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Abstract

Numerical integration is a popular technique that can beessfully applied to evaluating the pest insect
abundance in an agricultural field. In this paper we apply enical integration in the problem where data about
insects obtained as a result of a trapping procedure hadenaerror (noise). We compare several methods of
numerical integration that have different accuracy of eatibn when precise data are considered. In particular,
we consider the composite trapezoidal and composite Sin'gpsaaes of integration, and compare them with
a statistical approach to obtaining an estimate based osatin@le mean. The comparison is first done in the
case when the number of traps where the data are availablgyes lit will be shown in the paper that noise in
the data badly affects the accuracy of evaluation on finesgrfdraps, so the different methods of numerical
integration no longer differ in terms of their accuracy. \Wert consider an ecologically relevant case of a small
number of traps, i.e. when the data available for evaluaiensparse. It will be discussed in the paper that
the impact of noise is negligible on coarse grids of traps thiedefore we can keep the accuracy hierarchy
of numerical integration methods established from the icenation of precise data. We are then able to give
recommendations on how to use methods of numerical infiegred evaluate pest abundance. Our results are
illustrated by numerical experiments.
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Nomenclature

Symbol Description

Ermax Upper limit of the credible interval of,..;

Eomin Lower limit of the credible interval of,..;

E, el Relative error of the estimatk (noise is absent)

Erel Relative error of the estimate(noise is present)

I Pest population density function

1 Exact pest abundance

I Estimate of pest abundance formulated from noisy denstty da
1, Estimate of pest abundance formulated from exact density da
u(T) Uncertainty associated with the estimate

1(Ere) Mean of the error quantitys,;

of Standard deviation of the estimate

1 Introduction

Accurate evaluation of pest insect abundance is a key coempam any integrated pest management (IPM) pro-
gram used in agriculture [6, 23]. The decision of whetherairta implement a control action to manage the pest
population is made by comparing an estimate to some threéstahle(s) [42, 43]. The decision can be considered
to be correct if the same conclusion would have been reachieel irue abundance had been known. However, by
definition of the problem the true abundance is unknown, tireisequire information about the reliability of the
estimate in order to have confidence about the managemestaecKnowledge of the accuracy of an estimate
can give us an indication of the relationship between the pest abundance and the threshold value(s) and thus
we can establish if there is a risk of an incorrect decisione Tisk grows smaller as the estimate becomes more
accurate.

Evaluation is based on the results of sampling and its acgutepends on a sampling technique. Trapping is
a sampling procedure widely employed in monitoring. Thaidethat trap counts can be converted into the pest
population density at trap locations in order to obtain amege of the total pest population size [7, 40]. The
accuracy of such evaluation depends strongly on how theattataollected and the crucial factor with regard to
data collection is the number of traps available in the nwomy procedure. Under routine monitoring, financial
conditions and other restrictions do not normally allow d&dbig number of traps and that, in turn, may result in
poor accuracy of evaluation.

Apart from the methodology of data collection another int@or issue is how the trap counts are processed.
Methods of numerical integration are a well-known familynoéthods designed to handle discrete data [13]. Their
application in the pest insect monitoring problem has beedied in [14, 31, 32, 34, 35, 36]. It was discussed
in [33] that the application of more advanced numericalgragon techniques often results in a more accurate
evaluation of pest abundance than straightforward statistomputation of the mean density, cf. [12, 41].

The initial study of numerical integration techniques tog pest abundance evaluation problem has been made
under the assumption that density data obtained as a rdsulipping are precise. The above assumption is
not entirely realistic and the results should thereforextereled to the case when the density measurements have
random error. The measurements of density are thus assbevéh someuncertaintyrather than being definitively



known quantities and this gives rise to uncertainty in thenalance estimate and in turn in the accuracy of this
estimate. It is important to mention that the measuremesttseed via trapping are also dependent on the activity
of the target species as well as their density. In order tly treflect the density, the measurements must be
calibrated somehow [37, 40]. This calibration induces heoerror into the estimate, however, within this paper
we ignore this error. Instead we assume that the measurerakkaady reflect the pest density but that there is
some additional random error (noise) present.

The accuracy of a selected method of numerical integratiom tfapezoidal rule) applied to data measured
with random error has been investigated in our recent pdgr [t was shown in [15] that the results of numerical
integration of noisy data depends strongly on the numberapistwhere the data are collected. Namely, if the
number of traps is large, noise becomes a dominant featureegiest abundance approximation and the results
may differ from an estimate of the pest abundance obtairmed firecise data by several orders of magnitude. On
the other hand, noise does not have a lot of impact of the acgwf a pest abundance estimate when the number
of traps is small.

As we have already mentioned, the conclusions of the papércdncern the trapezoidal rule of integration
only. Meanwhile, it is possible to employ a different mettmfchumerical integration to evaluate the total pest
population size. The results of [33, 35] have revealed thatatled higher order methods of integration provide
better accuracy when exact data are considered. Thus tistiaquarises if higher order methods will have an
advantage in accuracy when the pest abundance is apprexiinased on noisy data and this question is the focus
of the present paper.

Keeping in mind the results of our previous study [33, 34¢ tuestion of accuracy must be investigated
separately for the case of a small number of traps¢barse gridf traps) and a large number of trafigé€ grids,
as different approaches have to be applied in order to \elitiee accuracy in the former and latter case. Hence
the paper is organised as follows. In the next section, waflprexplain basic numerical integration techniques
under the assumption that an estimate of pest abundanceeid ba precise data. In Section 3 we recall the results
of our paper [15] to establish how random error in data tegaslto error in a pest abundance estimate. We then
apply the results of Section 3 to compare three methods otriual integration on fine grids in Section 4, where
the convergence rate of the mean error is discussed. The rs@theds of numerical integration are compared
on coarse grids in Section 5. The results of previous sextoa illustrated by numerical examples designed in
Section 6 for ecologically relevant test cases. Finallpjobading remarks are provided in Section 7.

2 Numerical integration as a means of estimating pest abunahe

In this section we discuss the implementation of numeriotdgration methods within the framework of pest
monitoring. For the sake of simplicity, we reduce the probl® one dimension and essentially consider an
agricultural field as a straight line. Let us note, howeuas the results of our study can readily be expanded to
multi-dimensional problems.

Once information on the pest population in an agriculturaldfihas been collected by some chosen means
of sampling, an estimate of the abundance can be formed.cdljpithe estimate used within the ecological
community depends on the sample mean [12]. Counts obtaioeddampling can be manipulated to give the pest
density at each sample unit location [7, 40]. We shall usentiation f; to denote the pest population density at
the sample unit locatiom;, i = 1, ..., N. An estimatel, to the true abundanckcan be calculated thusly

1 N
I%Ia:L,ﬂ f:NZfza
i=1



whereL is the length of the fieldf is the sample mean pest density, aids the total number of sample units.
Let the domain of the agricultural field be further represdniby the unit interval0, 1], since a simple linear
transformation can be applied to yield an interval of adnitdengthL. The above estimate of the abundance then
becomes equivalent to the sample mean pest density, namely,

1 N
I~1,=— - 1
N;f (1)

The formula (1) calculates an estimate of the pest insectddnce as a weighted sum of the density function
values. This approach can be further generalised to atravéaanily of numerical integration methods as discussed
in [33]. Theoretically speaking, the exact pest populaiibunndance could be obtained by integrating analytically
the pest population density functigifx),

[:/01 f(x) da,

if we knew a continuous density functiofiz) on the interval[0, 1]. In reality, however, information on the
pest density is provided by sampling the population and tmuation density function is consequently discrete,
namely, f(x) = f;,;i = 1,...,N. The above integral thus cannot be evaluated and we mustathsteek an
approximationl, to the exact pest abundantdy means of numerical integration.

