of the fibrin clot, and so the interruption of beam of light whilst it forms, 

it an established feature of the laboratory assessment of thrombogenesis (13-16).  Based on 

these principles, we set out to develop and validate a micro-method for a high-throughput 

assay that can assess thrombogenesis and fibrinolysis in citrated plasma, and that may be 

useful in clinical practice and research. We determined that the most convenient and efficient 

platform for this would be a standard 96-well microtitre plate, and we compared our method 

with parallel data obtained from an established haemostasis device, i.e. the TEG.  

 

Subjects, Materials and Methods 

Subjects 

Following local research ethics committee approval and written informed consent, whole 

blood was obtained from 19 healthy (i.e. not taking prescription medications) volunteers 

(mean age 35, standard deviation 8, range 26 – 52 years old, 12 males) into citrated 

vacutainers. A portion of whole blood was processed on the TEG. Plasma was obtained 

following centrifugation of the latter for 20 minutes at 3000 rpm: an aliquot of the fresh 

plasma was processed promptly while some plasma was frozen immediately and stored at -

70
o
C. Prior to assay, frozen plasma was thawed in a 37

o
C water bath. 

General principles of the assays 

When plasma is exposed to thrombin, the polymerisation of fibrin can be monitored by 

measuring the amount of light passing through the solution. As fibrinogen is converted to 

protofibril monomers and fibrin, this solution will become more turbid and thus cause more 
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scattering and absorption of light (16). With subsequent addition of exogenous tissue 

plasminogen activator (tPA), the solution becomes less turbid due to dissolution of fibrin 

threads by plasmin, so that light passage is restored. We adopted and amended this process, 

developing a technique for concurrently assessing both thrombogenesis and fibrinolysis, as 

these share common features.  

The plate assay for thrombogenesis 

The method for the thrombogenesis assay calls for 25 µL of plasma to be added to the well of 

a standard ELISA-quality 96-well microtitre plate (R&D Systems Europe Ltd, Abingdon. 

UK), followed by 75 µL of a TRIS-NaCl buffer (1.51 g Tris-HCl, 1.75 g NaCl, 200 mL 

distilled water). Coagulation is initiated by the addition of 50 µL of a thrombin/calcium 

solution. For a batch of 20 patient samples in triplicate (total of sixty samples), this reagent 

will consists of 20 µL of a solution of 1000 IU thrombin [Sigma catalogue number T9549] 

reconstituted in 4 ml phosphate buffered saline/0.1% bovine serum albumin (BSA), 500 µL 

of 500 mM calcium chloride in the Tris/NaCl buffer, and 3 ml of the Tris/NaCl buffer (all 

reagents Sigma-Aldrich, Gillingham, Kent). Bulk addition of buffers to multiple wells of the 

micro-titre plate is facilitated by an 8-channel micro-pipette. The thrombin/calcium solution 

can be bulk reconstituted and stored frozen at -70
o
C in aliquots.  

The plate is immediately loaded into a Tecan Sunrise (Tecan Group Ltd, Männedorf, 

Switzerland) plate reader at 37
o
C programmed to measure the optical density (OD) at 340 nm 

every six seconds (with an intermediate two-second shaking period) for 30 minutes. The raw 

OD data at each time point can be printed out as an excel file and as a graphic. A typical 

graphical print-out is presented in Figure 1, and shows change in OD over time as the fibrin 

clot forms. From these, three key indices can be obtained: (a) the lag time (LT), which is the  

time in seconds from the initial measurement (addition of the calcium/thrombin) to the start 
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of the exponential part of the thrombogenesis curve, (b) the rate of clot formation (RCF), 

calculated as the change in OD unit/second, being [The OD at the end of the exponential 

phase minus the OD at the start of the exponential phase]/[The time in seconds between these 

two points], and (c) the maximum increase in OD taken at 30 minutes, which give us the 

maximum clot density (MCD). 

