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Abstract

Numerical integration is a popular technique that can be successfully applied to evaluating the pest insect
abundance in an agricultural field. In this paper we apply numerical integration in the problem where data about
insects obtained as a result of a trapping procedure have random error (noise). We compare several methods of
numerical integration that have different accuracy of evaluation when precise data are considered. In particular,
we consider the composite trapezoidal and composite Simpson’s rules of integration, and compare them with
a statistical approach to obtaining an estimate based on thesample mean. The comparison is first done in the
case when the number of traps where the data are available is large. It will be shown in the paper that noise in
the data badly affects the accuracy of evaluation on fine grids of traps, so the different methods of numerical
integration no longer differ in terms of their accuracy. We then consider an ecologically relevant case of a small
number of traps, i.e. when the data available for evaluationare sparse. It will be discussed in the paper that
the impact of noise is negligible on coarse grids of traps andtherefore we can keep the accuracy hierarchy
of numerical integration methods established from the consideration of precise data. We are then able to give
recommendations on how to use methods of numerical integration to evaluate pest abundance. Our results are
illustrated by numerical experiments.
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# Corresponding author

1



Nomenclature

Symbol Description

Ẽmax Upper limit of the credible interval of̃Erel

Ẽmin Lower limit of the credible interval of̃Erel

Erel Relative error of the estimateIa (noise is absent)
Ẽrel Relative error of the estimatẽI (noise is present)
f Pest population density function
I Exact pest abundance
Ĩ Estimate of pest abundance formulated from noisy density data
Ia Estimate of pest abundance formulated from exact density data
u(Ĩ) Uncertainty associated with the estimateĨ

�(Ẽrel) Mean of the error quantitỹErel

�Ĩ Standard deviation of the estimateĨ

1 Introduction

Accurate evaluation of pest insect abundance is a key component in any integrated pest management (IPM) pro-
gram used in agriculture [6, 23]. The decision of whether or not to implement a control action to manage the pest
population is made by comparing an estimate to some threshold value(s) [42, 43]. The decision can be considered
to be correct if the same conclusion would have been reached if the true abundance had been known. However, by
definition of the problem the true abundance is unknown, thuswe require information about the reliability of the
estimate in order to have confidence about the management decision. Knowledge of the accuracy of an estimate
can give us an indication of the relationship between the true pest abundance and the threshold value(s) and thus
we can establish if there is a risk of an incorrect decision. The risk grows smaller as the estimate becomes more
accurate.

Evaluation is based on the results of sampling and its accuracy depends on a sampling technique. Trapping is
a sampling procedure widely employed in monitoring. The idea is that trap counts can be converted into the pest
population density at trap locations in order to obtain an estimate of the total pest population size [7, 40]. The
accuracy of such evaluation depends strongly on how the dataare collected and the crucial factor with regard to
data collection is the number of traps available in the monitoring procedure. Under routine monitoring, financial
conditions and other restrictions do not normally allow fora big number of traps and that, in turn, may result in
poor accuracy of evaluation.

Apart from the methodology of data collection another important issue is how the trap counts are processed.
Methods of numerical integration are a well-known family ofmethods designed to handle discrete data [13]. Their
application in the pest insect monitoring problem has been studied in [14, 31, 32, 34, 35, 36]. It was discussed
in [33] that the application of more advanced numerical integration techniques often results in a more accurate
evaluation of pest abundance than straightforward statistical computation of the mean density, cf. [12, 41].

The initial study of numerical integration techniques for the pest abundance evaluation problem has been made
under the assumption that density data obtained as a result of trapping are precise. The above assumption is
not entirely realistic and the results should therefore be extended to the case when the density measurements have
random error. The measurements of density are thus associated with someuncertaintyrather than being definitively
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known quantities and this gives rise to uncertainty in the abundance estimate and in turn in the accuracy of this
estimate. It is important to mention that the measurements obtained via trapping are also dependent on the activity
of the target species as well as their density. In order to truly reflect the density, the measurements must be
calibrated somehow [37, 40]. This calibration induces another error into the estimate, however, within this paper
we ignore this error. Instead we assume that the measurements already reflect the pest density but that there is
some additional random error (noise) present.

The accuracy of a selected method of numerical integration (the trapezoidal rule) applied to data measured
with random error has been investigated in our recent paper [15]. It was shown in [15] that the results of numerical
integration of noisy data depends strongly on the number of traps where the data are collected. Namely, if the
number of traps is large, noise becomes a dominant feature ofthe pest abundance approximation and the results
may differ from an estimate of the pest abundance obtained from precise data by several orders of magnitude. On
the other hand, noise does not have a lot of impact of the accuracy of a pest abundance estimate when the number
of traps is small.

As we have already mentioned, the conclusions of the paper [15] concern the trapezoidal rule of integration
only. Meanwhile, it is possible to employ a different methodof numerical integration to evaluate the total pest
population size. The results of [33, 35] have revealed that so called higher order methods of integration provide
better accuracy when exact data are considered. Thus the question arises if higher order methods will have an
advantage in accuracy when the pest abundance is approximated based on noisy data and this question is the focus
of the present paper.

Keeping in mind the results of our previous study [33, 34], the question of accuracy must be investigated
separately for the case of a small number of traps (i.e.coarse gridsof traps) and a large number of traps (fine grids),
as different approaches have to be applied in order to validate the accuracy in the former and latter case. Hence
the paper is organised as follows. In the next section, we briefly explain basic numerical integration techniques
under the assumption that an estimate of pest abundance is based on precise data. In Section 3 we recall the results
of our paper [15] to establish how random error in data translates to error in a pest abundance estimate. We then
apply the results of Section 3 to compare three methods of numerical integration on fine grids in Section 4, where
the convergence rate of the mean error is discussed. The samemethods of numerical integration are compared
on coarse grids in Section 5. The results of previous sections are illustrated by numerical examples designed in
Section 6 for ecologically relevant test cases. Finally, concluding remarks are provided in Section 7.