The general formula for numerical integration is given by #eighted sumg.gsee [13])

N
If“v“fazzwifi (2)
i=1
where the weights;, 7 = 1, ..., N depend on the specific method of numerical integration ahtuske employed.

It is easy to see on comparing the formula (2) with the dedinitof the sample mean density (1) that this estimate
can be considered as a simple form of a numerical integratiethod where the weights are uniformly defined as

1
N7
There are of course many other possible combinations ofriwemgfficients which can be used in the formula (2)
to yield an estimatd,. The scope of this paper is restricted to the consideratigusbthree particular examples
of weight coefficients explained below.

Alongside the sample mean density (3) we study estimatesefdrfrom two members of the composite
Newton-Cotes family of numerical integration methodgyéee [13]). To apply a method belonging to this family
the locationse; at which the function valueg; are available are required to be regularly spaced. Such glisgm
plan is indeed often used in pest monitoring [17, 18]. Thegisi of a composite Newton-Cotes formula are de-
rived by piecewise polynomial interpolation of the diser&inctionf(z) = f;,i = 1,... N for a chosen degree of
interpolating polynomial. The composite trapezoidal rigléormed by piecewise linear polynomial interpolation
and has the weights

i=1,...,N. (3

w; =

h
wi=h, i=2... N-1 w=g i=10ri=N 4)

whereh = 1/(N — 1) is the fixed distance between sampling points. The numbef traps is required to satisfy
the conditionNV. > 2.

Another method we discuss in the paper is the composite ®mgpsule. This integration technique uses
piecewise quadratic polynomial interpolation and recuiae additional restriction to be imposed, namely, that the
number of sampling location¥ must be odd and such that > 3. The weights are described by

4h 2h
wi:—,i:2,4,...,N—1, UJZ:?

h
. =35 N-2 wi=g i=1o0ri=N (5)



In order to make comparisons between the methods (3)-(5)enedforth consider the following regular dis-
tribution of the sampling locations; across the unit interval:
i—1 .
l‘i:m, ZZI,...,N, (6)
where the numbelN > 3 of sampling points is odd.
If the exact pest abundandds known then the accuracy of an estimatecan be assessed by considering the
approximation error Since the pest abundancelis- 0, the relative approximation errd,..; is defined as

|I_Ia|

Erel = 7

(7)

Clearly the smaller the relative error, the more accuragectirresponding estimaig. A more accurate estimate
gives rise to greater confidence that the correct decisiomhether or not to implement a control action can be
made. Therefore we impose the following condition on thetied errorE,..;:

E.q <, (8)

for some specified accuracy tolerance In ecological applications a toleraneesuch thatr € [0.2,0.5] is
considered acceptable [27, 28].

3 The uncertainty introduced by random error

A trap count can be manipulated to provide a measurementeopeist density at the trap location, however, a
measurement is subject moeasurement errorLet us denote the measured pest density at the trap location
f;, and nowf; is used to represent the corresponding exact pest densig/reTationship between the measured
pest densityf; and the the true pest densify is thenf; = f; + em; Wheree,,, is the measurement error. A
measurement error is considered to consist of two compsnamandom component, and a systematic component
[2]. In other words, the measurement eregy, can be expressed ag, = ¢,, + €,, Wheree,, ande,, represent
the random and systematic error respectively. The randoon &rthe result of noise in the data and thus any
€,,% = 1,... N can be either positive or negative with equal probabilitiie Bystematic error on the other hand
is caused by some source of bias and therefore eyery = 1,... N is consistently either positive or negative.
This paper focuses on the impact of noise in the data and d&sveeiggnore the systematic contribution to the
measurement error. That is to say we redefine the relatjphsiveen the measured quantffyand the true value
fias

fi = fz + €,

The random error component, of a measured pest densify given in the above equation is in essence a
realisation of a random variable. We consider the true pessity f; to be some unknown constant. Sinfes
the sum of an unknown constayit and a realisation,, of a random variable, it can in turn also be considered
a realisation of another random variable. There is thusrarertaintyassociated with a measured pest density
f;. We follow the procedure outlined in our previous work [15idaconsider eacl,, to be a realisation of a
normal distribution where we make the assumption that themie zero. This means eaghi = 1,... N is
thus a realisation of a normally distributed random vagab] with meany; = f; and standard deviatios;.
Furthermore, since eadhis a realisation of a normally distributed random variablea measurement belongs
to the range

fi € [ﬁmm7 ngmax] = [fi — 204, fi + z034] 9



with probability

P() = erf (%) , (10)

whereer f(z) is the error function.
To define the standard deviatier we further impose the condition that the range of each of tkasured
quantitiesf; shall be restricted as belonging to the following intervithyprobability P(z):

frelfrm e =10 —v)fi, A+ v) fi] (11)

wherev € (0, 1) is the measurement tolerance defined by the conditions aixperiment. Equating the ranges
(9) and (11) gives an expression for the standard deviati@s

vt

z

(12)

0

We note that the definition of a random varialfjeloes not depend on how long traps are exposed in the field (see
our previous work [15] for further discussion of this topic)

Applying a method of numerical integration (2) to a measutath setf;,i = 1,..., N instead of the exact
valuesf;,i = 1,..., N yields an estimate based on measured diata
~ N ~
i=1
We recall thatl > 0, thus the relative approximation error of such an estimatiehwve denote, ; is defined as
- I—1
Erel = ’7[’ (14)

It can readily be seen from (13) and (14) that both the esémand the corresponding relative errby.;
depend on the measured valuési = 1,..., N. It follows that the uncertainty associated with these mess
pest densities will give rise to uncertainty in the quaesiti and E,..;. In our previous work [15] we established
the credible intervalE,,,,,, Emaz] to Which the relative approximation erré#..; of an estimatel belongs with
probability P(z). Below we briefly summarise these results as they are impioftet our further discussion.
Meanwhile, the interested reader is referred to the teXtfiiiihe detailed formulation and justification.