The plate assay for fibrinolysis 

A strength of our method is that many of the features of the thrombogenesis assay are part of 

the fibrinolysis assay. In the fibrinolysis assay, 75 µL of plasma is added to the well of a 

microtitre plate. To this is added 75 µL of a Tris/NaCl/calcium buffer supplemented with 

thrombin and tPA, to be made up fresh per assay run. For a batch of 20 patient samples in 

triplicate (therefore sixty wells), this buffer will consist of 9 ml Tris/NaCl buffer, 400 µL 

calcium chloride solution, 20 µL thrombin (as above) and 800 µL tPA (Technoclone 

TC41072: stock solution of 100 µg tPA reconstituted in 400µL of 1 molar potassium 

bicarbonate/1% BSA (both Sigma). The tPA solution can be bulk reconstituted and stored 

frozen at -70
o
c in aliquots.  

The plate is immediately loaded into a Tecan Sunrise plate reader as for the thrombogenesis 

assay, and data collected for 30 minutes. Again, the raw data of the OD at each time point can 

be printed out as an excel file and as a graphic. A typical graphical print-out is presented in 

Figure 2, and shows change in OD over time as the fibrin clot is initially formed and then 

lysed. The data is post-processed to plot into line charts, and from these the rate of clot 

dissolution (RCD), being the slope of the right hand portion of the graph, and the time for 

50% clot lysis (T50) can be determined (as demonstrated in Figure 2). 

As the parameters and settings for the plate reader are identical for each assay, they can be 

performed in parallel on the same plate. However, should it be necessary, each assay can be 
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run independently. The duration of time required for both plate assays is dependent on the 

thrombogenesis and fibrinolysis potential of the samples, and thus processing time may be 

variable. However, for most samples, results may be obtained within 20 minutes, at which 

point the assay can be terminated.   Our data shows results at 30 minutes, as this is one of the 

TEG endpoints. 

The TEG 

Manufacturer’s instructions were followed. Briefly, 340 µL of citrated whole blood or plasma 

is added to a reaction cuvette, to which is added 20 µL of 0.1 M calcium chloride solution 

and kaolin (Haemonetics, Watford, UK). The reaction proceeds immediately and is 

monitored in real time by the analyser with results fed directly to a microcomputer. A 

modified TEG graphical printout is presented as Figure 3, and shows the formation of clot, 

the increasing physical strength of the developing clot on the vertical axis over time, and 

finally clot autolysis. Together with the graphical printout, numerous TEG indices are 

generated, although we have focussed on the R, K, Angle, MA and LY30 indices as these are 

in common with our plate assay indices (table 2). Note the similarity of the TEG printout 

(Figure 3) with that of the thrombogenesis assay (Figure 1).  

Comparing TEG vs Plate assay 

By comparing the results from TEG and thrombogenesis assay, several equivalent data can be 

observed. Firstly, the Reaction time (R-time) in TEG and the Lag time (LT) in 

thrombogenesis assay both describes the time taken for clot formation to commence, either 

through assessment of tensile strength in TEG or through the changes in turbidity in 

thrombogenesis assay. Second, the α-angle in TEG is markedly similar to rate of clot 

formation (RCF) in thrombogenesis assay, as both describe the rate of clot growth as clot 

fibres polymerise to form stronger and denser fibres. Finally, maximum amplitude (MA) in 
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TEG and maximum clot density (MCD) in thrombogenesis assay represent the final 

formation of the mature clot. As the TEG reports autolysis, whereas in our plate assay, lysis 

is by exogenously added tPA, we did not feel the two assays to be comparable. Indeed, it can 

be noted that autothrombolysis is both slower and less marked (figure 3) compared to 

fibrinolysis by added tPA in the plate assay (figure 2). 

Validation 

The intra- and inter-assay coefficients (CV) of the plate assay indices were determined by 

testing 5 samples of fresh and frozen plasma 5 times each. The same plasma (and matched 

whole blood) was used to generate CVs on the TEG. To determine the effect of time-delay on 

clotting, whole anticoagulated blood was obtained from 5 individuals, and plasma collected 

after set periods of time had elapsed (T=0, T +3 hours, T+6 hours, T+12 hours and T+24 

hours) at room temperature.  

Statistics  

Data are presented as mean and standard deviation (when data normally distributed) or 

median and inter-quartile range (non-normally distributed). Data were correlated according to 

Pearson’s or Spearman’s method, dependent on distribution. Data at different time points was 

analysed by repeated measures analysis of variance, and overall by linear trend. All analyses 

were performed on Minitab release 16 and p<0.05 was taken to assume significance. 

