

Analysis of diversity mechanisms for optimisation
in dynamic environments with low frequencies of
change
Oliveto, Pietro; Zarges, Christine

DOI:
10.1016/j.tcs.2014.10.028

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Oliveto, PS & Zarges, C 2015, 'Analysis of diversity mechanisms for optimisation in dynamic environments with
low frequencies of change', Theoretical Computer Science, vol. 561, pp. 37-56.
https://doi.org/10.1016/j.tcs.2014.10.028

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for publication. A definitive version was subsequently published as P.S. Oliveto, C.
Zarges, Analysis of Diversity Mechanisms for Optimisation in Dynamic Environments with Low Frequencies of Change, Theor. Comput. Sci.
(2014), http://dx.doi.org/10.1016/j.tcs.2014.10.028

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1016/j.tcs.2014.10.028
https://research.birmingham.ac.uk/portal/en/publications/analysis-of-diversity-mechanisms-for-optimisation-in-dynamic-environments-with-low-frequencies-of-change(391a67a8-d13d-4bc3-b650-9d17263fabd2).html

Accepted Manuscript

Analysis of Diversity Mechanisms for Optimisation in Dynamic
Environments with Low Frequencies of Change

Pietro S. Oliveto, Christine Zarges

PII: S0304-3975(14)00820-2
DOI: 10.1016/j.tcs.2014.10.028
Reference: TCS 9925

To appear in: Theoretical Computer Science

Received date: 15 November 2013
Revised date: 1 July 2014
Accepted date: 15 October 2014

Please cite this article in press as: P.S. Oliveto, C. Zarges, Analysis of Diversity Mechanisms
for Optimisation in Dynamic Environments with Low Frequencies of Change, Theor. Comput.
Sci. (2014), http://dx.doi.org/10.1016/j.tcs.2014.10.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published
in its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2014.10.028

Analysis of Diversity Mechanisms for Optimisation in

Dynamic Environments with Low Frequencies of

Change✩

Pietro S. Olivetoa,1, Christine Zargesb

aDepartment of Computer Science, The University of Sheffield, Regent Court,
Portobello, Sheffield S1 4DP, United Kingdom

bSchool of Computer Science, The University of Birmingham, Edgbaston, Birmingham
B15 2TT, United Kingdom

Abstract

Evolutionary dynamic optimisation has become one of the most active re-
search areas in evolutionary computation. We consider the Balance func-
tion for which the poor expected performance of the (1+1) EA at low fre-
quencies of change has been shown in the literature. We analyse the impact of
populations and diversity mechanisms towards the robustness of evolutionary
algorithms with respect to frequencies of change. We rigorously prove that
there exists a sufficiently low frequency of change such that the (μ+1) EA
without diversity requires exponential time with overwhelming probability
for sublinear population sizes. The same result also holds if the algorithm is
equipped with a genotype diversity mechanism. Furthermore we prove that
a crowding mechanism makes the performance of the (μ+1) EA much worse
(i. e., it is inefficient for any population size). On the positive side we prove
that, independent of the frequency of change, a fitness-diversity mechanism
turns the runtime from exponential to polynomial. Finally, we show how a
careful use of fitness-sharing together with a crowding mechanism is effective
already with a population of size 2. We shed light through experiments when
our theoretical results do not cover the whole parameter range.

✩Parts of the results appeared in the Proceedings of 15th Annual Conference on Genetic
and Evolutionary Computation (GECCO 2013) [1].

Email addresses: P.Oliveto@sheffield.ac.uk (Pietro S. Oliveto),
C.Zarges@cs.bham.ac.uk (Christine Zarges)

1P.S. Oliveto was supported in part by EPSRC under grant N. EP/H028900/1.

Preprint submitted to Theoretical Computer Science October 21, 2014

Keywords: Evolutionary dynamic optimisation, diversity mechanisms,
runtime analysis, populations

1. Introduction

Many real-world problems are subject to changing conditions over time.
The field concerned with the application of Evolutionary Algorithms (EAs) to
this class of problems is called Evolutionary Dynamic Optimisation (EDO).
Especially in recent years EDO has attracted lots of research and has become
one of the most active areas in evolutionary computation. Not surprisingly
several monographs [2, 3, 4, 5] and survey papers [6, 7, 8] on the topic have
recently been published. Different to static optimisation where the task is
to find the global optimum in as few steps as possible, addressing Dynamic
Optimisation Problems (DOPs) requires an optimisation algorithm not only
to locate the optimum of a given problem, but also to track the optimal
solution over time when the problem changes. While populations and re-
lated operators (i. e., crossover, stochastic selection, diversity mechanisms,
etc.) are the main distinguishing features of bio-inspired search heuristics
from other classes of heuristics for static optimisation, they are considered
essential in the process of detecting changes and tracking the optimum after
a change in the objective function has occurred. The most common features
incorporated into EDO algorithms are diversity mechanisms (either triggered
when a change is detected or maintained throughout the evolutionary pro-
cess), memory-based and prediction-based approaches [7]. While the latter
approaches are applied when it is known that the dynamics of the problem
are periodical or recurrent, i. e., the optima may return to regions near the
previous locations (memory approaches) or have some predictable patterns
(prediction approaches), diversity mechanisms are meant to be more gen-
eral and applied even when very limited knowledge about the problem is
available. Commonly used mechanisms to enhance the population diversity
include random immigrant introduction [9], fitness sharing [10], genotype
diversity [11] and multi-populations (see [12, 13] amongst many others).

In contrast to EA theory in the static domain which has rapidly grown in
recent years [14, 15, 16, 17], only very few theoretical results are available con-
cerning EDO. Droste [18, 19] analysed the (1+1) EA on the dynamic version
of the OneMax problem where the fitness function changes after each func-
tion evaluation according to some probability p. Jansen and Schellbach [20]

2

analysed a (1+λ) EA for a simple lattice problem. More recently Rohlfshagen
et al. [21] analysed how the performance of the (1+1) EA is affected by the
magnitude and frequency of change in two counter-intuitive scenarios. They
present an instance class called Magnitude where the algorithm is efficient
if the magnitude of change is large while it requires exponential expected run-
time to track the optimum if the magnitude of change is small. Concerning
the frequency of change they present an instance class called Balance where
the (1+1) EA is efficient if the frequency of change is high while it requires
exponential expected runtime if the frequency is low. Finally, very recently,
Kötzing and Molter [22] constructed a pseudo-boolean instance class where
a simple ant colony optimisation system can track the optimum while the
(1+1) EA gets lost, and Chen et al. [23] studied the impact of self-adaptive
mutation rates for EDO. From these analyses great insight can be gained
towards understanding how evolutionary processes react to changes in the
objective function and how traditional analytical proof methods can be ap-
plied in the dynamic settings. However, by only considering algorithms using
single individuals it is hard to relate the available results to the performance
of the more sophisticated EDO algorithms used in experimental studies and
practical applications. In fact researchers in the EDO community have em-
phasised the importance of achieving such results in the latest survey paper
(see Section 5 in [7]).

In this paper we present a first step towards directing theoretical work
to analyse EAs equipped with populations and the mechanisms that are
considered essential to tackle dynamic problems in the EDO literature. In
particular, we will consider the simplest population-based EA, the (μ+1) EA
as well as a local search variant (Algorithm 5), and analyse its performance
combined with different commonly used diversity mechanisms (in their sim-
plest version) and verify how effective they are in overcoming the problems
encountered by single individual EAs. Rather than considering new example
functions especially constructed to serve our purposes, we analyse the (μ+1)
EA on the Balance function, for which the performance of the (1+1) EA
is known [21]. This function class was introduced as a counter-intuitive ex-
ample that is hard to optimise at low frequencies of change and easy at
high frequencies. Our goal is to analyse whether more realistic EAs using a
population and a diversity mechanism can efficiently optimise the Balance

function independent of the frequency of change. Ideally the population
should be able to efficiently optimise the function for any value of τ , i. e., in
the particular case of Balance, even at very low frequencies of change.

3

The rest of the paper is structured as follows. In Section 2 we introduce
the Balance problem and the XoR benchmark framework used by Rohlf-
shagen et al. [21] to impose the dynamics on the function. In Section 3 we
show that, if the population size μ is not too large, then there exists a suffi-
ciently low frequency of change such that the (μ+1) EA requires exponential
time with overwhelming probability to optimise Balance (i. e., the (μ+1)
EA is not as robust towards τ as desired for sublinear population sizes). In
Sections 4 and 5 it is proved that by adding respectively a genotype and a
crowding diversity mechanism the (μ+1) EA still cannot optimise Balance

with low frequencies of change efficiently. Then we turn to positive results.
In Section 6 we rigorously prove how a fitness diversity mechanism allows
the efficient optimisation of Balance with high probability independent of
the frequency of change with population sizes μ that are at least sublinear.
In Section 7 we show how a carefully used fitness sharing mechanism com-
bined with a crowding mechanism can make the (μ+1) EA efficient for any
frequency of change τ even by just using the most basic mutation operator
and a population size as small as μ = 2. In Section 8 we present some exper-
iments to fill in the gaps left by our theoretical results. We first look at the
algorithms we have proved to be inefficient for not too large population sizes.
In particular, we investigate how large the population sizes have to be to
turn the algorithms into efficient optimisers for Balance at any frequency
of change. Afterwards, we study to what extent crowding and fitness sharing
need to be combined to make the (μ+1) EA effective for Balance. In the
last section we discuss our conclusions and future work.

2. Definitions and Framework

We use the XoR framework to impose dynamics to the stationary Balance

function in exactly the same way as done in [21]. Although, the first theo-
retical paper to use the XoR framework explicitly was [21] the few previous
works for DOPs essentially use an identical framework.