The standard deviation of a random variable provides a nmeaslits associated uncertainty. We recall that
we consider a measured pest population dengitp be a realisation of a normally distributed random vagabl
F; with meanyu; = f; and standard deviatiom;, whereo; is given by (12). The uncertainty associated with a
measured valug; which we will denoteu(fi) is quantified thusly:

’U,(ﬁ) = 0;.
From (13) it can be seen that the estimate of pest abundaize linear combination of the measured densities
fi;i=1,...,N. As such, an estimatkis also a realisation of a normally distributed random \@&d, where

N
IF = Z 'wZE
=1

The random variabld, has mean: i = I, and standard deviation;. As explained in [9] the uncertainty(f )
associated with the estimafean be obtained by propagating the uncertainty associgtadhe measured values

6



u(ﬁ-),z‘ =1,..., N by means of théaw of the propagation of uncertainf]. Assuming the data are uncorrelated
we arrive at

(15)

and we haveu(I) = o7;.

Let us now consider the relative error quanttfy,; as given by (14). Clearly, this quantity is the absolute alu
of a linear function ofl. As detailed above] is a realisation of a normally distributed random varialblence,
E, is in turn a realisation of a random variabig- with a folded normal distributior[20]. Expressions for the
mean and variance of such a distribution are known and stdridamulas are given in [20]. Using these results,
we are able to give the mean of the integration error as

. I, I, — 1 o [2 1 /I, —1\>
M(Erel):<1_7> [l_ﬂ)( o >}+TI\/;€XP{_5< o )} (10)

where® is the standard normal cumulative distribution functioheBtandard deviation is

o= (1= %)+ () -

In our previous work [15] we showed that a realisatibp,; of the random variabléZ belongs to the range
[Ermins Emaz] With the probability P(z) as defined by (10). The ran@g,,,, Emaz| is called the credible interval
of E,.; (e.gsee [4]). The lower limitZ,,,;,, of the credible interval is given by

0, for B, < z%,
Epin = 17)
B — %, for E,.q > z?.
The upper limitE, ,,, is defined as

= 2IF =
B+ %@‘1 [2(1)(2) - & (z + J)}, for £, < z%,

~ of
Ema:c - (18)
- 2IF oIF .
E,+ %cp—l [@(z) ) <z - Tl> - <z + Tl> + 1} for B > z%,
I I

where® is the standard normal cumulative distribution functiod &' is its inverse.

4 The accuracy on integration of noisy data: fine grids

In this section we analyse the formula (16) along with thalite interval [E, iy, Eaz] Of E,e for the case
when the numbefV of traps where data are available is large. It can be seen (t@nand (18) that the lower
and upper bounds of the inter\,{ﬂmm, Emax] induced by noise in the pest population density data deperideo
accuracyF,..; of evaluation obtained when exact density values are cereid Thus we first have to discuss a pest
abundance estimate calculated from precise data and bedorgaall the concept of convergence for the relative
error E,..;.



4.1 Convergence on fine grids

Consider an estimatg, and the corresponding relative ertby.; obtained as a result of pest abundance approxi-
mation using precise data. It follows from (2) that the elithg; depends on the numbéf of sample units taken.

In order to be a viable method of numerical integrationVasicreases, the error must decrease. That is to say we
have convergence of the relative error to zero, as we inerdsgsnumber of traps,

FE,q —0asN — cc.

The rate at which this convergence occurs depends on theeshof the weights; in the formula (2). Exploita-
tion of the convergence rate could prove a useful tool in treuation of pest abundance. As explained in the
introduction, the nature of the pest monitoring problem nsehat the number of sample unitsthat can be used
is limited. As such, employing a method with a faster rate @ivergence thus achieving the required level of
accuracy (8) for a smaller value o6f seems preferable.

Let us consider an example to compare the convergence rastiofates/, obtained via methods (3)-(5)
for precise values of the density functigiiz). To calculate the relative error (7) we require the exachtjtyal.
Furthermore, in order to study the convergence rate of amast we also need to be able to evaluate each estimate
over a series of increasingly refined grids of sample unimsgquently, for the purposes of this example we take
the pest population density function to be mathematicadfyineéd by a functiory (x) as

flz) =V + % z€[0,1] (19)

1,
107}
0.8
s Ty
206 10
0.4}
-6
10 I _._Est;zt n
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Figure 1. Evaluating the pest abundance by means of nurhgriegration. (a) A toy example of a pest population
density functionf(x) defined by the equation (19). The simulated sampled pestlgtigu densitiesf;,i =
1,..., N (filled diamonds) are shown at locations (6) for the number= 5 of sample units. (b) Convergence
of the relative approximation errak,..; (7) for estimates obtained using the numerical integratmmula (2)
with different weight choices. The relative error corresgiog to the sample mean density estimate (3) is denoted
Estdt (filled circles, solid Iine).EﬁZ”p (filled squares, solid line) represents the error of thevestts obtained on
implementing the trapezoidal rule (4) , aﬂtfei[“p (filled triangles, solid line) is the error for the Simpsonge

estimates (5). The accuracy tolerance (8) is set-ad).2 (dotted line). An estimate is considered to be sufficiently
accurate when its relative error lies below this threshold.



which is shown in Figure 1a. Integrating analytically weaibt! = 0.32. A regular grid of sample unit locations
is generated according to the formula (6) for a fixed valu&’ oiVe simulate the sampling procedure by evaluating
the function (19) at the computed pointgi = 1,..., N to produce a discrete set of dafai = 1,...,N. An
estimatel,, is found by means of formula (2) with the selected set of wisigimd the relative approximation error
E,..; is calculated according to (7). The convergence rate ibkstti@d by computing®,..; over a series of grids
as defined by (6). The first grid is formed by fixidg = N, for some initial valueN;, whereN; is odd. The
subsequent grid is then generated by recomputing the nuofilgeid nodes asv, = 2N,_1 — 1, whereN; is the
number of nodes on the new grid ang_ is the number of nodes on the previous grid. This procesgpeated

as many times as desired.

Convergence curves for the error of estimates formed ubmgveight choices (3)-(5) are plotted in Figure 1b.
The motivation for considering an estimate other than tmepéa mean population density is well illustrated by
this graph. It can be seen that the relative error of an e&ifioamed using the trapezoidal rule (4) converges to
zero at a faster rate than that of the sample mean (3). Me&inipson’s rule (5) yields even faster convergence.
To clarify the implication of this faster convergence raeds fix the accuracy toleranceas- 0.2. Whereas the
sample mean density requires a griddf~ 9 sample units to satisfy the condition (8) that the relativerdies
below the tolerance, the trapezoidal requires a grid of on ~ 5 units. Furthermore, Simpson’s rule achieves
the desired accuracy on the initial grid of only = 3 sample units. In fact, foN = 3 we haveEs!! ~ 0.4363
andEfj[“p ~ 0.0105; the estimate formed by Simpson’s rule is over forty timeseraccurate than that provided
by the sample mean density.

