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ABSTRACT  

Isothermal oxidation of the Ni-based superalloy, RR1000, has been performed at 700, 750 and 800ºC 

for exposure periods up to 2000 hours.  A chromia external oxide scale with an outer layer of rutile 

was formed together with extensive internal oxidation of aluminium, both intragranularly and 

intergranularly.  The internal oxidation was associated with a deeper  particle free zone.  Extensive 

metallographic measurements of both the depth of internal oxidation and of the  particle free zone 

were made.  The kinetics in each case approximated well to parabolic.  Possible rate controlling 

processes are discussed.  

 

INTRODUCTION  

The high temperatures and stresses experienced in high pressure turbine disc rotors necessitate the use 

of Ni-based superalloys as the material of choice. These alloys have been optimised microstructurally 

and compositionally for use in these highly demanding conditions. In order to improve engine 

efficiency and reduce CO2 emissions the engine operating temperatures are being regularly increased.  

High temperature degradation through oxidation is now extremely important since it has the potential 

to reduce component lives.  Most of the current disc alloys in use are characteristic of chromia-

forming Ni-based superalloys in that they have a sufficient chromium content to form an initial 

chromia layer, but they also suffer from extensive internal oxidation, particularly of aluminium.1-10 

 

http://www.tandfonline.com/doi/abs/10.1179/1743284714Y.0000000541


The formation of internal oxides is undesirable since they can have a significant detrimental effect on 

the mechanical properties of the alloy. This is especially the case if the internal oxide causes 

strengthening elements to be removed from the alloy.11 This can, in some cases, be accompanied by a 

grain recrystallised zone around and underneath these internal oxides.8  Internal oxides that form at 

alloy grain boundaries often have an acicular morphology and it is possible for these to act as 

preferential crack initiation sites.  Additionally, the volume expansion that occurs on formation of the 

internal oxides can lead to compressive stresses that appear to be relaxed by the formation of metallic 

protrusions within the oxide scale as a result of outward alloy creep. This has been seen in a number 

of different alloy systems.12-17 

 

The development of internal oxidation has been extensively investigated in many systems and has 

been well reviewed in Ni-based alloys.11, 18  A common finding is that the deepest internal oxides form 

intergranularly, as reported in Ni-Al19, 20 and Ni-Cr alloys.12, 21, 22  The diffusion of oxygen within the 

internally oxidised region has also been investigated in these simple alloys.23, 24  The purpose of the 

present study was to examine, in detail, the sub-surface oxidation damage caused by long term high 

temperature exposure of the Ni-based superalloy, RR1000, and to establish the kinetics of this form of 

degradation. 

 

EXPERIMENTAL PROCEDURE 

An advanced Ni-based superalloy, RR1000, was produced using a powder metallurgy route followed 

by a heat treatment to obtain a uniform distribution of secondary and tertiary  (nominally, 

Ni3(Al,Ti)) particles along with a coarse grain size of between 30 to 50 μm.  The nominal composition 

of the alloy is contained in Table 1.  

 

Isothermal oxidation testing was conducted over a temperature range of 700C-800C in laboratory 

air for prolonged periods of time (up to 2000 hours).  The specimens were cut to size (20 mm x 10 

mm x 2-3 mm) using a precision cutting machine.  All the surfaces were ground and polished to 

produce a surface finish, Ra, of approximately 0.3 μm and to remove the damage caused by the cutting 

process.  All edges and corners were chamfered to reduce stress concentrators and polished to the 

same surface finish.  Batches of specimens were placed into open alumina boats then inserted into 

single zone tube furnaces. The furnaces were calibrated to ±1C using an N-type thermocouple and, at 

selected time intervals, a specimen was removed from the batch for examination before the high 

temperature exposure continued for the remainder of the batch. 