2 Numerical integration as a means of estimating pest abundance

In this section we discuss the implementation of numerical integration methods within the framework of pest
monitoring. For the sake of simplicity, we reduce the problem to one dimension and essentially consider an
agricultural field as a straight line. Let us note, however, that the results of our study can readily be expanded to
multi-dimensional problems.

Once information on the pest population in an agricultural field has been collected by some chosen means
of sampling, an estimate of the abundance can be formed. Typically the estimate used within the ecological
community depends on the sample mean [12]. Counts obtained from sampling can be manipulated to give the pest
density at each sample unit location [7, 40]. We shall use thenotationfi to denote the pest population density at
the sample unit locationxi, i = 1, . . . , N . An estimateIa to the true abundanceI can be calculated thusly

I ≈ Ia = Lf̄, f̄ =
1

N

N
∑

i=1

fi,
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whereL is the length of the field,̄f is the sample mean pest density, andN is the total number of sample units.
Let the domain of the agricultural field be further represented by the unit interval[0, 1], since a simple linear
transformation can be applied to yield an interval of arbitrary lengthL. The above estimate of the abundance then
becomes equivalent to the sample mean pest density, namely,

I ≈ Ia =
1

N

N
∑

i=1

fi. (1)

The formula (1) calculates an estimate of the pest insect abundance as a weighted sum of the density function
values. This approach can be further generalised to arrive at a family of numerical integration methods as discussed
in [33]. Theoretically speaking, the exact pest populationabundanceI could be obtained by integrating analytically
the pest population density functionf(x),

I =

∫ 1

0

f(x) dx,

if we knew a continuous density functionf(x) on the interval[0, 1]. In reality, however, information on the
pest density is provided by sampling the population and the population density function is consequently discrete,
namely,f(x) ≡ fi, i = 1, . . . , N . The above integral thus cannot be evaluated and we must instead seek an
approximationIa to the exact pest abundanceI by means of numerical integration.

The general formula for numerical integration is given by the weighted sum (e.gsee [13])

I ≈ Ia =

N
∑

i=1

wifi (2)

where the weightswi, i = 1, . . . , N depend on the specific method of numerical integration chosen to be employed.
It is easy to see on comparing the formula (2) with the definition of the sample mean density (1) that this estimate
can be considered as a simple form of a numerical integrationmethod where the weights are uniformly defined as

wi =
1

N
, i = 1, . . . , N. (3)

There are of course many other possible combinations of weight coefficients which can be used in the formula (2)
to yield an estimateIa. The scope of this paper is restricted to the consideration of just three particular examples
of weight coefficients explained below.

Alongside the sample mean density (3) we study estimates formed from two members of the composite
Newton-Cotes family of numerical integration methods (e.gsee [13]). To apply a method belonging to this family
the locationsxi at which the function valuesfi are available are required to be regularly spaced. Such a sampling
plan is indeed often used in pest monitoring [17, 18]. The weights of a composite Newton-Cotes formula are de-
rived by piecewise polynomial interpolation of the discrete functionf(x) ≡ fi, i = 1, . . . N for a chosen degree of
interpolating polynomial. The composite trapezoidal ruleis formed by piecewise linear polynomial interpolation
and has the weights

wi = ℎ, i = 2, . . . , N − 1, wi =
ℎ

2
, i = 1, or i = N. (4)

whereℎ = 1/(N − 1) is the fixed distance between sampling points. The numberN of traps is required to satisfy
the conditionN ≥ 2.

Another method we discuss in the paper is the composite Simpson’s rule. This integration technique uses
piecewise quadratic polynomial interpolation and requires an additional restriction to be imposed, namely, that the
number of sampling locationsN must be odd and such thatN ≥ 3. The weights are described by

wi =
4ℎ

3
, i = 2, 4, . . . , N − 1, wi =

2ℎ

3
, i = 3, 5, . . . , N − 2, wi =

ℎ

3
, i = 1, or i = N. (5)
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In order to make comparisons between the methods (3)-(5) we henceforth consider the following regular dis-
tribution of the sampling locationsxi across the unit interval:

xi =
i− 1

N − 1
, i = 1, . . . , N, (6)

where the numberN ≥ 3 of sampling points is odd.
If the exact pest abundanceI is known then the accuracy of an estimateIa can be assessed by considering the

approximation error. Since the pest abundance isI > 0, the relative approximation errorErel is defined as

Erel =
∣I − Ia∣

I
. (7)

Clearly the smaller the relative error, the more accurate the corresponding estimateIa. A more accurate estimate
gives rise to greater confidence that the correct decision ofwhether or not to implement a control action can be
made. Therefore we impose the following condition on the relative errorErel:

Erel ≤ �, (8)

for some specified accuracy tolerance� . In ecological applications a tolerance� such that� ∈ [0.2, 0.5] is
considered acceptable [27, 28].

3 The uncertainty introduced by random error

A trap count can be manipulated to provide a measurement of the pest density at the trap location, however, a
measurement is subject tomeasurement error. Let us denote the measured pest density at the trap locationxi by
f̃i, and nowfi is used to represent the corresponding exact pest density. The relationship between the measured
pest densityf̃i and the the true pest densityfi is thenfi = f̃i + �mi

where�mi
is the measurement error. A

measurement error is considered to consist of two components: a random component, and a systematic component
[2]. In other words, the measurement error�mi

can be expressed as�mi
= �ri + �si where�ri and�si represent

the random and systematic error respectively. The random error is the result of noise in the data and thus any
�ri , i = 1, . . . N can be either positive or negative with equal probability. The systematic error on the other hand
is caused by some source of bias and therefore every�si , i = 1, . . . N is consistently either positive or negative.
This paper focuses on the impact of noise in the data and as such we ignore the systematic contribution to the
measurement error. That is to say we redefine the relationship between the measured quantityf̃i and the true value
fi as

fi = f̃i + �ri .