The framework, as defined in [24], can be used with any stationary
pseudo-Boolean function by means of a bit-wise exclusive-or operation that
is applied to each search point x ∈ {1, 0}n prior to each function evaluation.
The dynamic fitness function is simply f(x(t)⊕m(π)) where t is the number
of generations, ⊕ the xor operator and m(π) ∈ {0, 1}n is a binary mask which
initially is equivalent to 0n and is generated as m(π) := m(π − 1) ⊕ p(π).
Here p(π) ∈ {0, 1}n is a randomly created template containing exactly �ρn�

4

0

0

n3

n2 · LO(a)

n2 · LO(a)

n · LO(a) + |b|1

LO(a)

|b|1

Figure 1: Visualisation of Balance [21].

1-bits, where ρ ∈ (0, 1] defines the ρn bits to be inverted. The period index
π = �t/τ� is determined by the duration τ > 0 between changes. Hence,
the magnitude of change is unambiguously defined by the parameter ρ (i. e.,
referring to the number of bits a search point is rotated by).

The frequency of change (i. e., defined by 1/τ) determines how often the
problem changes. Intuitively the higher the frequency of change, the harder
it is to optimise the dynamic function since less time is available at each
time period to find the new global optimum. Even if the optimum was to
remain stationary, while the rest of the search space changes, it is assumed
that high frequencies of change increase the problem difficulty due to the
higher quantity of uncertainty introduced by the frequent changes. Rohlf-
shagen et al. [21] introduced the following Balance function to disprove
this assumption (see also Figure 1).

Definition 1. Let a, b ∈ {0, 1}n/2 and x = ab ∈ {0, 1}n. Then,

Balance(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n3 if LO(a) = n/2, else

|b|1 + n · LO(a) if n/16 < |b|1 < 7n/16, else

n2 · LO(a) if |a|0 >
√

n, else

0 if otherwise

where LO(x) :=
∑n

i=1

∏i
j=1 xj.

Note, that LO(x) is often referred to as LeadingOnes while |x|1 is also
known as OneMax(x) =

∑n
i=1 xi. Each search point for Balance consists

5

of a prefix of length n/2 and a suffix of the same length. The fitness of
a search point is determined by the number of leading 1-bits in the prefix
and by the number of 1-bits in the suffix. A globally optimal search point
has the maximal value n/2 of leading 1-bits in the prefix. However, before
reaching the global optimum the algorithm may reach the two trap regions
corresponding to search points with less than n/16 0-bits or less than n/16
1-bits in the suffix. The trap regions and the global optimum are separated
by a region of 0-fitness of length

√
n that makes it prohibitive for EAs to

reach the optimum from the traps. Throughout the paper we will refer to the
trap corresponding to search points with less than n/16 0-bits in the suffix
as the upper trap and to the trap corresponding to search points with less
than n/16 1-bits in the suffix as the lower trap.

We are mainly interested in the optimisation time T of the considered
algorithm, which is defined as the number of generations needed until a
global optimum is found for the first time. Since T is a random variable
we investigate its mean E (T) as well as information on its distribution, i. e.,
Prob (T < t) or Prob (T > t) for relevant points of time t. We say that an
event A occurs with overwhelming probability (w. o. p.) if Prob (A) = 1 −
2−Ω(n). Note, that we consider asymptotic optimisation times throughout
this paper. This means that all our results hold for all values of n that are
sufficiently large.

Following the XoR framework, cyclical dynamics were applied in [21] to
the function using the following mask m as a function of the period index π:

m(π) :=

{
0n/20n/2 if π mod 2 = 0, and
0n/21n/2 otherwise.

Hence, only the suffix of the search points is affected and the magnitude of
change is n/2. During odd periods π, the fitness increases with the increase
of suffix 0-bits while for even π it increases with the increase of 1-bits. Rohlf-
shagen et al. [21] proved that the (1+1) EA would balance along the centre
of the suffix (the centre of the y-axis in the figure) and efficiently optimise
the leading 1-bits in the prefix for a high frequency of change (i. e., τ = 2).
This happens because the algorithm does not have enough time to optimise
the OneMax suffix before the suffix-dependent part of the function changes
into ZeroMax and vice versa. On the other hand, for sufficiently small
frequency (i. e., τ > 40n) with at least constant probability the (1+1) EA
will be attracted into one of the trap regions before reaching the optimum,
implying expected exponential optimisation time. In the rest of the paper

6

we will examine whether populations equipped with diversity mechanisms
can be robust enough to optimise Balance independent of the value of the
frequency of change τ (i. e., even for very low frequencies).

3. No Diversity

Rohlfshagen et al. have shown that the expected runtime of the (1+1)
EA on Balance is exponential if the frequency of change is low [21]. In
this section we show that also a population-based EA such as the (μ+1) EA
(see Algorithm 1) suffers from this problem if the population size is not too
large. We will see that in this case the whole population will get stuck in
one of the traps before any search point (also called individual) reaches the
global optimum. In particular, we will prove that for sublinear population
sizes μ ≤ n1/2−ε there exists a sufficiently low frequency of change such that
the optimisation time of the (μ+1) EA is exponential with overwhelming
probability.

Note that we use set notation throughout this paper but allow for multiple
copies of an individual in a population. We use P \{z} to indicate the removal
of one specific instance z of an individual from the population P .

Algorithm 1 (μ+1) EA

1: Let t := 0 and choose x1, . . . , xμ ∈ {0, 1}n independently uniformly at
random (u. a. r.); Pt := {x1, . . . , xμ}.

2: repeat
3: Choose x ∈ Pt u. a. r. and set offspring y := x.
4: Flip each bit in y independently with probability 1/n.
5: Choose z ∈ Pt with minimal fitness u. a. r.
6: if f(y) ≥ f(z) then
7: Let Pt+1 := Pt \ {z} ∪ {y}.
8: else
9: Let Pt+1 := Pt.

10: end if
11: Let t := t + 1.
12: until some termination condition is met

The proof strategy is as follows. We first calculate the expected runtime
for the whole population to reach the trap under the assumption that the
global optimum is not found first (Lemma 2). Then, in Theorem 3 we will

7

prove that with overwhelming probability the time for any individual to reach
the optimum is much higher than the time required for the whole population
to get trapped. Then the main result follows because the time required to
escape from the trap is exponential. Along the way we will need the following
helper lemma.

Lemma 1. Let j be the number of leading 1-bits in the individual of the
population with highest fitness. Assuming no other leading 1-bits are created
first, for any time period τ the expected time for the (μ+1) EA to have all
individuals with j leading 1-bits is at most 7μ log μ iterations.

Proof. Given that we have i individuals with j leading 1-bits, the probability
we create another one is

Pcopy ≥ i

μ

(
1− 1

n

)n

≥ i

4μ

since it is sufficient to select one of the i individuals and flip none of the
bits. As long as there exists an individual with less leading 1-bits, the newly
created individual with j leading 1-bits will be accepted. Hence, the expected
time for the whole population to have j leading 1-bits is bounded from above
by

μ∑
i=1

4μ

i
≤ 4μ · (ln(μ) + 1) ≤ 7μ log μ

Lemma 2. Let μ ≤ n1/2−ε and τ > 19μn. Assuming the global optimum is
not found first, in expected time less than 19μn iterations all the individuals
of the (μ+1) EA on Balance have a suffix b with |b|1 < n/16 or |b|1 > 7n/16
(i. e., all individuals are in the trap).

Proof. W. l. o. g., the goal is to prove that the whole population reaches the
lower trap in time at most cnn1/2−ε. The lower trap is the region of the search
space with less than n/16 1-bits in the suffix (i. e., |b|1 < n/16) and less than
n/2−√n leading 1-bits in the prefix. We consider the individual x with least
number of 0-bits in the suffix (i. e., independent from the number of leading
1-bits it has). All the other individuals have more 0-bits in the suffix. If x
gets removed from the population, or “overtaken” by an individual with less
0-bits in the suffix, we will track the number of 0-bits in the suffix of the new

8

x (i. e., the individual with less 0-bits in the suffix in the new population).
When x has reached the trap also the rest of the population will be in the
trap.

We consider phases and count the expected number of 0-bits gained by x
in a phase. The first phase starts after initialisation and lasts until a leading
1-bit is added to an individual. Each following phase will end when the
next leading one is created in some individual. Each phase has an expected
duration of n steps (i. e., the probability that a leading 1-bit is created is 1/n
whatever the selected individual).

Since no leading 1-bits are created during a phase, the only way a negative
drift may occur is when an individual with more leading 1-bits than x is
selected and a new individual with the same number of leading 1-bits is
obtained. In this case two different events may happen which influence our
process:

1. x is removed from the population and the new individual has less 0-bits
than x (i. e., hence it becomes the new x);

2. the new individual has less 0-bits than x (i. e., hence it becomes the
new x).

We calculate the expected number of 0-bits of the new individual pessimisti-
cally assuming its parent has the same number of 0-bits as x. The negative
drift (i. e., the expected decrease in number of 0-bits in one step) is:

E[Δ−] > −
(

n/2− i

n
− i

n

)
> −3

8

where i is the number of 1-bits in the suffix of x.
Since by Lemma 1 in time 7μ log μ all the individuals have the same

number of leading 1-bits as the best individual, the negative drift in a whole
phase can be at most −(3/8) · 7μ log μ.

For an increase of 0-bits to occur it is sufficient that an individual is
selected, a 1-bit is flipped into a 0-bit and nothing else flips. Hence the
expected number of 0-bits achieved (i. e., the positive drift) in one step is
bounded by

E[Δ+] ≥ n/16

n
·
(

1− 1

n

)n−1

≥ 1

48
.

Since the individuals are selected for reproduction uniformly, the expected
increase in 0-bits per individual is 1/(48μ), which is the positive drift (i. e.,
the expected increase of 0-bits in x).