 

Results 

Reproducibility 
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The intra-assay and inter-assay CVs for the microplate assays are shown in Table 2, those of 

the TEG assay indices in Table 3. Note that there is no data for the LY30 in the TEG assay 

data. This is because there was no change in the MA at 30 minutes – i.e. no clot lysis had 

occurred. We speculate therefore that the freezing and thawing of plasma and the addition of 

the kaolin/calcium chloride essentially destroys autolytic potential. This may possibly be of 

the plasma’s own tPA, because exogenous tPA was able to lyse the clot in the plate assay.  

The median (interquartile range, IQR) CV of the 20 indices from the plate assays (table 2) is 

5.1 (2.7-8.7)%. As a bio-assay, which generally have large CVs (see TEG data), we regard 

these data as very good. For the plasma CVs in the TEG assay in table 3 the data is 21.1 (8.6-

27.2)% (p<0.001 to the plate assay CVs). The data for CVs for the whole blood is 17.4 (9.8-

43.6)% (p=0.615 to CVs of the TEG plasma assays),  demonstrating significant variability 

within and between analyses, regardless of whole blood, fresh plasma or frozen plasma. As 

the CVs for the thrombogenesis aspect of plate assay are markedly smaller (by a factor of at 

least 4) than that of the TEG, we conclude that plate assay is superior to TEG in assessing 

various aspects of clot formation and stability.  The fresh plasma and frozen plasma TEG 

indices are of equal reproducibility (median CVs 21.5% and 21.3% respectively). 

Time between venepuncture and processing 

The effect of time on the haemostasis indices is shown in Table 4 for the plate assays and 

Table 5 for the TEG. The plate assay (Table 4) demonstrated that processing samples 

collected over time results in a progressive shortening of the lag time (LT), a slower rate of 

clot formation (RCF) but increased maximum clot (MCD). Resultant clot formed over time 

was also demonstrated to be more resistant to lysis by tPA, shown by increased T50% and 

reduced rate of clot dissolution (RCD). This relationship existed for both fresh and frozen 

plasma in plate assay (all indices, p< 0.001). Although the results of the plasma samples were 
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statistically not diferent 12 hours after preparation, there is a clear change from the six hour 

to the 12 hour samples. We therefore recommend that samples are processed not longer than 

six hours after preparation.  

Parallel TEG data are shown in Table 5. Broadly speaking, most samples were stable to 24 

hours after preparation. The only index that did show a statistical change was the α-angle, 

assessing the rate of thrombogenesis, which showed that samples clotted more rapidly at 3 

and 24 hours after preparation (both p=0.019).  As there is no clear physiological mechanism 

for these variations, we suggest this may simply reflect assay variability (as demonstrated by 

the high CVs). There is also a trend towards reduction of R-time, but this change is not 

statistically significant.    

The lag time, rate of clot formation and maximum clot density measurements in the 

thrombogenesis plate assay are in essence similar measures of coagulation in respects to 

indices of the TEG, namely K-time, angle and maximum amplitude. Pearson’s correlation 

coefficients of paired indices are shown in table 6. These indicate a significant correlation 

between MA and MCD (p=0.008), none between the R-time and the LT, or between the α-

angle and the RCF.  

Economic Evaluation 

Excluding the cost of purchase or rental of microplate reader or TEG analyser, there is a 

significant difference in cost of processing samples. Taking catalogue costs for reagents, the 

cost of processing a sample on the TEG is £14.33 versus £1.65 by plate assays when samples 

are processed in triplicates. By processing huge numbers of samples, the cost per sample in 

plate assays will be expected to fall, due to the initial start-up cost of bulk purchase of 

laboratory chemicals. For 5000 samples, cost of each sample processed will remain at £15 for 

TEG but fall to under £0.35 for plate assays.  However, the plate assay demands much more 
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operator input in preparing reagents, developing the assay and in calculating the results. In 

this respect the semi-automatic TEG, with minimal operator time, is markedly more attractive 

 

Discussion 

The ability to reliably, rapidly and accurately assess haemostasis is an important part of 

clinical and laboratory medicine and vascular pharmacology, and within this process, the 

value of determining thrombotic and fibrinolytic potential is becoming recognised (1-4). One 

of the most useful tools in this respect is the TEG, although it has several disadvantages (5-

12), some of which have led to the development of alternative methods (13-16).    