 

The specimens were prepared for cross-sectional analysis following oxidation testing by sputtering 

with gold followed by nickel-plating and vacuum impregnation in a low viscosity and low shrinkage 

resin.  The cross sections were ground on wet SiC papers down to 2500 grit followed by polishing 



using progressively finer diamond solutions to a final stage of 0.25 μm.  The sections were chemical 

etched using a selective  etch described by Huang et al.25
 

 

Cross-sectional analysis was performed using a field emission gun Jeol 7000F scanning electron 

microscope (SEM) capable of undertaking energy dispersion spectroscopy (EDS) and wavelength 

dispersion spectroscopy (WDS).  Image analysis was performed on backscattered electron images 

(BSE) using Image J 1.45 analysis software. The depths of the internal oxide (both intergranular and 

intragranular) were measured, as shown in Fig. 1, together with the depths of the  particle free zones. 

50 measurements were taken from 10 images for intragranular depth measurements but only 10 

measurements were performed for the intergranular penetrations due to their infrequent occurrence.  

 

RESULTS AND DISCUSSION 

Oxide characterisation 

Complex sub-surface damage resulting from the prolonged high temperature exposures occurred 

underneath a dense external oxide scale. The typical morphology of the oxides can be seen in Fig. 1 

and shows the presence of both intergranular and intragranular oxides beneath the surface oxide scale. 

The intergranular penetrations form continuous oxides down the grain boundaries whereas 

intragranular oxides occur as discrete precipitates within the grains.  This kind of intergranular oxide 

morphology has been found previously in similar Ni-based superalloys1, 8 as well as in this current 

alloy.4, 5 These internal oxides are predominantly alumina.  The development of the internal oxides 

over time can be seen in Fig. 2.  The deeper alumina penetrations at the grain boundaries suggest that 

these sites act as short circuit diffusion pathways.26   

 

The etched microstructure of Fig. 3 also shows how the region of internal oxidation is depleted of  

precipitates and that this particle free zone (PFZ) extends ahead of the internal oxidation front.  No 

recrystallisation of the grains was found in this alloy within the depletion zone although 

recrystallisation has been found in both Ni-based superalloys, ME3 and RR1000 (with a fine grained 

microstructure [4-6 m]).3, 8  TiN particles were also present within the particle free zone but were 

only seen at 800C at long exposure times (2000 hours).  As has been found in several other alloying 

systems and in a previous study on this alloy4, metallic protrusions or metallic nodules were present in 

the external oxide scale (fig. 3).  It is likely that these have been formed by outward alloy creep from 

the weak particle free zone to accommodate the increase in volume resulting from internal oxide 

formation.12-17 No Cr-rich phases were found in the vicinity of the oxidation zone, presumably 

because of the depletion of Cr to the oxide layer. Remote form the oxidation front, grain boundary 

phases, containing Cr and Mo were present.27 These presumably were M23C6-type carbides although 

later transformations to -phase compositions may occur.28  

 

 



Kinetics of Internal Oxidation (IOZ) and Particle Free (PFZ) Zones 

Extensive measurements of the thicknesses of the internal oxidation zone (IOZ) and  particle free 

zone (PFZ) at multiple temperatures and time periods have been performed, as described earlier.  

These measurements were normally distributed and typical results are shown in Table 2 for exposures 

at 2000 hours at the three test temperatures.  The internal oxide penetration depth, ℓ, with time at each 

of the temperatures is shown in Fig. 4 for intergranular (ℓgb) and intragranular (ℓtr) locations, together 

with the best-fit parabolic curve.  In all cases, the kinetics are approximated, reasonably, by parabolic 

behaviour:  

                                                                    5.0
.tk

gbpgb                                                               (1) 

   5.0
.tk

trptr                                                             (2) 

where t is exposure time (seconds) and kpℓ is the appropriate parabolic rate constant (m2.s-1).  The 

best-fit parabolic rate constants for IOZ penetration are shown in Table 3.   