9

Finally, when the leading 1-bit flips at the end of the phase the expected
decrease in 0-bits is at most (and pessimistically assuming this individual
replaces x as the one with minimal ZeroMax value in the suffix):

E[Δ−|LO] > −
(

n/2− i

n
− i

n

)
> −3

8

Then the total expected increase of 0-bits in x in a whole phase of ex-
pected duration of n steps is

E[Δ] >
n

48μ
− 3

8
· (7μ log μ + 1) ≥ n1/2+ε

48
− 3n1/2−ε log n1/2−ε >

n1/2+ε

49

because μ < n1/2−ε.
Since the total number of 0-bits that need to be collected to reach the

trap is at most (3/8)n, the expected number of phases is at most

(3/8)n

n1/2+ε/49
=

49 · 3
8

· n1/2−ε < 19n1/2−ε

Given that each phase lasts n steps in expectation the trap is reached in
expected time E[TTrap] ≤ 19n · n1/2−ε.

Theorem 1. Let τ > 20μn and μ ≤ n1/2−ε. Then expected time for the
(μ+1) EA to optimise Balance is at least nΩ(

√
n). Let τ > 38μn3/2 and μ ≤

n1/2−ε. Then the (μ+1) EA requires at least nΩ(
√

n) steps with overwhelming
probability.

Proof. By Lemma 2 the expected time for the whole population to reach
the trap is at most 19nμ ≤ 19 · n · n1/2−ε. By applying Markov’s inequality
iteratively in

√
n separate phases of length 2 · 19 · n · n1/2−ε each, we get

that the population has not converged to the trap in 2 · 19 · n2−ε steps with
probability at most 2−√

n.
Using similar reasoning to the proof of Witt [25] and that μ ≤ n1/2−ε,

m := n/2 − √n leading 1-bits in the prefix are optimised in less than m2

iterations of the (μ+1) EA with probability less than 2−Ω(m) = 2−Ω(n). Hence
with overwhelming probability 1 − 2−Ω(n) · 2−√

n the population reaches the
trap before it optimises the leading 1-bits in the prefix. Conditional to these

events, the time to reach the optimum is at least nΩ(
√

n) since at least
√

n bits
need to be flipped to overcome the zero fitness region and reach the optimum.

10

To prove the first statement it is sufficient to apply Markov’s inequality once
to show that with probability at least 1/20 the population is trapped in 20μn
steps. Then the expected runtime is bounded by

E(T) ≥ (1/20)(1− 2−Ω(n))nΩ(
√

n)

4. Genotype Diversity

In the previous section we showed that there exists a sufficiently low fre-
quency of change such that the (μ+1) EA with sublinear population sizes
cannot optimise Balance in polynomial time with overwhelming probabil-
ity. Now we analyse the effects of adding genotype diversity to the algorithm
(see Algorithm 2). This mechanism simply does not allow multiple individ-
uals of the population to have the same genotype and is probably the most
simple mechanism proposed in the literature.

Algorithm 2 (μ+1) EA with genotype diversity

1: Let t := 0 and choose x1, . . . , xμ ∈ {0, 1}n independently uniformly at
random (u. a. r.); Pt := {x1, . . . , xμ}.

2: repeat
3: Choose x ∈ Pt u. a. r. and set offspring y := x.
4: Flip each bit in y independently with probability 1/n.
5: if y �∈ Pt then
6: Choose z ∈ Pt with minimal fitness u. a. r.
7: if f(y) ≥ f(z) then
8: Let Pt+1 := Pt \ {z} ∪ {y}.
9: else

10: Let Pt+1 := Pt.
11: end if
12: else
13: Let Pt+1 := Pt.
14: end if
15: Let t := t + 1.
16: until some termination condition is met

The described algorithm has been previously analysed theoretically. Storch
and Wegener analysed its behaviour on royal road functions [26]. Friedrich et

11

al. [27] showed that the genotype diversity mechanism is not powerful enough
to optimise the two branches of the simple bimodal function TwoMax.

In the following we show that the diversity mechanism is not effective for
Balance either. The same proof strategy as in the previous section will lead
to the main result and we see that not allowing copies in the population does
not significantly change the behaviour of the (μ+1) EA. Two helper lemmas
will be proved first. In the next lemma we achieve a bound on the positive
drift towards the trap. Lemma 4, instead, is the analogue of Lemma 1 for
the (μ+1) EA with genotype diversity.

Lemma 3. Let μ ≤ n1/2−ε and consider the (μ+1) EA with genotype diver-
sity for Balance. The expected gain in number of 0-bits in the suffix in one
step of the individual x with least 0-bits in the suffix (i. e., the positive drift)
is at least 1/(49μ).

Proof. For a positive drift to occur it is necessary that in the selected indi-
vidual at least one 1-bit is flipped into a 0-bit. Given the genotype diversity
mechanism, if an individual is created with the same genotype as another one
already in the population, then the new individual will not be accepted. We
pessimistically assume that all the individuals in the population are neigh-
bours of Hamming distance 1 to each other. Then, given that these neigh-
bours are μ, there are always at least n/16 − μ bits that, if flipped, lead to
individuals with a genotype not present in the current population. Hence,
the expected increase in one step of 0-bits in the suffix is bounded by

E[Δ+] ≥ n/16− μ

n
·
(

1− 1

n

)n−1

≥
(

1

16
− 1

n1/2+ε

)
1

e
≥ 1

49
.

Since the individuals are selected for reproduction uniformly, the expected
increase in 0-bits per individual is 1/(49μ), which is the positive drift (i. e.,
the expected increase of 0-bits in x).

Lemma 4. Let μ ≤ n1/2−ε and let j be the number of leading 1-bits in the
individual of the population with highest fitness. Assuming no other leading
1-bits are created first, for any time period τ the expected time for the (μ+1)
EA with genotype diversity to have all individuals with j leading 1-bits is at
most 8eμ log μ iterations.

Proof. Each individual with j leading 1-bits has at least n/2 neighbours of
Hamming distance 1 (i. e., the ones corresponding to the bits in the suffix)

12

that have higher fitness compared to an individual in the population with
fewer leading 1-bits. In the worst case μ − 1 of these are already in the
population, hence an individual with any of their genotypes will not be ac-
cepted due to the diversity mechanism. Then, given that an individual with
j leading 1-bits has been selected for reproduction, the probability to create
another individual with j leading 1-bits is at least

n/2− μ

n

(
1− 1

n

)n−1

≥
(

1

2
− 1

n1/2+ε

)
1

e
≥ 1

3e

which implies that given i individuals in the population with j leading 1-bits
the probability to create another one is at least i/(3eμ). As long as there
exists an individual with less leading 1-bits, the newly created individual
with j leading 1-bits will be accepted. Hence, the expected time for the
whole population to have j leading 1-bits is bounded from above by

μ∑
i=1

3eμ

i
≤ 3eμ · (ln(μ) + 1) ≤ 8eμ log μ

Theorem 2. Let τ > 20μn and μ ≤ n1/2−ε. Then expected time for the
(μ+1) EA with genotype diversity to optimise Balance is at least nΩ(

√
n).

Let τ > 38μn3/2 and μ ≤ n1/2−ε. Then the algorithm requires at least nΩ(
√

n)

steps with overwhelming probability.

Proof. We use the same proof idea of Lemma 2 for the simple (μ+1) EA
without a diversity mechanism. That is we track the individual with least
0-bits in the suffix (i. e., x) and show by drift analysis that it reaches the
trap in expected time 19μn. We consider again separate phases of expected
duration of n steps. Each phase ends when a new leading 1-bit is created
in some individual. Just like in Lemma 2 we bound the negative drift (i. e.,
decreasing the number of 0-bits in the suffix) in one step by −3/8. Here
we pessimistically assume that whenever a 0-bit from the suffix is removed
this is accepted as a new genotype. By Lemma 4 in time 8eμ log μ all the
individuals have the same number of leading 1-bits and no negative drift can
occur for the remainder of the phase. On the other hand by Lemma 3 the
positive drift in a phase is bounded by 1/(49μ). Together with a negative
drift of −3/8 occurring when the leading 1-bit is created ending the phase,

13

the total drift (i. e., the expected increase of 0-bits in the suffix in x) in a
phase is

E[Δ] >
n

49μ
− 3

8
· (8eμ log μ + 1) ≥ n1/2+ε

49
− 3en1/2−ε log n1/2−ε− 3

8
>

n1/2+ε

50

because μ ≤ n1/2−ε.
Hence, the expected number of phases is at most

(3/8)n

n1/2+ε/50
=

50 · 3
8

· n1/2−ε < 19n1/2−ε

and the expected time for the whole population to reach the trap is bounded
by 19 · n · n1/2−ε.

Finally, concerning the time to reach the optimum by optimising the lead-
ing 1-bits in the suffix, we follow again ideas from Witt’s proof [25]. He shows
that the (μ+1)-EA without diversity requires at least cμn log n + n2 steps to
optimise LeadingOnes with probability at least 1 − 2−Ω(n). However, the
algorithm without diversity creates copies of the current best individual to
speed up the time to create each new leading 1-bit. The (μ+1) EA with geno-
type diversity cannot use this “speed up” since copies of the same individual
are not accepted. Hence the algorithm considered here can only be slower
than the simple (μ+1) EA without a diversity mechanism. As a result, with
overwhelming probability the algorithm requires at least m2 iterations to op-
timise m := n/2 −√n leading 1-bits in the prefix, while by using Markov’s
inequality iteratively we get that the runtime to reach the trap is greater
than 2 · 19 · n2−ε steps with probability at most 2−√

n. Given that from the
trap at least

√
n bits have to be flipped for an improvement, the theorem is

proved. The statement about the expected optimisation time for τ > 20μn
follows exactly the same calculations as in the proof of Theorem 1.

5. Deterministic Crowding

We consider the so-called deterministic crowding mechanism [28]. Here,
the main idea is that offspring only compete with their parents. Thus, the
resulting algorithm (see Algorithm 3) is very similar to a parallel (1+1) EA,
i. e., the individuals of the population explore the fitness landscape indepen-
dently. Previous work showed that this mechanism is very efficient on the
simple bimodal TwoMax problem [27] and some instances of the vertex

14

cover problem [29]. However, on Balance deterministic crowding does not
help since parallelism does not prevent the population from getting stuck in
one of the traps.