The random error component�ri of a measured pest densitỹfi given in the above equation is in essence a
realisation of a random variable. We consider the true pest densityfi to be some unknown constant. Sincef̃i is
the sum of an unknown constantfi and a realisation�ri of a random variable, it can in turn also be considered
a realisation of another random variable. There is thus anuncertaintyassociated with a measured pest density
f̃i. We follow the procedure outlined in our previous work [15] and consider each�ri to be a realisation of a
normal distribution where we make the assumption that the mean is zero. This means each̃fi, i = 1, . . . N is
thus a realisation of a normally distributed random variable Fi with mean�i = fi and standard deviation�i.
Furthermore, since each̃fi is a realisation of a normally distributed random variableFi, a measurement̃fi belongs
to the range

f̃i ∈ [f̃min
i , f̃max

i ] = [fi − z�i, fi + z�i] (9)
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with probability

P (z) = erf

(

z√
2

)

, (10)

whereerf(z) is the error function.
To define the standard deviation�i we further impose the condition that the range of each of the measured

quantitiesf̃i shall be restricted as belonging to the following interval with probabilityP (z):

f̃i ∈ [f̃min
i , f̃max

i ] = [(1− �)fi, (1 + �)fi] , (11)

where� ∈ (0, 1) is the measurement tolerance defined by the conditions of theexperiment. Equating the ranges
(9) and (11) gives an expression for the standard deviation�i as

�i =
�fi
z

. (12)

We note that the definition of a random variablef̃i does not depend on how long traps are exposed in the field (see
our previous work [15] for further discussion of this topic).

Applying a method of numerical integration (2) to a measureddata setf̃i, i = 1, . . . , N instead of the exact
valuesfi, i = 1, . . . , N yields an estimate based on measured dataĨ:

Ĩ =

N
∑

i=1

wif̃i. (13)

We recall thatI > 0, thus the relative approximation error of such an estimate which we denotẽErel is defined as

Ẽrel =
∣I − Ĩ∣

I
. (14)

It can readily be seen from (13) and (14) that both the estimate Ĩ and the corresponding relative errorẼrel

depend on the measured valuesf̃i, i = 1, . . . , N . It follows that the uncertainty associated with these measured
pest densities will give rise to uncertainty in the quantities Ĩ andẼrel. In our previous work [15] we established
the credible interval[Ẽmin, Ẽmax] to which the relative approximation error̃Erel of an estimatẽI belongs with
probability P (z). Below we briefly summarise these results as they are important for our further discussion.
Meanwhile, the interested reader is referred to the text [15] for the detailed formulation and justification.

The standard deviation of a random variable provides a measure of its associated uncertainty. We recall that
we consider a measured pest population densityf̃i to be a realisation of a normally distributed random variable
Fi with mean�i = fi and standard deviation�i, where�i is given by (12). The uncertainty associated with a
measured valuẽfi which we will denoteu(f̃i) is quantified thusly:

u(f̃i) = �i.

From (13) it can be seen that the estimate of pest abundanceĨ is a linear combination of the measured densities
f̃i, i = 1, . . . , N . As such, an estimatẽI is also a realisation of a normally distributed random variable ĨF , where

ĨF =

N
∑

i=1

wiFi.

The random variablẽIF has mean�Ĩ = Ia and standard deviation�Ĩ . As explained in [9] the uncertaintyu(Ĩ)
associated with the estimatẽI can be obtained by propagating the uncertainty associated with the measured values
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u(f̃i), i = 1, . . . , N by means of thelaw of the propagation of uncertainty[2]. Assuming the data are uncorrelated
we arrive at

u(Ĩ) =

√

√

√

⎷

N
∑

i=1

w2
i u

2(f̃i), (15)

and we haveu(Ĩ) = �Ĩ .
Let us now consider the relative error quantityẼrel as given by (14). Clearly, this quantity is the absolute value

of a linear function ofĨ. As detailed above,̃I is a realisation of a normally distributed random variable,hence,
Ẽrel is in turn a realisation of a random variablẽEF with a folded normal distribution[20]. Expressions for the
mean and variance of such a distribution are known and standard formulas are given in [20]. Using these results,
we are able to give the mean of the integration error as

�(Ẽrel) =

(

1− Ia
I

)[

1− 2Φ

(

Ia − I

�Ĩ

)]

+
�Ĩ
I

√

2

�
exp

{

−1

2

(

Ia − I

�Ĩ

)2
}

, (16)

whereΦ is the standard normal cumulative distribution function. The standard deviation is

�Ẽrel
=

√

(

1− Ia
I

)2

+
(�Ĩ
I

)2

− �2

Ẽrel

.

In our previous work [15] we showed that a realisationẼrel of the random variablẽEF belongs to the range
[Ẽmin, Ẽmax] with the probabilityP (z) as defined by (10). The range[Ẽmin, Ẽmax] is called the credible interval
of Ẽrel (e.gsee [4]). The lower limitẼmin of the credible interval is given by

Ẽmin =

⎧





⎨





⎩

0, for Erel ≤ z
�Ĩ
I
,

Erel −
z�Ĩ
I

, for Erel > z
�Ĩ
I
.

(17)

The upper limitẼmax is defined as

Ẽmax =

⎧









⎨









⎩

Erel +
�Ĩ
I
Φ−1

[

2Φ(z)− Φ

(

z +
2IErel

�Ĩ

)]

, for Erel ≤ z
�Ĩ
I
,

Erel +
�Ĩ
I
Φ−1

[

Φ(z)−Φ

(

z − 2IErel

�Ĩ

)

− Φ

(

z +
2IErel

�Ĩ

)

+ 1

]

, for Erel > z
�Ĩ
I
,

(18)

whereΦ is the standard normal cumulative distribution function and Φ−1 is its inverse.

4 The accuracy on integration of noisy data: fine grids

In this section we analyse the formula (16) along with the credible interval [Ẽmin, Ẽmax] of Ẽrel for the case
when the numberN of traps where data are available is large. It can be seen from(17) and (18) that the lower
and upper bounds of the interval[Ẽmin, Ẽmax] induced by noise in the pest population density data depend on the
accuracyErel of evaluation obtained when exact density values are considered. Thus we first have to discuss a pest
abundance estimate calculated from precise data and below we recall the concept of convergence for the relative
errorErel.
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4.1 Convergence on fine grids

Consider an estimateIa and the corresponding relative errorErel obtained as a result of pest abundance approxi-
mation using precise data. It follows from (2) that the errorErel depends on the numberN of sample units taken.
In order to be a viable method of numerical integration asN increases, the error must decrease. That is to say we
have convergence of the relative error to zero, as we increase the number of traps,

Erel → 0 asN → ∞.