Unlike in the above example the exact quaniitis unlikely to be available in the real life pest monitoring
problem. Thus, the accuracy cannot be assessed by congideei relative approximation errds,..; as defined
by (7). Instead, the usual way to conclude about an accurfaay estimate formed by numerical integration is to
consider the asymptotic error estimates. These are usgiaéin in the form é.gsee [13])

E(h) = Ch*, (20)

whereh is the fixed distance between the sample unitsfaisdrequired to be small in order to provide asymptotic
convergence at the rate The constant’ and the convergence ratdn (20) depend on the numerical integration
method of choice. It can be shown that when the sample lotatce defined by (6) that the convergence rate for
the sample mean s = 1, and it is well known that the convergence raté iss 2 andk = 4 for the trapezoidal
rule (4) and Simpson'’s rule (5) respectivet/dsee [13]). From these error estimates, we typically expettthe
higher the order of convergence of a method, the more aectivatestimates produced will be.

The above discussion demonstrates that choosing the weadfltihe formula (2) differently to those defined
by the formula (3), the estimate often used in pest monigpiiras potential benefits. Firstly there is the potential
for obtaining a more accurate estimate of the pest abundgnead furthermore, a prescribed accuracy tolerance
7 may be achieved for a smaller numh&r of sample units. However, let us emphasise again that theeabo
discussion is based on the assumption of precise data. Hienite next sub-section we investigate asymptotic
convergence of the mean error (16) calculated from noisy. dat

4.2 Convergence of the evaluation error in the presence of e

In order to outline the potential effect noise could have lmmdccuracy of an estimate and the convergence rate
of a numerical integration method we consider the behawwduhe mear;u(Eml) and the limits of the interval
[Emins Emaz] to which E,.; belongs with probability P(z). Once the estimate of the pésidance based on
measured data becomes sufficiently close to the true pestiaboel, the quantityZ,,;,, becomes zero. Since

and! are constant, the behaviour of the convergenqe(ﬁfrel) andE,,,. is dictated by the quantities— I, and

9



o;. In other words, it is determined by the relationship betw exact pest abundant@nd the approximation
1, formulated from exact values of the pest population densisywell as the uncertainty associated with the
estimatel formulated from measured pest densities. The convergéned, — 0 has been discussed in the
previous sub-section and we now look at the convergencexeairnhertaintw(I~ ). Let us introduce the term,,, .
such that

U = max ulJ;).
max el N} (fz)

From the above and the equation (15) it follows that

Let us first consider the uncertainty associated with amesé,;,; formed by the sample mean density. Substi-
tuting the weights (3) into the above and recalling the distabetween the traps is fixed/as= 1/(N — 1) we
obtain

D=

5 1 -
U(Istat) < Hmaz = <_ + 1> Umazx -

For smallh we have

D=

1 a 1
Umazx <E + 1> ~ h2umaxa

thus the convergence of the uncertain()fsmt) is of the orderk = 1/2. Similar expressions can be found for the
uncertainty associated with an estimﬁg,@p formed by implementation of the trapezoidal rule (4)
1 1\:
~ 2 1
u([trap) S h <E - 5) Umaz =~ hiumaxa

and likewise that associated with the estimé@gnp formulated from Simpson'’s rule (5)

1
u(iSimp) < g <% - 2> i Umaz ~ h%umax-

Thus the orders of convergence of the uncertainty terfig.,) andu(Is;y,) are, as for(Iy.s), alsok = 1/2

provided the distanck between traps is small.

In our previous study [15] of the effect noise has on the ammuof an estimate formed by the trapezoidal
rule, we found that when the number of trajsis large, the uncertainty(f) associated with the estimate is the
dominant contribution to the error of an estimatérherefore, in our present study of the three methods (3¢5
anticipate that a®v increases, the quantiti&c{Erel) and E,,,. will converge at a rate of = 1/2 in accordance
with the behaviour of the uncertainty associated with thenege I as described above rather than the ofdes
described by the error estimate (20). This important cactuwill be further illustrated in Section 6.

5 The accuracy on integration of noisy data: coarse grids

We now turn our attention to the ecologically relevant cdsmarse grids of traps where data available for integra-
tion are sparse. Itis a widespread situation in ecologiaalitaring that financial, ecological and other restricion

10



require the number of traps installed in an agriculturabfiel be relatively small [22, 25]. For example, the num-
ber of traps installed over an agricultural field in the Uditéingdom very rarely exceed a few dozen [3, 17, 18],
where a linear size of the field is typically of the order of w feundred meters.

In our previous work a coarse grid was defined as a grid wheraghimptotic error estimate (20) does not hold
and we should expect poor accuracy of pest abundance @walult many cases having a small number of traps
installed in the field means that we have a coarse grid of .trepsvever, we cannot always provide a direct link
between poor accuracy and a small number of traps. We hamesgisd in [31, 33, 34, 35] that the definition of a
coarse grid of traps should be based on the properties obiidation density distribution rather than a number of
traps installed in the field. In particular, grid coarseriesslated to the degree of heterogeneity, highly aggregate
density distributions being the most difficult case for pgstindance evaluation. It has been shown in [31, 34]
that an estimate of pest abundance can be very inaccurate thadotal pest population size is evaluated from a
strongly heterogeneous density pattern, while the sandeofitraps will provide very good accuracy for another,
guasi-homogeneous, density distribution.

Since ecologists and farmers often have to deal with pestirdensity distributions that have a considerable
degree of aggregation [8, 21, 26], the study of coarse gedeiines an important topic in integrated pest monitoring
programs. Our results in [33, 34, 35] have been obtainedhfetaluation from exact data and we now need to
further investigate the accuracy on coarse grids in the ttedelata are randomly perturbed.

On coarse grids, we cannot rely upon the convergence raentutle about the accuracy of the mean error
associated with a selected method of numerical integrati@enerally, the mean error and the bounds of the
credible interval are determined by the following quaasti

1. uncertainty associated with the estimafermulated from measured pest densities;

2. the errork,..; obtained when the exact pest abundahead the approximatiof, are formulated from exact
values of the pest population density.

We begin our study of coarse grids by discussing the unoéytan the estimate. Below we compare the
uncertainty in the estimate obtained when the trapezoidal(4) is employed with the uncertainty for the sample
mean (3) and Simpson’s rule (5) estimates on coarse grids.

From (15) it is clear that the uncertainty associated witestimate formed from measured dataill increase
in magnitude as the magnitude of the weights of the numemtagration method increase. On comparing the
weights of the sample mean density estimate (3), the tragedzaule (4), and Simpson’s rule (5) it can be seen
that none of these methods has uniformly larger weights éimather. For example, we recall that the weights of
the trapezoidal rule are; = wy = h/2 andw; = h,i = 2,... N — 1 whereas for the sample mean density
estimate they are uniformly; = 1/N. Thus, whilst the weights corresponding to the interior edre larger
for the trapezoidal rule than the sample mean density etsjrttee converse is true for those at the exterior nodes.
Consequently employing a method which by the asymptotioregstimate (20) is ordinarily considered more
accurate, could in fact lead to a larger associated unogrtaFor instance the use of Simpson’s rule (5) may
result in a larger uncertainty in the estimdtéhan that yielded by the trapezoidal rule (4). This occurgmvthe
following condition is satisfied

N-1 N-1
h? 16h2 <~ 4h? h? =
v (uf +udy) + =g Zu%i+7 Zu%i_l > (ui +uiy) + h? Zu?,
=1 =2 =2

whereu; = u(f;). The above can be expressed as
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f(x) (@) f(x) (b)

Figure 2: A sketch of the density distributigiiz) where evaluation of the pest abundance is done on a coadse gri
of N = 3 traps. The measured data are available at the points, andzs of a regular grid of traps. (a) The
density is localised close to the centre of the domain. (I8 dénsity is localised close to the boundaries.