 

The corresponding curves for the depth, y, of the γ PFZ are shown in Fig. 5.  Again, parabolic 

kinetics are reasonably obtained and the appropriate rate constants for intergranular, (kpy)gb, and 

intragranular, (kpy)tr, behaviour are also given in Table 3.  As expected, these are larger than the 

corresponding rate constants for internal oxidation.  Using the square root of the ratio of rate constants 

in Table 3 indicates that the intragranular PFZ is approximately 6% deeper than the IOZ at 700oC and 

approximately 31% deeper at 800oC; the corresponding values for intergranular penetration are 

approximately 23% and 27% at 700 and 800oC, respectively. 

 

The temperature dependence of the respective rate constants for internal oxide formation are shown in 

the Arrhenius plot of Fig. 6.  The present results are obviously limited (three temperatures only) and 

do not lie on a particularly convincing line (although the R2 = 0.94 for intergranular and 0.89 for 

intragranular).  Nevertheless, they fall within the overall trend displayed by other similar alloys as can 

be seen from the figure.  The values of activation energies obtained from the slopes of the broken 

lines shown are given in Table 4 and are essentially identical at 295 kJ.mol-1.  The best-fit rate 

equations for each morphology are given below as Equations (3) and (4).    

 

Intragranular penetrations 
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Intergranular penetrations 
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The temperature dependence of the growth of the PFZ was similarly obtained from an Arrhenius plot 

to obtain the values of “activation energy” also shown in Table 4.  These are a little higher than those 

found for the growth of the IOZ but reflect a combination of the temperature dependences of the IOZ 

growth, of aluminium diffusion into the IOZ and also the local aluminium concentration for γ 

solution.  It is a complex situation that cannot be defined by a singly-activated process.  Nevertheless, 

the “activation energy” provides a very useful means of predicting the temperature dependence of 

PFZ growth, as given in Equation (5) and (6). 

 

PFZ associated with intragranular penetrations 
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PFZ associated with intergranular penetrations 
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Possible Rate Controlling Processes 

Internal oxidation of alloys is usually considered to be controlled by the rate of diffusion of oxygen 

within the alloy.  This is likely to be the case in the absence of a surface oxide layer, as considered 

initially by Wagner.29  In the presence of a protective surface layer, the diffusion model becomes more 

difficult but Maak30 has provided a solution for the case where the surface oxide thickens 

parabolically.  Direct application of this model to the present tests cannot be undertaken reliably, 

however, because the surface oxide thickens with sub-parabolic kinetics and the model requires the 

measurements to be taken from the original surface.  Estimating the position of the original surface is 

difficult in this alloy due to the formation of metallic protrusions into the surface oxide.  Maak’s 

treatment again envisages diffusion within the alloy to be rate determining whereas, in principle, the 

rate of internal oxidation could be determined by the rate of transport through the surface layer.  This 

becomes more likely when the surface oxide is protective as in the present case.  It is also clear that a 

depletion profile of aluminium develops ahead of the region of internal oxidation as evidenced by a γ 

particle-free zone (PFZ), as shown in Figures 3 and 7.  The EDS scan of Fig. 7 demonstrates that the 

aluminium concentration within the alloy falls rapidly from the bulk value (horizontal line) as the PFZ 

boundary is crossed and before the IOZ is reached.  Since the formation of a particle of new oxide 

within the alloy requires that the solubility product of alumina is exceeded, it is possible, in principle, 



for the supply of aluminium, rather than oxygen, to control the rate of thickening of the internal 

oxidation zone. 

 

The activation energies for the thickening of the IOZ in the present tests are essentially the same at 

~295 kJ.mol-1 (Table 4) for both intergranular and intragranular penetration.  This is a surprising 

result since it would be expected that the faster rate of penetration down alloy grain boundaries would 

have been associated with a lower activation energy commensurate with a fast diffusion path if 

oxygen transport within the alloy were rate controlling.  It needs to be emphasised, however, that 

these values are based on measurements obtained at only three temperatures and a more 

comprehensive data set is required.  This experimental work is underway.   

 

Conclusions 

 

 Significant sub-surface damage occurs in this alloy from long term, high temperature 

exposure in an oxidising environment.  This consists of an internal oxidation zone with both 

intragranular and intergranular oxide formation and a particle free zone characterised by 

elemental depletion of Al.  