The rate at which this convergence occurs depends on the choices of the weightswi in the formula (2). Exploita-
tion of the convergence rate could prove a useful tool in the evaluation of pest abundance. As explained in the
introduction, the nature of the pest monitoring problem means that the number of sample unitsN that can be used
is limited. As such, employing a method with a faster rate of convergence thus achieving the required level of
accuracy (8) for a smaller value ofN seems preferable.

Let us consider an example to compare the convergence rate ofestimatesIa obtained via methods (3)-(5)
for precise values of the density functionf(x). To calculate the relative error (7) we require the exact quantity I.
Furthermore, in order to study the convergence rate of an estimate we also need to be able to evaluate each estimate
over a series of increasingly refined grids of sample units. Consequently, for the purposes of this example we take
the pest population density function to be mathematically defined by a functionf(x) as

f(x) =
√
x7 +

1

10
x ∈ [0, 1] (19)

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

 

 

f(x)
fi

(a)

3 5 9 17 33
10

−8

10
−6

10
−4

10
−2

10
0

N

E
r
e
l

 

 

Estat
rel

E
trap
rel

E
Simp
rel

τ = 0.2

(b)

Figure 1: Evaluating the pest abundance by means of numerical integration. (a) A toy example of a pest population
density functionf(x) defined by the equation (19). The simulated sampled pest population densitiesfi, i =

1, . . . , N (filled diamonds) are shown at locations (6) for the numberN = 5 of sample units. (b) Convergence
of the relative approximation errorErel (7) for estimates obtained using the numerical integrationformula (2)
with different weight choices. The relative error corresponding to the sample mean density estimate (3) is denoted
Estat

rel (filled circles, solid line).Etrap
rel (filled squares, solid line) represents the error of the estimates obtained on

implementing the trapezoidal rule (4) , andESimp
rel (filled triangles, solid line) is the error for the Simpson’srule

estimates (5). The accuracy tolerance (8) is set as� = 0.2 (dotted line). An estimate is considered to be sufficiently
accurate when its relative error lies below this threshold.
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which is shown in Figure 1a. Integrating analytically we obtain I = 0.32̇. A regular grid of sample unit locations
is generated according to the formula (6) for a fixed value ofN . We simulate the sampling procedure by evaluating
the function (19) at the computed pointsxi, i = 1, . . . , N to produce a discrete set of datafi, i = 1, . . . , N . An
estimateIa is found by means of formula (2) with the selected set of weights and the relative approximation error
Erel is calculated according to (7). The convergence rate is established by computingErel over a series of grids
as defined by (6). The first grid is formed by fixingN = N1 for some initial valueN1, whereN1 is odd. The
subsequent grid is then generated by recomputing the numberof grid nodes asNs = 2Ns−1 − 1, whereNs is the
number of nodes on the new grid andNs−1 is the number of nodes on the previous grid. This process is repeated
as many times as desired.

Convergence curves for the error of estimates formed using the weight choices (3)-(5) are plotted in Figure 1b.
The motivation for considering an estimate other than the sample mean population density is well illustrated by
this graph. It can be seen that the relative error of an estimate formed using the trapezoidal rule (4) converges to
zero at a faster rate than that of the sample mean (3). Meanwhile Simpson’s rule (5) yields even faster convergence.
To clarify the implication of this faster convergence rate let us fix the accuracy tolerance as� = 0.2. Whereas the
sample mean density requires a grid ofN ≈ 9 sample units to satisfy the condition (8) that the relative error lies
below the tolerance� , the trapezoidal requires a grid of onlyN ≈ 5 units. Furthermore, Simpson’s rule achieves
the desired accuracy on the initial grid of onlyN = 3 sample units. In fact, forN = 3 we haveEstat

rel ≈ 0.4363

andESimp
rel ≈ 0.0105; the estimate formed by Simpson’s rule is over forty times more accurate than that provided

by the sample mean density.
Unlike in the above example the exact quantityI is unlikely to be available in the real life pest monitoring

problem. Thus, the accuracy cannot be assessed by considering the relative approximation errorErel as defined
by (7). Instead, the usual way to conclude about an accuracy of an estimate formed by numerical integration is to
consider the asymptotic error estimates. These are usuallygiven in the form (e.gsee [13])

E(ℎ) = Cℎk, (20)

whereℎ is the fixed distance between the sample units andℎ is required to be small in order to provide asymptotic
convergence at the ratek. The constantC and the convergence ratek in (20) depend on the numerical integration
method of choice. It can be shown that when the sample locations are defined by (6) that the convergence rate for
the sample mean isk = 1, and it is well known that the convergence rate isk = 2 andk = 4 for the trapezoidal
rule (4) and Simpson’s rule (5) respectively (e.gsee [13]). From these error estimates, we typically expect that the
higher the order of convergence of a method, the more accurate the estimates produced will be.

The above discussion demonstrates that choosing the weights of the formula (2) differently to those defined
by the formula (3), the estimate often used in pest monitoring, has potential benefits. Firstly there is the potential
for obtaining a more accurate estimate of the pest abundanceIa, and furthermore, a prescribed accuracy tolerance
� may be achieved for a smaller numberN of sample units. However, let us emphasise again that the above
discussion is based on the assumption of precise data. Hence, in the next sub-section we investigate asymptotic
convergence of the mean error (16) calculated from noisy data.

4.2 Convergence of the evaluation error in the presence of noise

In order to outline the potential effect noise could have on the accuracy of an estimate and the convergence rate
of a numerical integration method we consider the behaviourof the mean�(Ẽrel) and the limits of the interval
[Ẽmin, Ẽmax] to which Ẽrel belongs with probability P(z). Once the estimate of the pestabundance based on
measured data becomes sufficiently close to the true pest abundanceI, the quantityẼmin becomes zero. Sincez
andI are constant, the behaviour of the convergence of�(Ẽrel) andẼmax is dictated by the quantitiesI − Ia and
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�Ĩ . In other words, it is determined by the relationship between the exact pest abundanceI and the approximation
Ia formulated from exact values of the pest population density, as well as the uncertainty associated with the
estimateĨ formulated from measured pest densities. The convergenceI − Ia → 0 has been discussed in the
previous sub-section and we now look at the convergence of the uncertaintyu(Ĩ). Let us introduce the termumax

such that
umax = max

i∈{1,...,N}
u(fi).