The TEG technology is well-established, and has been in use for decades in clinical setting as 

a “point-of-care” assessment of coagulation potential in critically ill patients and those who 

have experienced poly-trauma (17,18). Nevertheless, in some circumstances, such as 

haemophilia and in point of care testing, other methods may be better (19,20). Indeed, as 

shown in this paper, the large CVs in the TEG data have a significant impact on the 

reproducibility of the results. The large CVs, the fairly long processing time, the limited 

number of channels per analyser and the cost of the assay are a significant drawback of this 

method. Hence, in comparing the TEG with our thrombogenesis and fibrinolysis plate assays, 

the latter have lower CVs, faster running speed and cheaper processing cost, so may 

potentially be a viable alternative to TEG. The plate assays also allow for batch analysis after 

prior freezing and still provides for reliable results, but a drawback is the need for manual 

post-processing to obtain the results.  

The two systems do not draw exact comparison. Correlation analysis shows that despite the 

similarities in certain components of both the TEG and plate assays, such as the relationship 
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between maximum amplitude (reflecting the tensile strength of developed clot) and 

maximum clot density (reflecting the thickness of fibrin clot monomers), both methods are 

not identical, but may be complementary. The TEG measures the haemostasis of whole blood 

or plasma (to which is added kaolin) through coagulation kinetics, clot tensile strength and 

subsequent clot retraction and autolysis. These contrast with the thrombogenesis and 

fibrinolysis plate assay, which provides data affecting coagulation, such as direct 

measurement of the rate of fibrin clot formation and polymerisation, together with the fibrin 

clot monomer thickness, and a further test of fibrin clot lysis assisted by added tPA. It 

remains to be seen whether or not the plate assays offer a more useful assessment of 

haemostasis than the TEG in a clinical setting. A limitation of our data is that it is based on 

samples from healthy subjects much younger than those whose haemostasis is likely to be 

assessed in a clinical setting. 

 

Conclusion 

We present a microplate assay for measuring thrombogenesis and fibrinolysis which has 

significantly better intra-assay and inter-assay CVs than TEG technology. Furthermore, 

results are stable for up to 6 hours from venepuncture, and the plate assay is cheaper and 

faster to operate. Table 7 summarises the advantages and disadvantages of the two methods. 

We believe our new method has potential in both clinical and research (drug development) 

settings where the quantifiable effects of anticoagulants are important considerations.  
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Table 1: Major TEG indices 

 

 

Index 

 

 

Function in ex-vivo haemostasis 

 

R-time 

 

The time from when the sample is put on the TEG until the first 

sign of clot formation (amplitude of 2 mm) is reached. 

 

 

K- time 

 

The time from the R or beginning of clot formation to a fixed 

level of clot firmness (amplitude of 20 mm) is reached. 

 

 

Angle (α) 

 

The rate of clot growth. 

 

 

MA (Maximum  

Amplitude) 

 

Maximum strength or stiffness (maximum shear modulus) of the 

developed clot. MA measures the strength or elasticity of the clot 

in mm. 

 

 

LY30 

 

Measures percent lysis at 30 minutes after MA is reached. 
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Table 2: Intra- and inter- assay CV’s of plate assay indices  

using fresh plasma or frozen plasma 

 

 

 

Index  

(unit) 

 

 

Fresh plasma  

Intra-assay 

 

Fresh plasma 

Inter-assay 

 

Frozen plasma 

Intra-assay 

 

Frozen plasma 

Inter-assay 

 

 

Thrombogenesis 

 

 

 

   

 

Lag time (sec) 

 

 

2.7 

 

10.3 

 

2.4 

 

6.1 

 

Rate of clot 

formation  

(OD unit/sec)  

 

9.0 

 

7.7 

 

 

5.1 

 

6.5 

 

Maximum clot 

density  

(OD unit) 

 

2.6 

 

4.9 

 

1.3 

 

2.2 

 

Fibrinolysis 

 

    

 

Rate of clot 

dissolution 

(OD unit/sec) 

 

12.0 

 

10.8 

 

3.5 

 

5.3 

 

T50% (sec) 