N—-1 N—-1
2 2
ud 4+ ud < Oy Z u3; — Co Z ud; 4, (21)
i=1 1=2

where the coefficients a€, = 28/5 andCy = 4.
Likewise, Simpson’s rule could lead to a greater unceyaassociated with the estimafehan that associated
with the sample mean density (3). This will happen when wehav

N—1 N—1
h2 16h2 = 4h? 1 Y
i=1 i=2 i=1

Using the fact thak = 1/(/N — 1) and rearranging gives

N—-1 N—1
2 2
uf +ul < Cs > uy—Cy Y ud; g, (22)
i=1 =2

where we have’s = (TN? + 18N — 9)/(8N? — 18N +9) andCy = (5N? — 18N + 9)/(8N? — 18N +9).
Finally, implementing the trapezoidal rule will give rise & larger uncertainty than the sample mean density
when the following condition is satisfied:

N-1
ut +uk < Cs Z u?, (23)
=2

whereCs = (SN — 4)/(3N? — 8N +4).

The conditions (21), (22) and (23) can be used to decide whietihod is best to use on a coarse grid of traps
in order to reduce the uncertainty of evaluation. Consifterexample, the condition (23) and let a very coarse
grid of N = 3 traps be installed in the domain. The inequality (23) is theitten asu? + u3 < Csu3, where

Cs = 20/7 ~ 3. Hence, if the spatial pattern of a density distributionuststhat the density is concentrated
close to the domain centre (see a sketch of the density &imstiown in Figure 2a), the inequality (23) holds. The
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uncertainty generated by the trapezoidal rule (4) is incage larger than the uncertainty generated by the method
(3). On the contrary, if the density is localised close tolbendaries (see Figure 2b) then the trapezoidal rule
yields a smaller uncertainty of evaluation. Similar analysn be done for conditions (21) and (22).

It follows from the conditions (21), (22) and (23) that theogiin the pest abundance evaluation on coarse grids
depends on the spatial pattern of the density function whuésyrdata are used for evaluation. This result is in
line with the results of our previous work [34, 35] where theof evaluation on exact data has been discussed.
Thus we want to reiterate here a conclusion already madédardse of exact data in our work [33]. Namely, we
conclude that the knowledge of spatial pattern of the psstiindensity distribution is crucial when pest abundance
is evaluated on coarse grids and any information aboutadgeitern must be used to its fullest extent.

Another factor that makes an impact on the accuracy of etratuan perturbed data is the errby.,.; calculated
from exact data. As we have already mentioned the asymmotic estimates (20) do not hold on coarse grids
of traps and that impedes any theoretical discussion of teg €7). Meanwhile, a key result of the work [15]
was that when the numbé¥ of traps is too small, the dominant contribution to the eafoan estimatd formed
from measured data is the relationship between an estimiatetl from exact datd, and the true pest abundance
1. In other words, it was found that if for smalW the errorE,..; incurred by approximating the pest abundance
by means of numerical integration on exact data is alreaghyjifgiant, then the additional error caused by noise
in the data has little relative impact. This conclusion iB][@éame from numerical experiments conducted for the
trapezoidal method of numerical integration. Hence in tve section we design several ecologically meaningful
test cases in order to investigate the contribution of ther ét,..; on coarse grids for various methods of numerical
integration. For each of those test cases the accuracy ogridwewill also be investigated.

6 Numerical Test Cases

In this section we test the conclusions of the previous sedtr a variety of ecologically meaningful data. First,
we outline how we acquire such data. Then, estimates of teegimindance are obtained by employing the
methods (3), (4) and (5) over a series of increasingly refgrets of trapsj.e. for increasing values of the number
N of traps. The mean error of an estimates formed from measiEEde(Erel) is calculated for each value of
N, as are the lower and upper limits of the= 100P(z) percent credible interval,,;,, Eynaz] Using (16) (17)
and (18) respectively. To assess the impact of noise on theary of an estimate, a comparison is made with the
relative errors of the estimates based on exact Hata Plots of the convergence curves of all error quantities are

given and the results are discussed.

6.1 Generating Ecologically Meaningful Test Cases

To form convergence curves of the quantities;, M(Eml), Eopin and Epyon, We require the ability to form esti-
mates on a series of increasingly refined grids of traps.eStris difficult to obtain field data which satisfy these
conditions, particularly in 1D, we instead choose to usemaer simulated data to test the hypotheses from the
previous section. The data is generated using the spagiglijcit form of a predator prey model with the Allee
effect [24, 44], which is given below in its dimensionlessnfio

of (z,t) _ 0*f /g
T R IS D
(24)
2
Y9(z.t) _ 09,y f9

ot Ox? f+p
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The termsf(z,t) and g(z,t) represent the population density of the prey and predaspesgively at the
position in space: at some time > 0. The parameters in the system are as follo#s the diffusion coefficient,
pis the half-saturation prey densifyjs the food assimilation efficiency coefficient, amds the predator mortality.
We consider the prey to be the pest insect. The pest populd&asity f(x, t) is found by numerically solving
the above system of equations and considering a numericaicsoat the fixed time = ¢ > 0. Since the time is
fixed we shall henceforth denote the pest population deasifi(z). The interested reader is referred to [34] for
the details of the non-dimensionalisation, as well as theerical solving of the system of equations (24).

Since we intend to investigate the accuracy of numericabmation for a broad variety of density patterns, we
generate six ecologically significant test cases from thdaehby inputting different parameter values. Plots of
the resulting pest density functions are shown in Figures3a The test cases are chosen such that the level of
difficulty in obtaining an accurate estimate of pest abundancreases as we move from test case 1 through to test
case 6. A test case is considered more difficult the highentineber N of traps needed to obtain a sufficiently
accurate estimate (cf. [34, 32]). Test case 1, as shown iar&iga, is a smooth, monotonous function. The
structure of the density function can therefore be deteftted a small amount of datiee. a small numberV of
installed traps and an accurate estimate of abundance caadity produced. The number of peaks present in the
density function increases in the subsequent test casésianmeach test case 5 as shown in Figure 3e which has a
complicated multi-peak structure. More information abibigt pest density function, which corresponds to a higher
numberN of installed traps, will be required to detect the more camleak structure and thus obtain an accurate
estimate. Meanwhile, test case 6 provides an example of tw difficult case whereby the pest population is
located within a small subdomain of the field. The difficidte handling such distributions, also knownpeesak
functionshave been discussed in detail in our previous works [14,I18Me consider a fixed numbéy of installed
traps, we expect the estimate of abundance to be most aedaordést case 1 and least accurate for test case 6.
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(e) ®

Figure 3: Ecologically significant test cases. A spatiatriistion f(x) of the pest population density function
is obtained from the model (24) at different timeand for different values of the diffusivity. (a) Test case 1,
d=10"%t =5, (b) Test case 2] = 10~*, ¢t = 50, (c) Test case 3] = 107>, ¢t = 50, (d) Test case 4 = 1077,

t = 100. (e) Test case 5] = 107°, ¢ = 400. (f) Test case 64 = 3 - 1076, t = 10. Other parameterk = 2,

h =0.3andm = 0.7.