From the above and the equation (15) it follows that

u(Ĩ) =

√

√

√

⎷

N
∑

i=1

w2
i u

2(f̃i) ≤ umax

√

√

√

⎷

N
∑

i=1

w2
i .

Let us first consider the uncertainty associated with an estimateĨstat formed by the sample mean density. Substi-
tuting the weights (3) into the above and recalling the distance between the traps is fixed asℎ = 1/(N − 1) we
obtain

u(Ĩstat) ≤
umax√

N
=

(

1

ℎ
+ 1

)− 1

2

umax.

For smallℎ we have

umax

(

1

ℎ
+ 1

)− 1

2

≈ ℎ
1

2umax,

thus the convergence of the uncertaintyu(Ĩstat) is of the orderk = 1/2. Similar expressions can be found for the
uncertainty associated with an estimateĨtrap formed by implementation of the trapezoidal rule (4)

u(Ĩtrap) ≤ ℎ

(

1

ℎ
− 1

2

)
1

2

umax ≈ ℎ
1

2umax,

and likewise that associated with the estimateĨSimp formulated from Simpson’s rule (5)

u(ĨSimp) ≤
ℎ

3

(

10

ℎ
− 2

)
1

2

umax ≈ ℎ
1

2umax.

Thus the orders of convergence of the uncertainty termsu(Ĩtrap) andu(ĨSimp) are, as foru(Ĩstat), alsok = 1/2

provided the distanceℎ between traps is small.
In our previous study [15] of the effect noise has on the accuracy of an estimate formed by the trapezoidal

rule, we found that when the number of trapsN is large, the uncertaintyu(Ĩ) associated with the estimate is the
dominant contribution to the error of an estimateĨ. Therefore, in our present study of the three methods (3)-(5) we
anticipate that asN increases, the quantities�(Ẽrel) andẼmax will converge at a rate ofk = 1/2 in accordance
with the behaviour of the uncertainty associated with the estimateĨ as described above rather than the orderk as
described by the error estimate (20). This important conclusion will be further illustrated in Section 6.

5 The accuracy on integration of noisy data: coarse grids

We now turn our attention to the ecologically relevant case of coarse grids of traps where data available for integra-
tion are sparse. It is a widespread situation in ecological monitoring that financial, ecological and other restrictions
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require the number of traps installed in an agricultural field to be relatively small [22, 25]. For example, the num-
ber of traps installed over an agricultural field in the United Kingdom very rarely exceed a few dozen [3, 17, 18],
where a linear size of the field is typically of the order of a few hundred meters.

In our previous work a coarse grid was defined as a grid where the asymptotic error estimate (20) does not hold
and we should expect poor accuracy of pest abundance evaluation. In many cases having a small number of traps
installed in the field means that we have a coarse grid of traps. However, we cannot always provide a direct link
between poor accuracy and a small number of traps. We have discussed in [31, 33, 34, 35] that the definition of a
coarse grid of traps should be based on the properties of the population density distribution rather than a number of
traps installed in the field. In particular, grid coarsenessis related to the degree of heterogeneity, highly aggregated
density distributions being the most difficult case for pestabundance evaluation. It has been shown in [31, 34]
that an estimate of pest abundance can be very inaccurate when the total pest population size is evaluated from a
strongly heterogeneous density pattern, while the same grid of traps will provide very good accuracy for another,
quasi-homogeneous, density distribution.

Since ecologists and farmers often have to deal with pest insect density distributions that have a considerable
degree of aggregation [8, 21, 26], the study of coarse grids becomes an important topic in integrated pest monitoring
programs. Our results in [33, 34, 35] have been obtained for the evaluation from exact data and we now need to
further investigate the accuracy on coarse grids in the casethat data are randomly perturbed.

On coarse grids, we cannot rely upon the convergence rate to conclude about the accuracy of the mean error
associated with a selected method of numerical integration. Generally, the mean error and the bounds of the
credible interval are determined by the following quantities:

1. uncertainty associated with the estimateĨ formulated from measured pest densities;

2. the errorErel obtained when the exact pest abundanceI and the approximationIa are formulated from exact
values of the pest population density.

We begin our study of coarse grids by discussing the uncertainty in the estimatẽI. Below we compare the
uncertainty in the estimate obtained when the trapezoidal rule (4) is employed with the uncertainty for the sample
mean (3) and Simpson’s rule (5) estimates on coarse grids.

From (15) it is clear that the uncertainty associated with anestimate formed from measured dataĨ will increase
in magnitude as the magnitude of the weights of the numericalintegration method increase. On comparing the
weights of the sample mean density estimate (3), the trapezoidal rule (4), and Simpson’s rule (5) it can be seen
that none of these methods has uniformly larger weights thananother. For example, we recall that the weights of
the trapezoidal rule arew1 = wN = ℎ/2 andwi = ℎ, i = 2, . . . N − 1 whereas for the sample mean density
estimate they are uniformlywi ≡ 1/N . Thus, whilst the weights corresponding to the interior nodes are larger
for the trapezoidal rule than the sample mean density estimate, the converse is true for those at the exterior nodes.
Consequently employing a method which by the asymptotic error estimate (20) is ordinarily considered more
accurate, could in fact lead to a larger associated uncertainty. For instance the use of Simpson’s rule (5) may
result in a larger uncertainty in the estimateĨ than that yielded by the trapezoidal rule (4). This occurs when the
following condition is satisfied

ℎ2

9

(

u21 + u2N
)

+
16ℎ2

9

N−1

2
∑

i=1

u22i +
4ℎ2

9

N−1

2
∑

i=2

u22i−1 >
ℎ2

4

(

u21 + u2N
)