 

 

3.6 

 

9.9 

 

2.8 

 

5.1 

 

Median 

(IQR) 

 

 

3.6 

(2.6-10.5) 

 

9.9 

(6.2-10.5) 

 

2.8 

(1.8-4.3) 

 

 

5.3 

(3.6-6.3) 

 

Data are %. CV = coefficient of variation, OD = optical density 

IQR = inter-quartile range 
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Table 3: TEG intra- and inter-assay CVs 

 

Index 

(unit) 

 

 

Whole blood 

 

 

Fresh plasma 

 

 

Frozen plasma 

 

Intra  -  Inter  Intra   -  Inter Intra  -  Inter 

       

 

R (min) 

 

 

21.8 

 

16.4 

 

19.3 

 

24.5 

 

24.6 

 

29.5 

 

K (min) 

 

 

18.4 

 

24.0 

 

23.0 

 

23.7 

 

31.0 

 

26.5 

 

Angle (degrees) 

 

 

10.4 

 

14.3 

 

9.4 

 

10.0 

 

12.4 

 

11.4 

 

MA (mm) 

 

 

5.5 

 

7.8 

 

12.2 

 

8.6 

 

17.2 

 

17.0 

 

LY30 (%) 

 

 

102.5 

 

637.9 

 

73.8 

 

94.3 

 

* 

 

* 

 

Median  

(IQR) 

 

18.4 

(8.0-

62.2) 

16.4 

(11.1-

330.1) 

19.3 

(10.8-

48.4) 

23.7 

(9.3-

59.4) 

 

20.9 

(13.6-

29.4) 

 

 

21.7 

(12.8-

28.7) 

 

Data are %. *No reliable data obtained 

MA = maximum amplitude, IQR = interquartile range 

CV = coefficient of variation 
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Table 4: Effect of time on haemostasis indices of the plate assay 

 

 

4(a) Fresh plasma 

 

 

 

 

Thrombogenesis assay 

 

 

Fibrinolysis assay 

 

Time point 

(hours) 

 

 

LT 

(secs) 

 

 

RCF 

(OD/sec) 

 

MCD 

(OD) 

 

RCD 

(OD/sec) 

 

T50 

(secs) 

T = 0 540 (92) 11.4 (3.1) 0.59 (0.1) 2.7 (0.9) 132 (19) 

T + 3 535 (93) 10.3 (2.4)  0.59 (0.1) 2.6 (0.8) 143 (24) 

T + 6 535 (104) 9.5 (2.0) 0.61 (0.1) 2.6 (0.9) 143 (21) 

T + 12 449 (83) 7.5 (1.0) 0.62 (0.12) 2.4 (0.8) 173 (17) 

T +24 378 (26)* 6.3 (1.2)* 0.67 (0.12) 1.5 (0.6) 207 (22)* 

P for linear 

trend 

0.0021 0.0002 0.703 0.0332 0.0048 

 

 

4 (b) Frozen plasma 

 

  

Thrombogenesis assay 

 

 

Fibrinolysis assay 

 

Time point 

(hours) 

 

 

LT 

(secs) 

 

 

RCF 

(OD/sec) 

 

MCD 

(OD) 

 

RCD 

(OD/sec) 

 

T50 

(secs) 

T = 0 548 (90) 10.3 (1.6) 0.59 (0.1) 2.7 (0.9) 136 (19) 

T + 3 551 (99) 9.3 (0.95) 0.60 (0.1) 2.7 (0.9) 144 (23) 

T + 6 533 (102) 8.9 (0.65) 0.62 (0.1) 2.6 (0.8) 146 (17) 

T + 12 461 (78) 7.9 (1.3) 0.63 (0.1)* 2.4 (0.8) 177 (17)* 

T +24 388 (45)* 5.9 (1.5)* 0.69 (0.1)* 1.5 (0.5)* 215 (23)* 

P for linear 

trend 

0.0024 <0.0001 0.216 0.0251 <0.0001 

 

Date are mean (standard deviation). LT = lag time, MCD = maximum clot density, RCD = 

rate of clot dissolution, RCF = rate of clot formation, T50 = time for 50% of the clot to be 

lysed, OD = optical density. *p<0.001 compared to baseline. 
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Table 5: Effect of time on haemostasis indices of TEG 