Algorithm 3 (μ+1) EA with deterministic crowding

1: Let t := 0 and choose x1, . . . , xμ ∈ {0, 1}n independently uniformly at
random (u. a. r.); Pt := {x1, . . . , xμ}.

2: repeat
3: Choose x ∈ Pt u. a. r. and set offspring y := x.
4: Flip each bit in y independently with probability 1/n.
5: if f(y) ≥ f(x) then
6: Let Pt+1 := Pt \ {x} ∪ {y}.
7: else
8: Let Pt+1 := Pt.
9: end if

10: Let t := t + 1.
11: until some termination condition is met

Theorem 3. W.o. p. the (μ+1) EA using deterministic crowding and μ =
nO(1) requires exponential time to optimise Balance if τ > 8eμn, where
e = exp(1).

Proof. Similarly to [30], we consider a game of balls and bins such that each
bin represents an individual of the population and each ball is a 0-bit flipping
into a 1-bit in the suffix. Clearly, if n/2− n/16 bits have been flipped in the
suffix of an individual, then it has reached the trap. Hence we want to obtain
the expected time for all the μ independent bins to have at least n/2− n/16
balls. At each step the probability that each bin is selected and receives a
ball is pi ≥ (n/16)/(eμn) = 1/(e16μ) because there are always at least n/16
0-bits to choose from. Hence the expected number of balls after t = 8eμn
steps in a given bin B1 is E(|B1|) ≥ 8eμn · 1/(e16μ) = n/2. By Chernoff
bounds the probability that P (|B1| ≤ (1− (1/8))n/2) is at most e−Ω(n). By
the union bound with probability at most μe−Ω(n) there is at least one bin
without n/2− n/16 balls after t steps.

Now we derive a bound on the probability that the algorithm optimises
m = n/3 bits of the prefix in less than O(μm2) steps. We consider a phase
of cμm2, c > 0 constant, steps. Since each individual is selected uniformly

15

at random with probability 1/μ, the expected number of times a given indi-
vidual is selected is cm2. By Chernoff bounds the probability that in cμm2

generations an individual is selected more than (1 + δ)cm2 = c′m2 times is
exponentially small in n and by a simple union bound no individual is se-
lected that many times w. o. p. Since to optimise the first m prefix leading
1-bit bits the (1+1) EA requires c′′m2 with c′′ > c′ steps with probability at
least 1 − e−Ω(m) = 1 − e−Ω(n) we get a runtime of at least c′′μm2 t steps
w. o. p. Multiplying the failure probability of the prefix time and that of the
suffix time concludes the proof.

6. Fitness Diversity

In this section we consider the fitness diversity mechanism which does
not allow fitness duplicates, i. e., multiple individuals in the population with
the same fitness (see Algorithm 4). It resembles the idea proposed by Hutter
and Legg [31].

Algorithm 4 (μ+1) EA with fitness diversity

1: Let t := 0 and choose x1, . . . , xμ ∈ {0, 1}n independently uniformly at
random (u. a. r.); Pt := {x1, . . . , xμ}.

2: repeat
3: Choose x ∈ Pt u. a. r. and set offspring y := x.
4: Flip each bit in y independently with probability 1/n.
5: if there exists z ∈ Pt with f(y) = f(z) then
6: Pt+1 := Pt \ {z} ∪ {y}.
7: else
8: Choose z ∈ Pt with minimal fitness u. a. r.
9: if f(y) ≥ f(z) then

10: Let Pt+1 := Pt \ {z} ∪ {y}.
11: else
12: Let Pt+1 := Pt.
13: end if
14: end if
15: Let t := t + 1.
16: until some termination condition is met

The mechanism has been previously analysed theoretically with contrast-
ing results. Friedrich et al. [32] show that the runtime of the (μ+1) EA with

16

fitness diversity is exponential for a simple plateau function if μ is bounded
above by a constant, while the algorithm is efficient if the population size μ
is set very close to n. Friedrich et al. [27] present far less encouraging results
in terms of the actual diversity that the mechanism can achieve. In partic-
ular, it is shown that even for a simple bimodal function such as TwoMax

the expected time to find both optima is exponential for any population size
μ = nO(1).

In the following we show that the (μ+1) EA with fitness diversity is
efficient w. o. p. on Balance independent of the frequency of change for any
population size greater than μ > n − 2(

√
n − 1). This is due to the fact

that each of the two traps contains search points with exactly n/2−√n− 1
different function values. Thus, the (μ+1) EA with fitness diversity and
sufficiently large population size is able to “fill up” both traps and optimise
Balance with the remaining individuals afterwards.

Theorem 4. Let μ > n−2(
√

n−1). Then w. o. p. the (μ+1) EA with fitness
diversity optimises Balance in time O(μn3) for arbitrary τ ≥ 0.

Proof. The proof idea is that inside each of the traps there are only n/2 −√
n−1 different fitness levels (i. e., precisely one fitness level for all bit strings

with exactly i leading 1-bits and 0 < i < n/2−√n).
By Chernoff bounds the probability that an individual is initialised in the

trap is exponentially small. The probability that n− 2(
√

n− 1) individuals
are initialised in the trap is much smaller.

Let τ be initially odd (the proof for τ initially even is analogous). We
pessimistically assume that n/2 − √n − 1 individuals end up in the upper
trap before reaching the optimum. No more individuals will be allowed in
the trap. We also pessimistically assume that the optimum is not found
before the fitness function changes and that other n/2−√n− 1 individuals
“fill up” the fitness levels of the lower trap. Hence the remaining μ − (n −
2(
√

n−1)) ≥ 1 individual(s) will be “forced” to optimise the leading 1-bits in
the prefix without accessing the trap because the fitness diversity mechanism
does not accept further trap points. The expected time to reach the optimum
is trivially bounded above by eμn2/2 generations since the probability of
increasing the current number of leading 1-bits by one is 1/(eμn) requiring
eμn expected generations and at most n/2 increases are necessary for the
optimum to be reached.

Due to Markov’s inequality the probability not to reach the optimum in
eμn2 generations is at most 1/2. Moreover, after this number of generations

17

we are not in a worse situation than before. Thus, considering n/2 phases
of length eμn2, the probability not to reach the optimum in all phases, i. e.,
in eμn3/2 iterations, is bounded above by 2−Ω(n). Summing up the failure
probabilities the theorem follows.

7. Fitness Sharing

The so-called fitness sharing mechanism [28] attempts to achieve a di-
verse population by forcing similar individuals to “share” their fitness. The
idea behind the mechanism is that in order to increase diversity, hence keep
individuals far away from each other, similar individuals should be penalised
by a decrease of their real fitness. More precisely fitness sharing removes
an amount from the real fitness of each individual according to its similarity
with the rest of the population. The similarity between two individuals x and
y is measured by a sharing function sh(x, y) ∈ [0, 1]. Given some distance
function d, the standard sharing function is defined as [28]

sh(x, y) = max

{
0, 1−

(
d(x, y)

σ

)α}
,

where σ is called the sharing distance, such that only individuals of distance
at most σ share their fitness, and α is a constant that regulates the shape of
the sharing function. The standard setting, as suggested by Mahfoud [28],
is α = 1 while the parameter σ should be set according to the number of
optima and their separation.

The shared fitness of an individual x with the rest of the population is
defined by

f(x, P) =
f(x)∑

y∈P sh(x, y)

and the fitness of the population is f(P) =
∑

x∈P f(x, P).
The algorithm has been proved to be very effective for the TwoMax

bimodal function by Friedrich et al. [27]. However, for the algorithm to
work it was necessary to use the knowledge that TwoMax is a function of
unitation and to use the number of 1-bits in individuals as distance function d.

We will show how fitness sharing can be very effective for Balance al-
ready with population size μ = 2 and by using the natural Hamming distance
as distance function, i. e., d(x, y) = H(x, y). We use the standard setting
α = 1 and set the sharing distance to σ = n, implying that all individuals

18

share their fitness (i. e., we assume no information about the peak distribu-
tion). In order to simplify the analysis we use 1-bit mutation instead of the
standard bit mutation used in the previously analysed algorithms and add a
crowding mechanism to simplify the selection step. Since 1-bit mutation flips
exactly one bit (chosen uniformly at random) per mutation, the algorithm is
a variant of random local search (RLS). The resulting algorithm is depicted
in Algorithm 5.

Algorithm 5 (μ+1) RLS with fitness sharing and deterministic crowding

1: Let t := 0 and choose x1, . . . , xμ ∈ {0, 1}n independently uniformly at
random (u. a. r.); Pt := {x1, . . . , xμ}.

2: repeat
3: Choose x ∈ Pt u. a. r. and set offspring y := x.
4: Choose i ∈ {1, . . . , n} u. a. r. and flip bit y[i].
5: Let P ′

t = Pt \ {x} ∪ {y}.
6: if f(P ′

t) ≥ f(Pt) then
7: Let Pt+1 := P ′

t .
8: else
9: Let Pt+1 := Pt.

10: end if
11: Let t := t + 1.
12: until some termination condition is met

In the following, we consider the case μ = 2, i. e., a (2+1) RLS. We
will show that fitness sharing can prevent the population from entering the
traps by guiding the population to individuals with complementary suffixes
satisfying n/16 < |b|1 < 7n/16. Once achieved, this property is never lost
and thus, the algorithm is able to optimise the LeadingOnes part in the
prefix.

In the analysis we first examine the individuals after initialisation and
show that these points have w. o. p. a linear number of non-overlapping 1-
and 0-bits in the suffix, i. e., positions where one individual has a 0-bit while
the other one has a 1-bit. Afterwards, we investigate which kind of mutation
steps are accepted by the algorithm. We consider different cases depending
on the increase/decrease of fitness as well as Hamming distance (the sharing
distance). We do this separately for mutations affecting the prefix and the
suffix (recall, that Algorithm 5 only uses 1-bit mutations). In particular,
we prove under which conditions a decrease in fitness is accepted due to the

19

fitness sharing mechanism. Plugging these results together yields our main
theorem.