+ ℎ2
N−1
∑

i=2

u2i ,

whereui ≡ u(fi). The above can be expressed as
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(a)f(x)

xx2
x1 x3

(b)f(x)

x2
xx1

x3

Figure 2: A sketch of the density distributionf(x) where evaluation of the pest abundance is done on a coarse grid
of N = 3 traps. The measured data are available at the pointsx1, x2 andx3 of a regular grid of traps. (a) The
density is localised close to the centre of the domain. (b) The density is localised close to the boundaries.

u21 + u2N < C1

N−1

2
∑

i=1

u22i − C2

N−1

2
∑

i=2

u22i−1, (21)

where the coefficients areC1 = 28/5 andC2 = 4.
Likewise, Simpson’s rule could lead to a greater uncertainty associated with the estimatẽI than that associated

with the sample mean density (3). This will happen when we have

ℎ2

9
(u21 + u2N ) +

16ℎ2

9

N−1

2
∑

i=1

u22i +
4ℎ2

9

N−1

2
∑

i=2

u22i−1 >
1

N2

N
∑

i=1

u2i .

Using the fact thatℎ = 1/(N − 1) and rearranging gives

u21 + u2N < C3

N−1

2
∑

i=1

u22i − C4

N−1

2
∑

i=2

u22i−1, (22)

where we haveC3 = (7N2 + 18N − 9)/(8N2 − 18N + 9) andC4 = (5N2 − 18N + 9)/(8N2 − 18N + 9).
Finally, implementing the trapezoidal rule will give rise to a larger uncertainty than the sample mean density

when the following condition is satisfied:

u21 + u2N < C5

N−1
∑

i=2

u2i , (23)

whereC5 = (8N − 4)/(3N2 − 8N + 4).
The conditions (21), (22) and (23) can be used to decide whichmethod is best to use on a coarse grid of traps

in order to reduce the uncertainty of evaluation. Consider,for example, the condition (23) and let a very coarse
grid of N = 3 traps be installed in the domain. The inequality (23) is thenwritten asu21 + u23 < C5u

2
2, where

C5 = 20/7 ≈ 3. Hence, if the spatial pattern of a density distribution is such that the density is concentrated
close to the domain centre (see a sketch of the density function shown in Figure 2a), the inequality (23) holds. The
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uncertainty generated by the trapezoidal rule (4) is in thiscase larger than the uncertainty generated by the method
(3). On the contrary, if the density is localised close to theboundaries (see Figure 2b) then the trapezoidal rule
yields a smaller uncertainty of evaluation. Similar analysis can be done for conditions (21) and (22).

It follows from the conditions (21), (22) and (23) that the error in the pest abundance evaluation on coarse grids
depends on the spatial pattern of the density function when noisy data are used for evaluation. This result is in
line with the results of our previous work [34, 35] where the error of evaluation on exact data has been discussed.
Thus we want to reiterate here a conclusion already made for the case of exact data in our work [33]. Namely, we
conclude that the knowledge of spatial pattern of the pest insect density distribution is crucial when pest abundance
is evaluated on coarse grids and any information about spatial pattern must be used to its fullest extent.

Another factor that makes an impact on the accuracy of evaluation on perturbed data is the errorErel calculated
from exact data. As we have already mentioned the asymptoticerror estimates (20) do not hold on coarse grids
of traps and that impedes any theoretical discussion of the error (7). Meanwhile, a key result of the work [15]
was that when the numberN of traps is too small, the dominant contribution to the errorof an estimatẽI formed
from measured data is the relationship between an estimate formed from exact dataIa and the true pest abundance
I. In other words, it was found that if for smallN the errorErel incurred by approximating the pest abundance
by means of numerical integration on exact data is already significant, then the additional error caused by noise
in the data has little relative impact. This conclusion in [15] came from numerical experiments conducted for the
trapezoidal method of numerical integration. Hence in the next section we design several ecologically meaningful
test cases in order to investigate the contribution of the errorErel on coarse grids for various methods of numerical
integration. For each of those test cases the accuracy on finegrids will also be investigated.

6 Numerical Test Cases

In this section we test the conclusions of the previous section for a variety of ecologically meaningful data. First,
we outline how we acquire such data. Then, estimates of the pest abundance are obtained by employing the
methods (3), (4) and (5) over a series of increasingly refinedgrids of traps,i.e. for increasing values of the number
N of traps. The mean error of an estimates formed from measureddata�(Ẽrel) is calculated for each value of
N , as are the lower and upper limits of the� = 100P (z) percent credible interval[Ẽmin, Ẽmax] using (16) (17)
and (18) respectively. To assess the impact of noise on the accuracy of an estimate, a comparison is made with the
relative errors of the estimates based on exact dataErel. Plots of the convergence curves of all error quantities are
given and the results are discussed.

6.1 Generating Ecologically Meaningful Test Cases

To form convergence curves of the quantitiesErel, �(Ẽrel), Ẽmin andẼmax, we require the ability to form esti-
mates on a series of increasingly refined grids of traps. Since it is difficult to obtain field data which satisfy these
conditions, particularly in 1D, we instead choose to use computer simulated data to test the hypotheses from the
previous section. The data is generated using the spatiallyexplicit form of a predator prey model with the Allee
effect [24, 44], which is given below in its dimensionless form:

∂f(x, t)

∂t
= d

∂2f

∂x2
+ f(1− f)− fg

f + p
,

∂g(x, t)

∂t
= d

∂2g

∂x2
+ k

fg

f + p
−mg .

(24)
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The termsf(x, t) and g(x, t) represent the population density of the prey and predator respectively at the
position in spacex at some timet > 0. The parameters in the system are as follows:d is the diffusion coefficient,
p is the half-saturation prey density,k is the food assimilation efficiency coefficient, andm is the predator mortality.
We consider the prey to be the pest insect. The pest population densityf(x, t) is found by numerically solving
the above system of equations and considering a numerical solution at the fixed timet = t̂ > 0. Since the time is
fixed we shall henceforth denote the pest population densityasf(x). The interested reader is referred to [34] for
the details of the non-dimensionalisation, as well as the numerical solving of the system of equations (24).