 

 

5 (a) Fresh sample 

 

 

 

 

Thromboelastography (TEG) 

 

 

Time point 

(hours) 

 

 

R  

(minutes) 

 

 

K 

(minutes) 

 

Angle 

(degree) 

 

MA 

(mm) 

 

LY 30 

(%) 

T = 0 12.9 (4.6) 3.4 (1.5) 45.3 (9.9) 59.7 (7.3) 2.32 (1.9) 

T + 3 12.0 (3.3) 2.7 (0.8) 55.8 (9.0)* 59.7 (7.2) 2.32 (2.5) 

T + 6 10.4 (2.4) 3.2 (1.0) 51.3 (8.8) 54.2 (11.5) 3.00 (1.1) 

T + 12 10.0 (2.00) 3.2 (1.2) 48.6 (17.7) 56.8 (10.2) 2.98 (1.7) 

T +24 9.5 (2.2)* 2.7 (1.1) 55.4 (10.9)* 59.1 (6.1) 1.52 (0.5) 

P for linear 

trend 

0.0525 0.624 0.442 0.742 0.816 

 

 

5 (b) Frozen sample 

 

 

 

 

Thromboelastography (TEG) † 

 

Time point 

(hours) 

 

 

R  

(minutes) 

 

 

K 

(minutes) 

 

Angle 

(degree) 

 

MA 

(mm) 

T = 0 8.3 (1.7) 1.6 (0.8) 67.1 (8.8) 30.3 (6.5) 

T + 3 7.6 (1.6) 1.9 (0.5) 65.9 (7.4) 29.7 (6.6) 

T + 6 7.0 (1.3) 2.3 (0.9) 63.3 (8.3) 27.5 (8.0) 

T + 12 7.7 (0.8) 1.9 (0.7) 63.7 (8.3) 28.9 (5.9) 

T +24 6.8 (1.5) 2.3 (1.4) 70.2 (4.0) 27.2 (4.8) 

P for linear 

trend 

0.170 0.285 0.712 0.451 

 

 

Data are mean (standard deviation). R = Reaction time, K = K time, LY 60 = percent lysis at 

60 minutes after MA is reached, MA = Maximum amplitude. *p<0.05 compared to baseline. † 

No lysis for all frozen samples. 
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Table 6: Correlation of Major Indices in TEG and Plate Assay 

 

 

TEG index – Plate index 

 

Correlation 

coefficient 

 

 

P value 

 

Reaction time with Lag time 

 

 

-0.12 

 

0.630 

 

Angle with Rate of clot formation 

 

 

0.31* 

 

0.190 

 

Maximum amplitude with Maximum clot density 

 

 

0.59 

 

0.008 

 

Data from analyses of 19 samples of normal plasma. *Spearman correlation coefficient 

 

 

 

 

 

Table 7: Advantages and disadvantage of the two methods 

 

 

 

 

 

Plate assay 

 

TEG 

 

Reagent cost 

 

 

Low 

 

High 

 

Reproducibility 

 

 

Good 

(can run in duplicate,  

triplicate, or more) 

 

 

Poor 

(but can run  

in duplicate) 

 

Operator time 

 

 

High 

 

Low 

 

Operates on whole blood 

 

 

No 

 

Yes 

 

Fully operational on frozen plasma 

 

 

Yes 

 

No 

 

Unit processing 

 

 

Rapid: Up to 16 patient  

tests per plate 

 

 

Slow: Only  

two channels 
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Figure 1: The thrombogenesis assay 
 

 

 
 

The plot shows changes in optical density as the fibrin clot forms. Triplicate plots are shown. 
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Figure 2: The fibrinolysis assay 
 
 

 
 

 
The plot shows changes in optical density as the fibrin clot forms. Triplicate plots are shown.  
T100% is the time to maximum absorbance, T0% is the return of the optical denity to near-
baseline. T50% is (T100% - T0%)/2. The slope is the sharpest fall in optical density over 
time under the effect of exogenous tPA, effectively the reverse of the rate of clot formation in 
Figure 1. 
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Figure 3: A modified TEG printout 

 

 

 
 

See table 1 for an explanation of the indices. 

 

 

  

30 minutes 
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