Lemma 5. Let μ = 2, P0 = {x, y} the initial population and 0 < ε < 1/8
some constant. W. o. p. x and y have at least n/8−εn non-overlapping 1-bits
(i. e., 1-bits in x at positions where there is a 0-bit in y) and at least n/8−εn
non-overlapping 0-bits in the suffix.

Proof. In expectation an individual x is initialised with n/4 1-bits and n/4
0-bits in the suffix. The same holds for individual y. Half of the 1-bits of x in
the suffix (i. e., n/8) are expected to overlap (i. e., are in the same position)
with the 1-bits in y while the other n/8 1-bits do not overlap with 1-bits in
y. The same amount of overlapping and non-overlapping 0-bits are expected
in the suffix. By Chernoff bounds w. o. p. x and y have at least n/8 − εn
non-overlapping 1-bits and at least n/8 − εn non-overlapping 0-bits in the
suffix.

For the sake of readability, we omit the index t in the following two
lemmas. Moreover, we define f(x, y) := f(x) + f(y). Recall that P ′ is the
population including the offspring while P denotes the population including
the parent.

Lemma 6. Let μ = 2, P = {x, y} and d = H(x, y).
For f(x, y)+d > 2n, bit-flips in the suffix are accepted if and only if they

increase the Hamming distance.
For f(x, y)+d < 2n, bit-flips in the suffix are accepted if and only if they

increase the fitness.

Proof. We first observe that the cases where both the fitness and the Ham-
ming distance increase or decrease are trivial: we accept the offspring in case
both are increased and keep the parent otherwise. In the case where the
fitness increases by 1 while the Hamming distance decreases by 1 we have

f(P) =
f(x, y)

2− d
n

, f(P ′) =
f(x, y) + 1

2− d
n

+ 1/n

A straightforward calculation yields that f(P ′) < f(P) if and only if f(x, y) >
2n−d. In the very same way, we can consider the case that fitness decreases
while Hamming distance increases and get that

f(P ′) =
f(x, y)− 1

2− d
n
− 1

n

>
f(x, y)

2− d
n

= f(P)

20

holds for f(x, y) > 2n− d.
For the second claim, i. e., f(x, y) < 2n− d, we can repeat the very same

calculations with inverted inequality sign.

With very similar calculations the following lemma about mutations in
the prefix can be shown.

Lemma 7. Let μ = 2, P = {x, y}, d = H(x, y) and c ∈ N some constant
that denotes the increase in leading 1-bits after mutation.

For f(x, y) + dcn > 2cn2, bit-flips in the prefix increasing/decreasing the
fitness by at least n are accepted if and only if they increase the Hamming
distance.

For f(x, y) + dcn < 2cn2, bit-flips in the prefix increasing/decreasing
the fitness by at least n are accepted if and only if they increase the fitness
independent of Hamming distance.

Proof. As in the previous lemma we see that the cases where both the fitness
and the Hamming distance increase or decrease are trivial: we accept the
offspring in case both are increased and keep the parent otherwise. We
consider the remaining cases.

In the case where the fitness increases by cn, i. e., we add c leading 1-bits,
while the Hamming distance decreases by 1 we have

f(P) =
f(x, y)

2− d
n

, f(P ′) =
f(x, y) + cn

2− d
n

+ 1/n

Again a straightforward calculation shows that f(P ′) < f(P) if and only if
f(x, y) > 2cn2 − dcn.

In the very same way, we can show that

f(P ′) =
f(x, y)− cn

2− d
n
− 1

n

>
f(x, y)

2− d
n

= f(P)

holds for f(x, y) > 2cn2 − dcn.
For the second claim, i. e., f(x, y) < 2cn2 − dcn, we can repeat the very

same calculations with inverted inequality sign.

We are now ready to show that the considered (2+1) RLS optimises
Balance in a polynomial number of steps with at least constant probability.

21

Theorem 5. With probability at least p = 1/2− e−Ω(n) the (2+1) RLS with
fitness sharing and crowding finds the optimum of Balance in O(n2) steps
for arbitrary τ ≥ 0.

Proof. First we will show that with probability bounded below by a constant
(i. e., exponentially close to 1/2) the two individuals will never reach the trap
(Part 1). Afterwards we prove that, if the trap is not reached, the optimum
will be found in time O(n2) by optimising the LeadingOnes part in the
prefix (Part 2).

With probability 1/2, we have LO(x)+LO(y) ≥ 2 at initialisation (Event
E1) since

Prob (LO(x) = 2 ∨ LO(y) = 2)

= Prob (LO(x) = 2) + Prob (LO(y) = 2)− Prob (LO(x) = 2 ∧ LO(y) = 2)

=
1

4
+

1

4
− 1

16
=

7

16

and Prob (LO(x) = 1 ∧ LO(y) = 1) = 1
16

.
If the sum of leading 1-bits in x and y is greater or equal than 2, then

by Lemma 6 only bit-flips in the suffix increasing the Hamming distance are
accepted since it is trivial to see that f(x, y) + d > 2n.

By Lemma 5 w. o. p. there are at least n/8 − εn non-overlapping 0-bits
in the suffix of x and at least n/8 − εn non-overlapping 0-bits in the suffix
of y (Event E2). These bits, if flipped, will lead to individuals with lower
Hamming distance, thus by Lemma 6 will not be accepted. As a result,
conditional to Events E1 and E2, both x and y have n/8− εn 0-bits that will
never be removed with probability p = 1. This implies that they can achieve
at most n/2 − n/8 + εn = (3/8 + ε)n = (6/16 + ε)n < (7n)/16 1-bits, thus
never reach the upper trap.

With the same reasoning we can show that the lower trap will never be
reached using from Lemma 5 that w. o. p. there are at least n/8 − εn non-
overlapping 1-bits in the suffices of x and y that will lead to non-accepted
individuals if flipped to 0-bits. Furthermore, since only the suffix of the
genotype is affected by the dynamics of the fitness function, the two leading
1-bits will never be removed and f(x, y) > 2n will hold independent of the
frequency of change τ . Hence Part 1 is proved.

It remains to be shown that the optimum will be found by optimising the
LeadingOnes part in the prefix (Part 2). By Lemma 7 increases in leading
1-bits are always accepted as long as f(x, y) + dcn < 2cn2. Let f(x, y)a and

22

H(x, y)a be respectively the contributions to fitness and to distance due to
the prefix and f(x, y)b, H(x, y)b the contributions due to the suffix. We aim
to show that

f(x, y)+dcn < 2cn2 ⇐⇒ f(x, y)a+f(x, y)b+[H(x, y)a+H(x, y)b]·cn < 2cn2.

If the above inequality holds, then the LeadingOnes part will be optimised,
hence the optimum will be found.

We start with the suffix. Recall, that only moves increasing the Hamming
distance are accepted here. Hence, the Hamming distance in the suffix will
be maximised until a point where H(x, y)b = f(x, y)b = n/2 is reached. We
observe that the underlying process corresponds to the well-known coupon
collector problem with n different coupons (i. e., non-overlapping 0- or 1-bits)
where each coupon is obtained with probability 1/n. Note, that in fact, we
only need to collect n/2 specific coupons and that initially, we already have at
least n/8−εn coupons w. o. p. The expected number of steps until H(x, y)b =
f(x, y)b = n/2 is at most n log n + O(n) [14] since the considered process is
easier than the original coupon collector. Moreover, the probability that
more than βn ln n, β > 1, steps are needed is bounded above by n−(β−1) [14].

Concerning the prefix, its fitness contribution is at most

f(x, y)a = n · (LO(x) + LO(y)) ≤ n · (n/2 + n/2) ≤ n2

because the prefix has length n/2. Bit-flips in the prefix after the leftmost
0-bit are always accepted if and only if they increase the Hamming dis-
tance. This trivially follows because these bits do not contribute to fitness.
Hence, again by using results for the coupon collector problem with proba-
bility 1 − n−(β−1) after βn ln n, β > 1, steps the Hamming distance of the
bits after the leftmost 0-bit is maximised. This implies H(x, y)a = n/2 −
min(LO(x),LO(y)). Putting everything together we get after O(βn ln n)
steps,

f(x, y) + dcn

= f(x, y)a + f(x, y)b + [H(x, y)a + H(x, y)b] · cn
≤ n2 + n/2 + [n/2 + n/2−min(LO(x),LO(y))] · cn
= (c + 1)n2 + n/2−min(LO(x),LO(y)) · cn < 2cn2

where the last inequality holds as long as min(LO(x),LO(y)) > 1/2.

23

Conditional to Event E1 either x or y have at least one leading 1-bit. If
one individual has a leading 0-bit it suffices to flip it for the inequality to
hold. This requires 2n expected steps. The probability not to flip this bit in
2n2 steps is at most (1 − 1/n)2n2 ≤ e−2n.

Finally, with similar arguments to Theorem 17 in [33] it follows that
the n/2 leading 1-bits will be created in cn2 (c > 0 constant) steps with
probability at least 1 − e−Ω(n). Summing up the runtimes, multiplying the
failure probabilities and setting β = Θ(n/ log n) concludes the proof since
the dynamics of the fitness function do not affect the prefix (i. e., the proof
holds independent of τ).

We have shown that the (2+1) RLS is able to optimise Balance in poly-
nomial time with at least some probability converging to 1/2 exponentially
fast. However, if the frequency of change is small we can also show that there
is a small probability to reach the traps with both individuals.

Theorem 6. Let τ > 12n + 1. With probability bounded below by a constant
the (2+1) RLS with fitness sharing and crowding requires infinite time to
optimise Balance.

Proof. W. l. o. g., we assume that the time step τ is such that fitness in the
suffix increases with 1-bits. The proof strategy considers four consecutive
phases. By the end of the last phase both individuals will be in opposite
traps. The statement of the theorem will follow by multiplying the success
probabilities of each phase. The first phase starts at initialisation and ends
when individual x reaches a point with n/16+1 0-bits in the suffix conditional
to x and y starting without any leading 1-bits and never creating any (i. e.,
LO(x)+LO(y) = 0) (Event E1). Since LO(x)+LO(y) = 0 during the whole
phase, by Lemma 6 bit-flips in the suffix are accepted if and only if they
increase fitness (i. e., f(x, y) + d < 2n holds trivially since f(x, y) < n until
a leading 1-bit is created and d ≤ n always holds).