Since we intend to investigate the accuracy of numerical integration for a broad variety of density patterns, we
generate six ecologically significant test cases from the model by inputting different parameter values. Plots of
the resulting pest density functions are shown in Figures 3a- 3f. The test cases are chosen such that the level of
difficulty in obtaining an accurate estimate of pest abundance increases as we move from test case 1 through to test
case 6. A test case is considered more difficult the higher thenumberN of traps needed to obtain a sufficiently
accurate estimate (cf. [34, 32]). Test case 1, as shown in Figure 3a, is a smooth, monotonous function. The
structure of the density function can therefore be detectedfrom a small amount of datai.e. a small numberN of
installed traps and an accurate estimate of abundance can bereadily produced. The number of peaks present in the
density function increases in the subsequent test cases until we reach test case 5 as shown in Figure 3e which has a
complicated multi-peak structure. More information aboutthe pest density function, which corresponds to a higher
numberN of installed traps, will be required to detect the more complex peak structure and thus obtain an accurate
estimate. Meanwhile, test case 6 provides an example of the most difficult case whereby the pest population is
located within a small subdomain of the field. The difficulties of handling such distributions, also known aspeak
functionshave been discussed in detail in our previous works [14, 31].If we consider a fixed numberN of installed
traps, we expect the estimate of abundance to be most accurate for test case 1 and least accurate for test case 6.
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Figure 3: Ecologically significant test cases. A spatial distribution f(x) of the pest population density function
is obtained from the model (24) at different timest and for different values of the diffusivityd. (a) Test case 1,
d = 10−4, t = 5, (b) Test case 2,d = 10−4, t = 50, (c) Test case 3,d = 10−5, t = 50, (d) Test case 4,d = 10−5,
t = 100. (e) Test case 5,d = 10−5, t = 400. (f) Test case 6,d = 3 ⋅ 10−6, t = 10. Other parametersk = 2,
ℎ = 0.3 andm = 0.7.
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6.2 Results and Discussion

We now investigate the impact of noise on an estimate of pest abundance for the six ecologically meaningful test
cases introduced in the previous sub-section. The quantitiesErel, �(Ẽrel), Ẽmin andẼmax, we need to assess the
impact of noise on an estimate of pest abundance, all depend on the true value of the pest abundanceI. In order
to obtainI the system of equations (24) was solved on a very fine regular grid as defined by (6). For all test cases
shown in Figure 3 the number of nodes on the fine grid was fixed asNf = 4097. The dataf(x) obtained on the
fine grid was then integrated using the trapezoidal rule (4) and the result was taken to be the ‘exact’ pest abundance
I. The method (4) was selected as opposed to a more sophisticated method to limit the effect of round off error
incurred on such a fine grid.

An estimate of pest abundance based on exact dataIa is obtained using each of the weight choices (3)–(5), on
a series of regular grids of traps and the errorErel is calculated as (7). The initial grid has the number of traps
fixed asN = N1, whereN1 is odd. The number of traps in subsequent grids is then calculated asNs = 2Ns−1−1

for s ≥ 2 . This process is repeated as many times as necessary to fullyshow the behaviour of the convergence.
The quantities�(Ẽrel), Ẽmin andẼmax are then evaluated for each value ofN from (16), (17) and (18) where the
measurement tolerance has been set as� = 0.3. We have fixedz = 3 so the probability that a single realisation of
the errorẼrel lies within the range[Ẽmin, Ẽmax] is P (3) ≈ 0.9973.

Figures 4a–4f compare the errorErel of an estimate formed from exact data with the mean error�(Ẽrel) of an
estimate formed from noisy data. The figures confirm that oncethe grid of traps becomes sufficiently refined, the
convergence rate of the error quantityErel behaves according to the asymptotic error estimates (20) and Simpson’s
rule (5) yields a more accurate estimate than the trapezoidal rule (4), which in turn is superior than the estimate
provided by the sample mean density (3).

Meanwhile, it can also be seen from Figure 4 that for each method of numerical integration the mean error
of an estimate formed from noisy data,�(Ẽrel), converges at the slower rate ofk = 1/2 as explained in Section
4. The difference in the convergence rates ofErel and�(Ẽrel) as shown in 4a–4f demonstrates that when the
numberN of traps is large, the accuracy of an estimate could be severely hampered by the presence of noise. In
the presence of noise Simpson’s rule (5) is not superior to the methods (3) and (4), as happens when precise data
are used on fine grids. It should be noted, however, that asN grows large the estimate of pest abundance based on
exact dataIa tends to the true pest abundanceI and hence the error of an estimate based on exact dataErel tends
to zero. Consequently, the probability mass function of thequantityẼrel transitions to a special case of the folded
normal distribution, namely the half normal distribution [10]. In other words, the probability mass function skews
towards zero, thus it becomes more probable that a smaller rather than a larger error will be obtained.

Figures 5a–5f show the mean errors�(Ẽrel) more clearly, as well as the quantitỹEmax. The curves of̃Emax are
shown to be parallel to that of�(Ẽrel) for largerN , therefore confirming that the convergence rate ofẼmax is also
k = 1/2 as expected. Thus for largeN , the uncertainty associated with the estimate of pest abundanceĨ caused
by noise in the datãfi, i = 1, . . . , N is the dominant factor affecting the accuracy of an estimate. One interesting
feature shown in Figures 5a–5f is that when the numberN of traps is large, the difference between the values of
the quantity�(Ẽrel) for each of the methods of numerical integration (3)-(5) is very small, as is the difference
between the values of̃Emax. This confirms our previous conclusion that whilst the more sophisticated Simpson’s
method (5) outperforms the trapezoidal rule (4) and the sample mean density (3) as a means of estimating pest
abundance on fine grids of traps when the data on the pest population density are precise, there is little difference
between the methods when the data is noisy.
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Figure 4: Convergence curves for the density distributionsf(x) depicted in Figure 3a – 3f respectively. The mean
error�(Ẽrel) of an estimate formed from noisy data (dashed lines) is compared with the errorErel of an estimate
constructed from exact data (solid lines). The caption in all figures is as given above. The superscripts ‘stat’, ‘trap’
and ‘Simp’ indicate that the estimate of the pest abundance was calculated either as the mean density (3), or was
formed using the trapezoidal rule (4) or Simpson’s rule (5).A colour version of this figure can be found online.
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Figure 5: Convergence curves for the density distributionsf(x) depicted in Figure 3a – 3f respectively. Plots of
the mean error quantity�(Ẽrel) are shown (solid lines) alongside the quantityẼmax (dashed lines). The caption
in all figures is as given above and the same superscript notation is used as in Figure 4. A colour version of this
figure can be found online.
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N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.0057 0 0