 The growth rates of internal attack followed a near parabolic rate law.  Equations to describe 

the development of the two zones have been produced. 

 The process controlling the development of the sub-surface damage is unclear but it is likely 

to be a combination of: oxygen transport through the surface oxide, oxygen transport into the 

alloy and aluminium diffusion to the reaction front.   
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Figure captions: 

 

Figure 1: BSE image showing the oxide morphology of coarse-grained RR1000 oxidised at 800C for 2000 

hours, illustrating how the internal oxide depth measurements were recorded.   

 

Figure 2: BSE images showing the evolution of the internal oxide penetrations over time when oxidised at 

800C.  

 

Figure 3: BSE image showing the sub-surface damage at 800C for 2000 hours, clearly illustrating a significant 

 particle free zone. The sample was etched using a chemical etched described by Huang et al.25  

 

Figure 4: Plot of intergranular and intragranular internal oxide penetrations against time at a) 700C, b) 750C 

and c) 800C, with a fit line plotted for each condition according to   5.0
.tkp .   

 

Figure 5: Plot of intergranular and intragranular  particle free zone depth against time at a) 700C, b) 750C 

and c) 800C, with a fit line plotted for each condition according to   5.0
.tky py . 

 

Figure 6: Arrhenius plot of both the intergranular and intragranular internal oxide penetrations along with 

measurements of several other similar Ni-based superalloys for comparison. Some of the values were recorded 

from single measurements taken from the literature and so are recorded as instantaneous parabolic rate constants 

(*).  

 

Figure 7: EDS analysis showing the diffusion profile of the aluminium concentration at 4 m increments of a 

specimen oxidised at 800C for 2000 hours. The dashed line on the micrograph indicates the limits of the  

particle free zone.  The boundaries of the various zones and the baseline level of aluminium in the alloy are 

indicated on the profile. Oxygen was not detected in this profile.  

 

 

Table captions: 

 

Table 1: Nominal composition of RR1000 in atomic and weight %. 

 

Table 2: Sub-surface damage measurements for both intragranular and intergranular internally oxidised internal 

oxide penetrations and  particle free zone, with one standard deviation.  

 

Table 3: Parabolic rate constants for both intragranular and intergranular internal oxide penetration and 

intragranular and intergranular  particle free zones.  

 

Table 4: Activation energy of both the internal oxidation and the  particle free zones for the present study of 

RR1000.  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 7 
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 Ni Co Cr Mo Ti Al Ta Hf Zr C B 

Weight % Bal 18.5 15.0 5.0 3.6 3.0 2.0 0.5 0.06 0.02 0.03 

Atomic % Bal 17.9 16.5 3.0 4.3 6.35 0.63 0.16 0.04 0.14 0.10 



Table 2 

 Units / m Average Al2O3 penetrations Average  particle free zone 

Intragranular Intergranular Intragranular Intergranular 

Number of measurements 50 10 50 10 

Distribution of values Normal Normal Normal Normal 

700C for 2000h 2.06  (± 0.46) 2.92  (± 0.48) 2.11 (± 0.32) 3.72 (± 0.72) 

750C for 2000h 3.00  (± 0.68) 5.42  (± 0.93) 3.69 (± 0.89) 6.99 (± 0.79) 

800C for 2000h 11.07  (± 2.04) 16.42  (± 2.24) 14.75 (± 2.00) 21.59 (± 1.54) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3 

 

Units / m2.s-1 
Al2O3 penetrations  particle free zone 

Intragranular Intergranular Intragranular Intergranular 

700C 5.6x10-19 1.4x10-18 6.3x10-19 2.1x10-18 

750C 1.2x10-18 4.0x10-18 1.9x10-18 6.7x10-18 

800C 1.8x10-17 4.2x10-17 3.1x10-17 6.8x10-17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 

 Al2O3 penetrations  particle free zone 

Intragranular Intergranular Intragranular Intergranular 

297 kJ.mol-1 293 kJ.mol-1 336 kJ.mol-1 302 kJ.mol-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