15



6.2 Results and Discussion

We now investigate the impact of noise on an estimate of fgmsidance for the six ecologically meaningful test
cases introduced in the previous sub-section. The quesifiti.;, M(Eml), FEomin and E,,..., We need to assess the
impact of noise on an estimate of pest abundance, all depetitedrue value of the pest abundarcen order

to obtain/ the system of equations (24) was solved on a very fine reguhiag defined by (6). For all test cases
shown in Figure 3 the number of nodes on the fine grid was fixed as- 4097. The dataf (x) obtained on the
fine grid was then integrated using the trapezoidal rulerd)the result was taken to be the ‘exact’ pest abundance
1. The method (4) was selected as opposed to a more sopladticagthod to limit the effect of round off error
incurred on such a fine grid.

An estimate of pest abundance based on exactidasaobtained using each of the weight choices (3)—(5), on
a series of regular grids of traps and the ety is calculated as (7). The initial grid has the number of traps
fixed asN = Ny, whereNV; is odd. The number of traps in subsequent grids is then edéiasV, = 2N, 1 — 1
for s > 2. This process is repeated as many times as necessary taliolly the behaviour of the convergence.
The quantitiem(ETel), E,nin andE,,.. are then evaluated for each valueMoffrom (16), (17) and (18) where the
measurement tolerance has been setas).3. We have fixed: = 3 so the probability that a single realisation of
the errorE,; lies within the rangeF in, Emaz] is P(3) ~ 0.9973.

Figures 4a—4f compare the eriby,; of an estimate formed from exact data with the mean &r(ﬁrel) of an
estimate formed from noisy data. The figures confirm that dneeyrid of traps becomes sufficiently refined, the
convergence rate of the error quantify,; behaves according to the asymptotic error estimates (2D%ampson’s
rule (5) yields a more accurate estimate than the trapdzaitia(4), which in turn is superior than the estimate
provided by the sample mean density (3).

Meanwhile, it can also be seen from Figure 4 that for each ogeti numerical integration the mean error
of an estimate formed from noisy daja E,.;), converges at the slower ratelof= 1/2 as explained in Section
4. The difference in the convergence ratestpf; and M(Eml) as shown in 4a—4f demonstrates that when the
numberN of traps is large, the accuracy of an estimate could be dgveaenpered by the presence of noise. In
the presence of noise Simpson’s rule (5) is not superiorgartathods (3) and (4), as happens when precise data
are used on fine grids. It should be noted, however, that gsows large the estimate of pest abundance based on
exact datal, tends to the true pest abundancand hence the error of an estimate based on exactijataends
to zero. Consequently, the probability mass function ofghantity £,..; transitions to a special case of the folded
normal distribution, namely the half normal distributidO]. In other words, the probability mass function skews
towards zero, thus it becomes more probable that a smatlerrdhan a larger error will be obtained.

Figures 5a—5f show the mean errpn(s@ml) more clearly, as well as the quant@mx. The curves ofs,,,,, are
shown to be parallel to that W(Erel) for larger IV, therefore confirming that the convergence rat&gf,., is also
k = 1/2 as expected. Thus for larg€, the uncertainty associated with the estimate of pest amoed caused
by noise in the datd;,i = 1,..., N is the dominant factor affecting the accuracy of an estim@tee interesting
feature shown in Figures 5a—5f is that when the nuni¥eaf traps is large, the difference between the values of
the quantityu(Erel) for each of the methods of numerical integration (3)-(5)@syvsmall, as is the difference
between the values df,,,,. This confirms our previous conclusion that whilst the manehssticated Simpson’s
method (5) outperforms the trapezoidal rule (4) and the samgan density (3) as a means of estimating pest
abundance on fine grids of traps when the data on the pestgtimputlensity are precise, there is little difference
between the methods when the data is noisy.
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Figure 4: Convergence curves for the density distributipfs) depicted in Figure 3a — 3f respectively. The mean
error M(Erez) of an estimate formed from noisy data (dashed lines) is coaapaith the errot,..; of an estimate
constructed from exact data (solid lines). The captionlifi@ires is as given above. The superscripts ‘stat’, ‘trap’
and ‘Simp’ indicate that the estimate of the pest abundaraoaiculated either as the mean density (3), or was

formed using the trapezoidal rule (4) or Simpson’s rule fgolour version of this figure can be found online.
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Figure 5: Convergence curves for the density distributipfs) depicted in Figure 3a — 3f respectively. Plots of
the mean error quantity(Erel) are shown (solid lines) alongside the quantity,,, (dashed lines). The caption
in all figures is as given above and the same superscriptiotatused as in Figure 4. A colour version of this
figure can be found online.
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‘ N ‘ Fostat Etmp ESimp ‘ N ‘ [stat Etmp ESimp
3 | 0.0057 0 0 3 1 0.6088 0.6415 0.6686
5 0 0 0 5 0 0.1391 0.418(Q
9 0 0 0 9 0 0 0

(@) (b)

IN | Bstlat plar poie | N [ Estlat gler gy
3 0.0819 0.2363 0.3724 3 0 0 0.1590
5 0 0 0.1423 5 0 0 0.1742
9 0 0 0 9 0 0.1742 0
17 0 0 0 17 0 0 0

(© (d)

‘ N ‘ [stat Etmp ESimp ‘ N ‘ [stat Etmp ESimp
3 0.0452 0 0 3 0.9982 0.9980 0.997Y
5 0.0600 0.0252 0.0118 5 0.9984 0.9984 0.9985
9 0.1407 0.1308 0.1499 9 0.9985 0.9985 0.9985
17 | 0.0679 0.0568 0.0170 17 | 0.5949 0.5697 0.4267
33 0 0 0 33| 0.3757 0.3562 0.262Y
65 0 0 0 65 0 0 0

(e) ()

Table 1: The quantity?,,,;,, for the test cases shown in Figure 3a — 3f respectively. Thesaiperscript notation
is used as in Figure 4. For the larger values\bfvhere the values af,,;,, are not displayed, they are uniformly
zero.