The second phase ends when x enters the upper trap. Since without
leading 1-bits the trap points have zero fitness, for x to enter the trap, firstly,
a leading 1-bit has to be created and then the trap will be entered in the
following step by flipping a 0-bit into a 1-bit. Such a leading 1-bit will be
accepted because it increases both fitness and Hamming distance. At the
end of the phase LO(x) = 1 and LO(y) = 0.

The third phase ends when individual y reaches a point with n/16 + 1
1-bits conditional to no other leading 1-bits being created in the mean time

24

(i. e., LO(x) = 1 and LO(y) = 0 throughout the phase). Since LO(x) = 1,
by Lemma 6 bit-flips in the suffix are accepted if and only if they increase
the Hamming distance (i. e., f(x, y) + d > 2n which follows trivially since
f(x) = n2 due to the first leading 1-bit). Hence, in this phase we calculate the
time for y to reach a “limit-point” before entering the lower trap. A crucial
observation for this phase is that the current trap point x will never have
more than n/16 0-bits in the suffix, because that would mean abandoning
the trap. This would imply a decrease in fitness of more than n, an event
that by Lemma 7 will not be accepted as long as f(x, y)+dn < 2n2 (here c is
conveniently set to 1). Given that throughout the phase d ≤ n−1, f(x) = n2

and f(y) < n/2 we get

f(x, y) + dn ≤ n2 + n/2 + (n− 1)n = 2n2 − n/2 < 2n2 (1)

implying that as long as the second leading 1-bit is not created the x indi-
vidual cannot leave the trap (i. e., by increasing the Hamming distance y is
directed towards the opposite trap).

The fourth phase ends when y enters the lower trap. Just like for x, it
is necessary for y to first create a leading 1-bit otherwise the trap points
would have zero fitness. Since x and y still have in total only one leading
1-bit f(x, y) + dcn < 2n2 (still by Equation (1)) and a leading 1-bit increas-
ing fitness by n will be accepted independent of Hamming distance (i. e.,
Lemma 7).

Once both individuals are in each of the traps and have one leading 1-bit
each, by both Lemmas 6 and 7 only bit-flips increasing Hamming distance are
accepted (i. e., f(x, y)+d > 2n and f(x, y)+dcn > 2cn2). As a consequence,
the (7/16)n non-overlapping bits in each individual determining the trap
points will not be accepted if flipped, i. e., the individuals will never leave
their respective traps unless they reach the optimum, which is impossible with
1-bit mutation. Hence the proof is concluded by calculating the probabilities
of each phase happening. These will be calculated in the remainder of the
proof.

For the first phase we will apply the additive drift theorem by He and
Yao [34]. Since f(x, y) < n by Lemma 6 bit-flips in the suffix are accepted
if and only if they increase fitness. The probability that the current best
individual is selected is 1/2. The probability that a 0-bit is flipped into a
1-bit is always at least (n/16)/n = 1/16 because there are always at least
n/16 0-bits to choose from in a mutation step (unless the trap is reached).

25

Overall, the drift is E(Δ) > (1/2) · (1/16) = 1/32. At initialisation each
individual has with overwhelming probability at most n/4 + εn 0-bits in the
suffix. Hence the drift theorem yields

E(Ttrap) ≤ d0

E(Δ)
=

n/4 + εn− n/16

1/32
= 32 · (3/16 + ε)n = (6 + ε′)n < 7n

steps to reach the point with n/16 + 1 0-bits. By Markov’s inequality the
probability that Ttrap is greater than 8n is less than 7/8.

Now we calculate the probability of Event E1 that no leading 1-bit is
created before the current trap-limit point is reached. The probability that
neither x or y are initialised with a leading 1-bit is 1/4. At each step with
probability 1 − 1/n the leading 1-bit is not created. Hence with probability

(
1− 1

n

)8n

≥
(

1

2e

)8

it is not created for 8n steps. Altogether Phase 1 is concluded in 8n steps
with probability at least (1/8) · (1/4) · (1/2e)8.

For Phase 2 trap points will not be accepted until the first leading 1-bit
is created. The expected time for the first leading 1-bit in x is 2n (i. e., with
probability 1/2 x is selected and with probability 1/n the first bit is flipped).
By a simple application of Markov’s inequality, it will not require more than
4n steps with probability at least 1/2. Furthermore, with probability (1/2) ·
(n/16 + 1)/n > 1/32 in the step straight after the leading 1-bit is created, x
reaches the trap by flipping the last necessary suffix 0-bit into a 1-bit. Since
we also require that LO(x) = 1 at the end of the phase, we need to also
multiply by the probability pf that the the second bit is not a free rider
(i. e., pf = 1/2 since the bit is not subject to fitness). Hence, Phase 2 is
concluded after 4n + 1 steps with probability at least 1/128. Phase 1 and 2
imply that as long as τ > 12n + 1 the first individual will end up in the trap
with probability bounded below by a constant.

Now, for Phase 3, we calculate the time for the other individual y to
reach the other trap. Recall that, due to the first leading 1-bit created in
the previous phase, by Lemma 6 only bit-flips in the suffix that increase the
Hamming distance are accepted. Hence the rest of the proof holds for any
τ . Also recall that by Lemma 7 x cannot leave the upper trap as long as the
second leading 1-bit is not created, hence none of its at least (7/16)n 1-bits
in the suffix may be flipped into 0-bits. This implies that there are at least

26

(7/16)n positions in the suffix of y that either already are 0-bits or will be
accepted if flipped into 0-bits. Hence, we apply a similar proof strategy to
that used for the first individual. By Applying drift analysis again we get

E(Ttrap) ≤ d0

E(Δ)
≤ n/2− n/16

1/32
= 32 · (7/16)n = 14n

as bound on the expected time to reach the lower limit-trap point with n/16+
1 1-bits. By Markov’s inequality the probability that Ttrap is greater than
15n is at most 14/15.

With probability (
1− 1

n

)15n

≥
(

1

2e

)15

the second leading 1-bit is not created for 15n steps. Hence Phase 3 is
concluded in 14n steps with probability at least 1/15 · (1/2e)15.

For Phase 4 we calculate the probability of the two consecutive steps, one
creating the first leading 1-bit in y and the other adding the final suffix 0-bit
to enter the trap. Recall that by Lemma 7 a leading 1-bit increasing fitness
by n will be accepted independent of Hamming distance. Following the same
calculations as for Phase 2 we get a probability of 1/2 that y creates its first
leading 1-bit in 4n steps and a probability of at least 1/32 that the trap is
entered in the next step. Hence Phase 4 is concluded in 4n + 1 steps with
probability at least 1/64.

Since both individuals have at least one leading 1-bit, by both Lemmas 6
and 7 only bit-flips increasing the Hamming distance are accepted. Fur-
thermore the Hamming distance in the suffix is maximised and hence, the
two individuals will never leave their respective traps. Finally, given that
the RLS algorithm is not able to pass the region of zero fitness in one step,
multiplying the probabilities of each phase concludes the proof.

Through the previous analysis it is clear that fitness sharing is consid-
erably sensitive to the difference between fitness values of the individuals.
For this reason we can only prove a success probability close to 1/2 for the
(2+1) RLS algorithm to efficiently optimise Balance. One way to increase
the success probability would be to modify the shape of the sharing function
by tuning parameter α. However, lots of problem knowledge would have to
be included to tune α correctly. Another way around the problem is to con-
sider mechanisms available in the literature to deal with algorithm sensitivity

27

towards difference in fitness values. A classical example is the fitness scaling
used to improve the performance of fitness-proportional selection EAs when
the difference in fitness values between close individuals is not detected by
selection leading to low selection pressure [35]. Neumann et al. [36] have
rigorously proved how scaling mechanisms can turn the runtime of fitness
proportional selection EAs from exponential to polynomial even for simple
functions such as OneMax. In the following we show how scaling the fitness
function will make the (2+1) RLS with fitness sharing and crowding very
effective for Balance.

Theorem 7. With probability 1− e−Ω(n) the (2+1) RLS with fitness sharing
and crowding finds the optimum of f(x) = Balance (x) + n in O(n2) steps
for arbitrary τ ≥ 0.

Proof. The proof follows the same line of thought of Theorem 5. By Lemma 5
with overwhelming probability there are n/8 − εn non-overlapping 0-bits
in x and the same number in y at initialisation. Also, since through the
fitness scaling both x and y have a fitness value of at least n, it follows that
f(x, y) > 2n. Hence, by Lemma 6 only bit-flips with increasing Hamming
distance are accepted and the non-overlapping bits will never be removed. As
a result the trap will never be reached and after βn log n steps and β > 1 the
Hamming distance between x and y is maximised with probability 1−n−(β−1).
Hence we get, f(x, y)b = n/2 + n = (3/2)n, h(x, y)b = n/2, f(x, y)a = n ·
(LO(x)+LO(y))+n and h(x, y)a = n/2−min(LO(x),LO(y)). This implies
that:

f(x, y) + dcn

= f(x, y)a + f(x, y)b + [h(x, y)a + h(x, y)b] · cn
≤ n2 + n + (3/2)n + [n/2 + n/2−min(LO(x),LO(y))] · cn
= (c + 1)n2 + (5/2)n−min(LO(x),LO(y)) · cn < 2cn2

which always holds for c > 1 and large enough n and holds for c = 1 as long
as min(LO(x),LO(y)) > 5/2. This implies that both individuals need three
leading 1-bits for the inequality to hold when c = 1.

Let one or both individual(s) not have the 3 leading 1-bits at this stage.
Then f(x, y)a ≤ n2/2 + 3n. Plugging this into the above calculations im-
plies that f(x, y) + dcn < 2cn2, so the first three leading 1-bits will also be
accepted.