Tables 1a—1f give the values &,,;, for the test cases 1-6. As can be seen from (17), the defirtfitinis
guantity depends on the distance between the estimatedipastiance based on exact dataand the true pest
abundancd. A sufficiently accurate estimatg, is needed for the quantiti,,;,, to be zero, thus the grid of N
traps needs to be sufficiently refined to resolve the hetemteof the pest population density. Tables la—1f
confirms that the point at which,,;,, becomes consistently zero varies depending on the spattefp of the pest
population density function of the corresponding test ¢asenpare with Figures 3a-3f). For the easier to handle
spatial density distributions.gthe monotone function of test case 1 (see Figure 3a), thetiuaf,;,, is non-zero
only for the estimate formed by the sample mean density ()@qrid of V = 3 traps (see Table 1a). Test cases 5
and 6 as shown in Figure 3e and Figure 3f on the other handreefyuther grid refinement befot®,,;,, becomes
consistently zero. This happens for all numerical intégnamethods considered in the paper after the grid has
been refined tav = 33 and N = 65 traps for test case 5 and test case 6 respectively.

Now let us consider the behaviour of the error quantitieswthe numberV of traps is small. Figures 4a—4f
confirm the findings of our earlier paper [15]. It can be seemfiFigure 4 that for smallV the accuracy of
an estimate of pest abundance formed from noisy data isndieted by the accuracy of an estimate based on
exact data. That is, for smaN the quantityE,.; is strongly dependent of,.; and is just slightly affected by
the uncertainty caused by noise being present in the daia.isTavident from the fact that in general the curves
representing the mean err,mifETel) of the estimates formed from noisy data lie close to theiresgronding curves
E,..; whenN is small. In some cases the estimate of the pest abundarimsed on exact data already achieves
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good levels of accuracy even wheénis small. For example, for Test case 1 (see Figure 4a), thesident for
the estimates formed by implementing Simpson’s rule. Herexe is a clear difference between the quantities
Efeilmp andp(Efeilmp) even on very coarse grids 8f = 3 andN = 5 traps (compare the solid red line with closed
triangles with the dashed red line). Whereas consideriaggitimates formed by the sample mean density (3) on
the same coarse grids, it can be seen that there is littlereiifte betweed's* and u(E3'*) since the accuracy
remains poor until the grid of traps is further refined (corepthe solid green line with closed circles with the
dashed green line).

Figures 4f and 5f exhibit the behaviour on grids with a smaimber N of traps whereby the quantities
E.., M(Eml), E,par and alsoF, i, (see Table 1f) lie very close to each other. As discussedbiftfis is the result
of how we consider the noisy dafato be related to the true population density valyiesAt the nodes of these
grids the values of; are very small. Since we essentially consider fht® be a percentage of the corresponding
fi,» in this instance the noisy data will lie close to the trueadat

We continue to consider the ecologically relevant scenahiere the number of grid nodéé is small. Tables
2a - 2f provide further evidence to support the assertionftiaach numerical integration method, the magnitude
of M(Erel) is mainly defined byFE,.; on coarse grids of traps. In other words, the impact of theetainty
associated with the estimath ) caused by noise in the density data is dominated by the éfrgrwhich is
imparted by the means of obtaining an estimatethe method of numerical integration. Tables 2a - 2f gives

u(I), alongside the quantities,..; andu(E,.;) for all test cases on the grids &f = 3,5 and 9 nodes. For each
fixed value of N, the uncertainties,(I) associated with an estimate are compared for each numariegtation
method. The maximum of these uncertainties is given in keotd, the minimum is given in grey text. The same
comparison is made for the relative errdfs,; of an estimate based on exact data, and the mean @(rﬁt@l) of

an estimate formulated from noisy data.

It is shown in tables 2a—2f that the numerical integratiorthmeé which yields the maximum or minimum
value Of,u(Erel) for a fixed numberV of traps is the same as that which generates the maximum éamomim
value of E,; for all test cases. Therefore, the accuracy of an estimatedban exact data should be used to
assess which method is superior wh€rs small. The tables also demonstrate the point made indeBfithat
there are instances when the uncertainty associated wiglstanate generated by Simpson’s rule is greater than
that which arises as a result of employing the trapezoidal and/or using the sample mean density to estimate
pest abundance For example, this occurs for test case 2 When5 as shown in Table 2b as well as for test
case 3 whenV = 3. Other examples of this happening can be seen in the rergdiaintes, as can examples of
when the uncertainty associated with an estimate formethdyrapezoidal rule exceeds that associated with the
corresponding sample mean density estimate.

The accuracy control on coarse grids remains, perhaps, ésedifficult issue in the general problem of pest
abundance evaluation. Let us emphasise again that the ssjargsror estimates (20) (which are the conventional
way of assessing a method of numerical integration) do noéssarily hold whenV is small. This is evident
by inspection of the convergence curves in figures 4a—4f asdben discussed at length in [14, 31, 32, 31]. As
explained in [31], on coarse grids the error can be congidenendom variable and we have thus recommended
that a method of numerical integration should instead besassl probabilistically. In other words, the probability
of obtaining a desired level of accuracy should be calcdlagher than the error of an estimate. An initial
methodology for such an assessment is presented in [31kémt elata only, however the findings of this paper
indicate that the results would also apply for noisy datdneseffects of noise can be ignored on coarse grids.
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N 3 5 9 N 3 5 9
u(I°t*) | 0.0121| 0.0081| 0.0055| | wu(I****) | 0.0042| 0.0229| 0.0132
w(ItroP) || 0.0099| 0.0067| 0.0049| | w(I**?) || 0.0037| 0.0285| 0.0148
u(I%7P) || 0.0085| 0.0068| 0.0054 | | w(I5"™») || 0.0036| 0.0379| 0.0108
Estat 0.2838| 0.1327| 0.0643| | Estot 0.6681| 0.3138| 0.0048
EToP 0.1409| 0.0235| 0.0011| | B 0.6948| 0.5459 | 0.0823
Eomp 0.0021| 0.0156| 0.0063| | E>'mP 0.7214| 0.9595| 0.0723
p(Estet)y || 0.2839( 0.1335| 0.0668| | u(Eset) || 0.6681| 0.3139| 0.0502
u(EGP) || 0.1428| 0.0452| 0.0304| | p(E/P) || 0.6948| 0.5459 | 0.0907
p(EST) || 0.0521| 0.0439] 0.0332] | u(E£57™) || 0.7214| 0.9595| 0.0760
(a) (b)
N 3 5 9 N 3 5 9

u(I*%) || 0.0403| 0.0244| 0.0170| | w(Is***) || 0.0407| 0.0255| 0.0175
w(It*?) || 0.0518| 0.0263| 0.0262| | w(I*"*?) || 0.0306| 0.0177| 0.0145
w(I57P) || 0.0659| 0.0182| 0.0176| | w(I5") || 0.0205| 0.0157| 0.0164
Estot 0.3701| 0.0628| 0.0824| | Estat 0.2205| 0.0414| 0.0369
ETP 0.6069| 0.0526| 0.0798| | EP 0.0568| 0.2455| 0.1384
ES™ | 0.8438| 0.2725| 0.0888| | E2™ || 0.3341| 0.3084/ 0.1027
p(Estety |0.3701] 0.0711] 0.0830] | u(E3tet) | 0.2230] 0.0670] 0.0501

rel

p(ETY |l 0.6069| 0.0666| 0.0806| | w(E") || 0.0837| 0.2455| 0.1384

rel

p(E2mP) | 0.8438| 0.2725| 0.0893| | p(E°“™P) || 0.3341| 0.3084| 0.1031

rel
©) (d)