28

Finally, just like in Theorem 5, we show that the n/2 leading 1-bits will be
created in cn2 steps with probability at least 1−e−Ω(n) since the dynamics of
the function do not affect the prefix. By multiplying the failure probabilities
the theorem statement follows.

8. Experimental Supplements

We perform experiments to shed light on some additional aspects of the
considered algorithms. These include, in particular, situations where our the-
oretical results do not cover the whole possible parameter range. We give ex-
tra insights into the working principles of the different diversity mechanisms
considered and point out, based on these findings, interesting directions for
future research.

Since our main interest is in the ability of diversity mechanisms with
respect to small frequencies of change, we perform all experiments on the
static version of Balance, i. e., we set τ = ∞. We have implemented all
algorithms analysed in the previous sections ((μ+1) EA without diversity,
with genotype diversity, with fitness diversity, with deterministic crowding,
and with fitness sharing and crowding) as well as a (μ+1) EA with pure fitness
sharing. In all the experiments we stop the algorithms if one individual of
the population has reached a global optimum or if the whole population has
reached either of the traps.

We start our experimental analysis considering the success rates of the
different algorithms, i. e., the number of times we reach a global optimum
over a certain number of independent runs. In a second step, we concentrate
on fitness sharing with and without crowding and investigate different addi-
tional properties such as the Hamming distance of individuals over a run, the
influence of larger population sizes as well as the number of function eval-
uations needed to reach an optimal solution. We present our findings with
respect to the different algorithms and parameterisations in the following.

8.1. No Diversity

Considering the (μ+1) EA without diversity mechanisms (Algorithm 1),
we have proven that the algorithm with population of size μ ≤ n1/2−ε requires
exponential runtime with overwhelming probability (Theorem 1). However,
it is an open question how large the population sizes have to be for the
algorithm to be efficient. We conjecture that large μ values increase the
drift away from the traps and thus help the algorithm not to get trapped.

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

su
cc

es
s

ra
te

population size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

su
cc

es
s

ra
te

population size

Figure 2: Success rate over 100 runs for no diversity mechanism, n = 100 and n = 500.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

su
cc

es
s

ra
te

population size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

su
cc

es
s

ra
te

population size

Figure 3: Success rate over 100 runs for genotype diversity, n = 100 and n = 500.

We perform experiments for n = 100 and n = 500 and population sizes of
1 ≤ μ ≤ n and visualise the success rates in 100 independent runs in Figure 2.
We observe that for linear μ the success rate approaches 1, supporting our
conjecture. In fact there appears to be a phase transition for populations of
sizes μ = cn for some value of c.

8.2. Genotype Diversity

For the (μ+1) EA with genotype diversity (Algorithm 2) we also have neg-
ative results that hold with overwhelming probability for μ ≤ n1/2−ε (Theo-
rem 2) and again conjecture that larger population sizes do help. We perform
the same experiments as for the (μ+1) EA without diversity. We depict the
results in Figure 3 and see that the observed phase transition is even more
apparent and appears to happen for lower population sizes compared to the
algorithm without diversity.

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

su
cc

es
s

ra
te

population size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

su
cc

es
s

ra
te

population size

Figure 4: Success rate over 100 runs for fitness diversity, n = 100 and n = 500.

8.3. Deterministic Crowding

We have proved that the (μ+1) EA with deterministic crowding (Al-
gorithm 3) is not able to optimise Balance efficiently with overwhelming
probability for μ = nO(1) (Theorem 3). We have performed experiments for
n = 100, n = 1000 and n = 10000 with μ = 2, μ = �√n� and μ = n (100
independent runs each) and have observed only a single successful run for
n = 100 and μ = n. So even for small input sizes and reasonable population
sizes deterministic crowding does not help.

8.4. Fitness Diversity

For the (μ+1) EA with fitness diversity (Algorithm 4) we have proved
that using a population size μ > n − 2(

√
n − 1) enables the algorithm to

optimise Balance in polynomial time (Theorem 4). Recall that this result
is based on the fact that there is only a limited number of different fitness
values within the traps and that the algorithm cannot get trapped once all
these places are filled up. However, we conjecture that the trap does not need
to be filled up entirely for the algorithm to optimise Balance efficiently. We
therefore perform the same experiments as we did for the (μ+1) EA without
diversity and with genotype diversity. We visualise the results in Figure 4
and see that much smaller population sizes are sufficient. It is an interesting
question to further investigate this observed sharp phase transition.

8.5. Fitness Sharing

We finally consider the fitness sharing mechanism. Recall that, in order
to simplify the proofs, we have modified the considered algorithm by only
using 1-bit mutation and by adding a crowding mechanism (Algorithm 5).

31

 0.98

 0.985

 0.99

 0.995

 1

 100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
te

n

 0.98

 0.985

 0.99

 0.995

 1

 100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
te

n

 0.98

 0.985

 0.99

 0.995

 1

 100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
te

n

 0.98

 0.985

 0.99

 0.995

 1

 100 200 300 400 500 600 700 800 900 1000

su
cc

es
s

ra
te

n

Figure 5: Success rate over 10000 runs for fitness sharing with (top) and without (bottom)
crowding using local search (left) and standard bit mutations (right), μ = 2.

Moreover, we have only proved results for μ = 2. We have shown that
with probability at least p = 1/2− e−Ω(n) this algorithm is able to optimise
Balance in polynomial time (Theorem 5). However, we have also proved
that the algorithm fails with a probability bounded by a very small constant
(Theorem 6).

We perform experiments for four different variants of the algorithm, with
and without the crowding mechanism as well as with 1-bit mutation and
standard bit mutation. We start with similar experiments as before regarding
the success rate, however, due to the rather small failure probability we
perform 10.000 runs. We first consider μ = 2 according to our theorems
and investigate the success probabilities for n ∈ {100, 200, . . . , 1000}. The
results are depicted in Figure 5. We see that the success probability is close
to 1 for all four algorithms. While the crowding mechanism does not have a
huge influence, standard bit mutations increase the success probability even
further.

Since we use Hamming distance in our sharing mechanism, it is interest-
ing to see how the Hamming distance of the two individuals of the population

32

 0

 100

 200

 300

 400

 500

 0 10000 20000 30000 40000 50000 60000 70000 80000

H
am

m
in

g
D

is
ta

nc
e

Iteration

std
mean

 0

 100

 200

 300

 400

 500

 0 20000 40000 60000 80000 100000 120000

H
am

m
in

g
D

is
ta

nc
e

Iteration

std
mean

 0

 100

 200

 300

 400

 500

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

H
am

m
in

g
D

is
ta

nc
e

Iteration

std
mean

 0

 100

 200

 300

 400

 500

 0 20000 40000 60000 80000 100000

H
am

m
in

g
D

is
ta

nc
e

Iteration

std
mean

Figure 6: Hamming distance over 100 runs for fitness sharing with (top) and without
(bottom) crowding using local search (left) and standard bit mutations (right), μ = 2,
n = 500.

evolve over the run of the algorithm. We do this for n = 500 and plot both,
the Hamming distance of the entire individual (Figure 6) and of its suffix
(Figure 7). In the latter figure, we see that the Hamming distance in the
suffix quickly converges to its maximum, i. e., n/2, and is not changed after-
wards when using 1-bit mutation. For standard bit mutation it converges to
n/2, too, and then fluctuates close to n/2. For the entire individual we see an
increase in Hamming distance in the beginning while it decreases towards the
end of the algorithm. Since the Hamming distance in the suffix is unchanged
(or close to unchanged) towards the end of the process, this can only be ex-
plained by the events in the prefix, i. e., while optimising the LeadingOnes

part in the prefix of both individuals their prefixes become more similar, thus
decreasing the overall Hamming distance. These figures resemble exactly the
proof ideas used in our proofs (see in particular Theorem 5).

Given the observation that the Hamming distance in the suffix is maximal
for most of the optimisation process, we are now interested in the concrete
number of 1-bits in the suffix since this determines the position of the indi-

33

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

H
am

m
in

g
D

is
ta

nc
e

in
 S

uf
fix

Iteration

std
mean

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000

H
am

m
in

g
D

is
ta

nc
e

in
 S

uf
fix

Iteration

std
mean

Figure 7: Hamming distance within the suffix over 100 runs for fitness sharing with (top)
and without (bottom) crowding using local search (left) and standard bit mutations (right),
μ = 2, n = 500.

viduals with respect to the traps. We depict this in Figure 8 for n = 500 and
see that both individuals have roughly n/4 1-bits in the suffix over most of
the run (i. e., the individuals proceed along the centre of the corridor towards
the optimum).

For μ = 2, we are also interested in the question if adding the crowding
mechanism or not as well as using 1-bit mutation or standard bit mutation
have a significant influence on the runtime in case of a successful run. We
therefore investigate the number of function evaluations given that we reach
a global optimum and depict the result as box-and-whisker plots (showing
the minimum, maximum, median and lower and upper quartile over 100
runs) in Figure 9. We see that the runtime behaviour with respect to adding
crowding or not is very similar while standard bit mutations slow down the
optimisation process.

Finally, we want to investigate the influence of large population sizes.
We perform experiments for n = 100 and μ ∈ {2, 3, . . . , 100} and depict the
results in Figure 10. We observe a clear difference between the algorithm
with crowding and the one using pure fitness sharing as the population size
increases. While for the latter algorithm the success rate is still very close
to 1 even for large population sizes, the success rate for fitness sharing and
crowding decreases drastically with increasing population size. We conclude
that only comparing the offspring to the parent is detrimental when using
fitness sharing with larger populations while the size of the population has no
significant influence on the success rate when using pure fitness sharing. We
remark that with some small probability the (μ+1) EA using fitness sharing

34

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000 70000 80000

O
ne

s
in

 S
uf

fix

Iteration

std
mean

std
mean

lower trap
upper trap

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000

O
ne

s
in

 S
uf

fix

Iteration

std
mean

std
mean

lower trap
upper trap

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

O
ne

s
in

 S
uf

fix

Iteration

std
mean

std
mean

lower trap
upper trap

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000

O
ne

s
in

 S
uf

fix

Iteration

std
mean

std
mean

lower trap
upper trap

Figure 8: Number of 1-bits within the suffix over 100 runs for fitness sharing with (top) and
without (bottom) crowding using local search (left) and standard bit mutations (right),
μ = 2, n = 500.