N 3 5 9 3 5 9
(Istty 11 0.0190| 0.0150| 0.0105] | u(I®*t) || 1.30e-06| 9.53e-07| 6.87e-06
u(I*?) || 0.0210| 0.0160| 0.0108| | u(I*"*) || 1.54e-06| 1.03e-06| 7.13e-07
u(I%7P) || 0.0248| 0.0176| 0.0110| | u(I5"™) || 1.89e-06| 1.05e-06| 7.41e-07
Estat 0.2009| 0.1828| 0.2268| | E:let 0.99852 | 0.99867 | 0.998711
E!ToP 0.1579| 0.1567| 0.2193| | EV% 0.99833 | 0.99861 | 0.99869

rel

ESimp 0.1148| 0.1563| 0.2401| | E>™P 0.99815| 0.99871 | 0.998714

rel

p(E5tety 110.2009] 0.1828] 0.2268| | u(Eskl) | 0.99852| 0.99867 | 0.998711

rel

p(ETP) |l 0.1580| 0.1567| 0.2193] | u(EY) || 0.99833| 0.99861 | 0.99869

rel

p(E2mPY |10.1173] 0.1563| 0.2401| | w(E°4™) | 0.99815 | 0.99871| 0.998714

rel

(e) (f)

Table 2: Contributions to the error of an estimate calcdldtem noisy data. For grids of a small number of traps

and for each of the numerical integration methods (3)-(® quantities.(1), E,..;, andu(E,..;) are compared. The
same superscript notation is used as in Figure 4. For a fiad @&V, the greatest of each quantity is highlighted

in bold and the lowest is given in grey text. The position & Hold/grey text in the:(E,..;) row matches that of
the E,..; row. 21
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7 Concluding Remarks

We have considered the problem of pest abundance evaluatien data used for such evaluation have random
error. Several methods of numerical integration employettié evaluation problem have been compared in terms
of their accuracy. For each method of numerical integratienhave studied the behaviour of the mean error
M(Erez) arising when pest abundance is evaluated from randomlynbexd data. We have also investigated the
credible interva[Emm, Emam] to which the error of evaluation belongs with a given prolighiP(z). Whilst the
motivation for this work was to shed light on the problem dfraating pest insect abundance, the results could be
applicable to abundance estimates for other kinds of spetieis would be the case so long as the evaluation of
abundance for that species requires the pest density, ahththresults of the measurements made can indeed be
converted to the density. Furthermore, it should be redserta assume that there is random error present in the
density data and that it is normally distributed about the ttensity values.

In our study we have distinguished between evaluation witdrge number of traps and a small number of
traps, as different accuracy criteria should be appliethénformer and latter case. If the number of traps is large
(a fine grid of traps) the methods of numerical integration loea compared based on their convergence rate. The
convergence of the mean error has been investigated fa thifferent methods of numerical integration. It has
been demonstrated in the paper that the mean error of ana¢stiormed from noisy data converges to zero at the
same rate. This despite the fact that the methods havedtiffeonvergence rates when applied to exact data. The
result of our paper confirm that for a large number of trapsebecomes a dominant feature of the approximation
(cf. [15]). This conclusion, however, does not immediatelyult in the recommendation to dismiss more advanced
(and therefore more accurate on exact data) methods of pastiance evaluation for the sake of methods less
accurate yet easy to implement. It has been noted in the plagueit becomes more probable that a smaller rather
than a larger error will be obtained in the theoretical limlien the number of trapy — oo. Hence a more
accurate method of numerical integration can still be sop&rhen perturbed data are considered on fine grids of
traps. Further careful study of this topic is required arat till be in a focus of our future research.

We have also studied an ecologically important case whemuhgber N of traps is small (a coarse grid of
traps). On coarse grids, there is no convergence rate atigestr@pproach should be designed to compare methods
of pest abundance evaluation. Generally, the mean erroth@robunds of the credible interval are determined by
the uncertainty associated with the estimafermulated from measured pest densities as well as théawsip
between the exact pest abundarh@nd the approximatior, formulated from exact values of the pest population
density. We have shown that the uncertainty depends on t@akpattern of the density function when two
integration methods are compared on coarse grids. Hengey pnori knowledge about the density distribution
can be helpful in order to decide what integration methodulshbe used to reduce uncertainty of the evaluation
and obtaining such information will become a topic of ouufetwork.

Meanwhile, it has been discussed in the paper that on coadsetige most significant contribution to the error
of an estimatd formed from measured data is the relationship between #matst formed from exact dath,
and the true pest abundanEeOur numerical experiments confirmed that the impact of 'drta&‘rtaintyu(l~ ) was
negligible in many ecologically meaningful test cases ke differencel — I,| was large. Thus on coarse grids
of traps it is better to use a method that has a smaller errenwkact data are considered and our further research
will be focused on careful investigation of evaluation noeth that can provide good accuracy on coarse grids.

Our study leaves several open questions, the issue of it@jidieing one of them. We have assumed in
the paper that trap counts can be accurately converted hietowalues of the pest population density function
and therefore our approach does not take into account eetated to such conversion. Meanwhile accurate
interpretation of indirect measurements is considerednasad the most challenging issues in integrated pest
monitoring, where a unified theory has not yet been develdesgite various conversion techniques having been
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discussed in the literature [1, 5, 16, 19, 37]. Clearly, cumate conversion of trap counts into the pest population
density distribution can significantly affect the resuligpest abundance evaluation. This is especially true when
trap counts are small, as any small change in a small trag @dglimesult in a relatively big change in the value of
the pest population density [11]. Hence estimating the emign error and incorporating it into our approach to
obtain a reliable estimate of the pest abundance is a chaligtask that requires further careful investigation.

It should also be noted that the theoretical quantiti€s, ;), Ei» and E,,., used in this paper to assess the
impact of noise on an estimate rely on the assumption thaneeasured pest densify is normally distributed
about the true pest densify and belongs to the range (11) with probabilieyz). The counterpart to this assump-
tion is that there is a chance that afiycan lie outside of this range. In particular the theory doatsdiscount
a measured pest densify being negative. Of course a negative pest density is sasseterefore instead each
measured pest density should be considered to belong tmeated normal distribution. The effects of such a
truncation on the quantities(E,«;), Emin and Ey,q, will be the focus of future work.

Also, in the present paper we have considered uncorrelatisé making an implicit assumption that there is
no interference between traps. In reality there may existesoorrelation between trap counts in neighbouring
traps, in particular when traps are installed sufficientbse to each other. Correlated noise may affect accuracy
of pest abundance evaluation in a different way, and we tihieréntend to investigate a topic of correlation in our
future work.

Finally, another important direction of our research walto investigate two-dimensional problems to extend
our previous study o2 — d density distributions based on exact data. Our approackdbgtundance evaluation
on randomly perturbed data can readily be applied tod problems and our next goal is to implement various
methods of numerical integration in problems where field@dae available from real-life measurements.
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