35

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 100 200 300 400 500 600 700 800 900 1000

fit
ne

ss
 e

va
lu

at
io

ns

n

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 100 200 300 400 500 600 700 800 900 1000

fit
ne

ss
 e

va
lu

at
io

ns

n

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 100 200 300 400 500 600 700 800 900 1000

fit
ne

ss
 e

va
lu

at
io

ns

n

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 100 200 300 400 500 600 700 800 900 1000

fit
ne

ss
 e

va
lu

at
io

ns

n

Figure 9: Runtime over 100 runs for fitness sharing with (top) and without (bottom)
crowding using local search (left) and standard bit mutations (right), μ = 2 and different
values of n.

36

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 10 20 30 40 50 60 70 80 90 100

su
cc

es
s

ra
te

mu

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 10 20 30 40 50 60 70 80 90 100

su
cc

es
s

ra
te

mu

Figure 10: Success rate over 100 runs for fitness sharing with (top) and without (bottom)
crowding using local search (left) and standard bit mutations (right), n = 100 and different
population sizes.

and crowding in combination with 1-bit mutation can already get stuck along
the ‘path’ when using large population sizes.

9. Conclusion

We have considered the Balance function previously used in the litera-
ture to show exponential expected runtime of the (1+1) EA at low frequencies
of change. We have analysed a (μ+1) EA in its basic version and equipped
with several diversity mechanisms to shed light on whether populations and
diversity can be sufficiently robust to avoid getting trapped in local optima
independent of the frequency of change (i. e., for any value of τ , even when
the frequency of change is very low).

Our results show that the basic (μ+1) EA without diversity is inef-
ficient with overwhelming probability for sublinear population sizes (i. e.,
μ ≤ n1/2−ε). The same holds if a genotype diversity mechanism is added
to the algorithm. Furthermore we rigorously prove that adding a determin-
istic crowding mechanism (previously shown elsewhere to be very effective)
makes the algorithm extremely inefficient for Balance. On the other hand,
independent of the frequency τ , we show that a simple fitness diversity mech-
anism easily turns the (μ+1) EA into an efficient algorithm for Balance.
Finally, fitness sharing can be very effective even for population sizes as small
as μ = 2 if used carefully.

We extended our understanding of the (μ+1) EA for Balance with and
without the various diversity mechanisms through empirical work. From our
experiments it appears that linear population sizes are sufficient to make

37

both the (μ+1) EA without diversity and equipped with genotype diversity
efficient for Balance. Also there appears to be a sharp threshold at popu-
lation size cn for some c > 0 at which the expected performance of these two
algorithms turns from exponential to polynomial. On the other hand, the
(μ+1) EA with fitness diversity appears to be effective for population sizes
considerably smaller than the sublinear ones required for our proof to work.
Concerning fitness sharing, the experiments confirm that using a population
size of μ = 2, 1-bit mutation and a crowding mechanism, indeed simplifies
the proof. However, for larger population sizes the crowding mechanism not
only is not necessary but it also becomes detrimental.

[1] P. S. Oliveto, C. Zarges, Analysis of diversity mechanisms for optimisa-
tion in dynamic environments with low frequencies of change, in: Proc.
of GECCO, ACM, 2013, pp. 837–844.

[2] J. Branke, Evolutionary Optimization in Dynamic Environments,
Kluwer Academic Publishers, 2002.

[3] C.-K. Goh, K. C. Tan, Evolutionary Multi-objective Optimization in
Uncertain Environments, Springer, 2009.

[4] R. W. Morrison, Designing Evolutionary Algorithms for Dynamic Envi-
ronments, Springer, 2004.

[5] K. Weicker, Evolutionary Algorithms and Dynamic Optimization Prob-
lems, Der Andere Verlag, 2003.

[6] C. Cruz, J. Gonzales, D. Pelta, Optimization in dynamic environments:
a survey on problems, methods and measures, Soft Computing 15 (7)
(2011) 1427–1448.

[7] T. T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization:
a survey of the state of the art, Swarm and Evolutionary Computation
6 (2012) 1–24.

[8] Y. Jin, J. Branke, Evolutionary optimization in dynamic environments –
a survey, IEEE Transactions on Evolutionary Computation 9 (3) (2005)
1427–1448.

[9] J. Grefenstette, Genetic algorithms for changing environments, in: Par-
allel Problem Soving from Nature (PPSN), Elsevier, 1992, pp. 137–144.

38

[10] H. Andersen, An investigation into genetic algorithms and relationship
between speciation and the tracking of optima in dynamic functions,
Ph.D. thesis, Queensland University of Technology, Brisbane, Australia,
honour Thesis (1991).

[11] Y. Wang, M. WineBerg, Estimation of evolvability genetic algortihm and
dynamic environments, Genetic Programming and Evolvable Machines
7 (4) (2006) 355–382.

[12] H. Cheng, S. Yang, Multi-population genetic algorithms with immi-
grants scheme for dynamic shortest path routing problems in mobile ad
hoc networks, in: Applications of Evolutionary Computation (EvoAp-
plications), LNCS 6024, Springer, 2010, pp. 562–571.

[13] F. Oppacher, M. Wineberg, The shifting balance genetic algorithm: Im-
proving the ga in a dynamic environment, in: Genetic and Evolutionary
Computation Conference (GECCO), Morgan Kaufmann, 1999, pp. 504–
510.

[14] A. Auger, B. Doerr (Eds.), Theory of Randomized Search Heuristics,
World Scientific Review, 2011.

[15] T. Jansen, Analyzing Evolutionary Algorithms. The Computer Science
Perspective, Springer, 2013.

[16] F. Neumann, C. Witt, Bioinspired Computation in Combinatorial Opti-
mization – Algorithms and Their Computational Complexity, Springer,
2010.

[17] P. Oliveto, J. He, X.Yao, Time complexity of evolutionary algorithms: A
decade of results, International Journal of Automation and Computing
4 (3) (2007) 281–293.

[18] S. Droste, Analysis of the (1+1) EA for a dynamically changing onemax-
variant, in: Proc. of CEC’02, IEEE Press, 2002, pp. 55–60.

[19] S. Droste, Analysis of the (1+1) EA for a dynamically bitwise changing
onemax, in: Proc. of GECCO ’03, LNCS 2723, Springer, 2003, pp. 909–
921.

39

[20] T. Jansen, U. Schellbach, Theoretical analysis of a mutation-based evo-
lutionary algorithm for a tracking problem in the lattice, in: Proc. of
GECCO ’05, ACM Press, 2005, pp. 841–848.

[21] P. Rohlfshagen, P. K. Lehre, X. Yao, Dynamic evolutionary optimisa-
tion: an analysis of frequency and magnitude of change, in: Proc. of
Gecco ’09, ACM Press, 2009, pp. 1713–1720.

[22] T. Kötzing, H. Molter, Aco beats EA on a dynamic pseudo-boolean
function, in: Proc. of PPSN’12, LNCS 7491, Springer, 2012, pp. 113–
122.

[23] T. Chen, Y. Chen, K. Tang, G. Chen, X. Yao, The impact of mutation
rate on the computation time of evolutionary dynamic optimization,
Tech. Rep. arXiv:1106.0566 (2011).

[24] S. Yang, Non-stationary problem optimization using the primal-dual
genetic algorithm, in: Proc. of CEC ’03, IEEE Press, 2003, pp. 2246–
2253.

[25] C. Witt, Runtime analysis of the (μ+1) EA on simple pseudo-Boolean
functions, Evolutionary Computation 14 (1) (2006) 65–86.

[26] T. Storch, I. Wegener, Real royal road functions for constant population
size, Theoretical Computer Science 320 (1) (2004) 123–134.

[27] T. Friedrich, P. S. Oliveto, D. Sudholt, C. Witt, Analysis of diversity-
preserving mechanisms for global exploration, Evolutionary Computa-
tion 17 (4) (2009) 455–476.

[28] S. W. Mahfoud, Niching methods, in: T. Bäck, D. B. Fogel,
Z. Michalewicz (Eds.), Handbook of evolutionary computation, IOP
Publishing and Oxford University Press, 1997, pp. C6.1:1–4.

[29] P. S. Oliveto, J. He, X. Yao, Analysis of population-based evolutionary
algorithms for the vertex cover problem, in: Proc. of CEC ’08, IEEE
Press, 2008, pp. 1563–1570.

[30] T. Jansen, R. P. Wiegand, The cooperative coevolutionary (1+1) EA,
Evolutionary Computation 12 (4) (2004) 405–434.

40

[31] M. Hutter, S. Legg, Fitness uniform optimization, IEEE Transactions
on Evolutionary Computation 10 (5) (2006) 568–589.

[32] T. Friedrich, N. Hebbinghaus, F. Neumann, Comparison of simple di-
versity mechanisms on plateau functions, Theoretical Computer Science
410 (26) (2009) 2455–2462.

[33] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolu-
tionary algorithm, Theoretical Computer Science 276 (2002) 51–81.

[34] J. He, X. Yao, Drift analysis and average time complexity of evolutionary
algorithms, Artificial Intelligence 127 (1) (2001) 57–85.

[35] D. E. Goldberg, Genetic Algorithms for Search, Optimization, and Ma-
chine Learning, Addison-Wesley, 1989.

[36] F. Neumann, P. S. Oliveto, C. Witt, Theoretical analysis of fitness-
proportional selection: landscapes and efficiency, in: Proc. of GECCO
’09, ACM Press, 2009, pp. 835–842.

41