5 0 0 0

9 0 0 0

(a)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.6088 0.6415 0.6686

5 0 0.1391 0.4180

9 0 0 0

(b)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.0819 0.2363 0.3724

5 0 0 0.1423

9 0 0 0

17 0 0 0

(c)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0 0 0.1590

5 0 0 0.1742

9 0 0.1742 0

17 0 0 0

(d)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.0452 0 0

5 0.0600 0.0252 0.0118

9 0.1407 0.1308 0.1499

17 0.0679 0.0568 0.0170

33 0 0 0

65 0 0 0

(e)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.9982 0.9980 0.9977

5 0.9984 0.9984 0.9985

9 0.9985 0.9985 0.9985

17 0.5949 0.5697 0.4267

33 0.3757 0.3562 0.2627

65 0 0 0

(f)

Table 1: The quantitỹEmin for the test cases shown in Figure 3a – 3f respectively. The same superscript notation
is used as in Figure 4. For the larger values ofN where the values of̃Emin are not displayed, they are uniformly
zero.

Tables 1a–1f give the values of̃Emin for the test cases 1–6. As can be seen from (17), the definitionof this
quantity depends on the distance between the estimated pestabundance based on exact dataIa and the true pest
abundanceI. A sufficiently accurate estimateIa is needed for the quantitỹEmin to be zero, thus the grid of N
traps needs to be sufficiently refined to resolve the heterogeneity of the pest population density. Tables 1a–1f
confirms that the point at which̃Emin becomes consistently zero varies depending on the spatial pattern of the pest
population density function of the corresponding test case(compare with Figures 3a-3f). For the easier to handle
spatial density distributionse.gthe monotone function of test case 1 (see Figure 3a), the quantity Ẽmin is non-zero
only for the estimate formed by the sample mean density (3) onthe grid ofN = 3 traps (see Table 1a). Test cases 5
and 6 as shown in Figure 3e and Figure 3f on the other hand require further grid refinement beforẽEmin becomes
consistently zero. This happens for all numerical integration methods considered in the paper after the grid has
been refined toN = 33 andN = 65 traps for test case 5 and test case 6 respectively.

Now let us consider the behaviour of the error quantities when the numberN of traps is small. Figures 4a–4f
confirm the findings of our earlier paper [15]. It can be seen from Figure 4 that for smallN the accuracy of
an estimate of pest abundance formed from noisy data is determined by the accuracy of an estimate based on
exact data. That is, for smallN the quantityẼrel is strongly dependent onErel and is just slightly affected by
the uncertainty caused by noise being present in the data. This is evident from the fact that in general the curves
representing the mean error�(Ẽrel) of the estimates formed from noisy data lie close to their corresponding curves
Erel whenN is small. In some cases the estimate of the pest abundanceIa based on exact data already achieves
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good levels of accuracy even whenN is small. For example, for Test case 1 (see Figure 4a), this isevident for
the estimates formed by implementing Simpson’s rule. Here,there is a clear difference between the quantities
ESimp

rel and�(ẼSimp
rel ) even on very coarse grids ofN = 3 andN = 5 traps (compare the solid red line with closed

triangles with the dashed red line). Whereas considering the estimates formed by the sample mean density (3) on
the same coarse grids, it can be seen that there is little difference betweenEstat

rel and�(Ẽstat
rel ) since the accuracy

remains poor until the grid of traps is further refined (compare the solid green line with closed circles with the
dashed green line).

Figures 4f and 5f exhibit the behaviour on grids with a small numberN of traps whereby the quantities
Erel, �(Ẽrel), Ẽmax and alsoẼmin (see Table 1f) lie very close to each other. As discussed in [15] this is the result
of how we consider the noisy datãfi to be related to the true population density valuesfi. At the nodes of these
grids the values offi are very small. Since we essentially consider thef̃i to be a percentage of the corresponding
fi, in this instance the noisy data will lie close to the true data.

We continue to consider the ecologically relevant scenariowhere the number of grid nodesN is small. Tables
2a - 2f provide further evidence to support the assertion that for each numerical integration method, the magnitude
of �(Ẽrel) is mainly defined byErel on coarse grids of traps. In other words, the impact of the uncertainty
associated with the estimateu(Ĩ) caused by noise in the density data is dominated by the errorErel which is
imparted by the means of obtaining an estimatei.e. the method of numerical integration. Tables 2a - 2f gives
u(Ĩ), alongside the quantitiesErel and�(Ẽrel) for all test cases on the grids ofN = 3, 5 and 9 nodes. For each
fixed value ofN , the uncertaintiesu(Ĩ) associated with an estimate are compared for each numericalintegration
method. The maximum of these uncertainties is given in bold,and the minimum is given in grey text. The same
comparison is made for the relative errorsErel of an estimate based on exact data, and the mean errors�(Ẽrel) of
an estimate formulated from noisy data.

It is shown in tables 2a–2f that the numerical integration method which yields the maximum or minimum
value of�(Ẽrel) for a fixed numberN of traps is the same as that which generates the maximum or minimum
value ofErel for all test cases. Therefore, the accuracy of an estimate based on exact data should be used to
assess which method is superior whenN is small. The tables also demonstrate the point made in Section 5, that
there are instances when the uncertainty associated with anestimate generated by Simpson’s rule is greater than
that which arises as a result of employing the trapezoidal rule and/or using the sample mean density to estimate
pest abundance For example, this occurs for test case 2 whenN = 5 as shown in Table 2b as well as for test
case 3 whenN = 3. Other examples of this happening can be seen in the remaining tables, as can examples of
when the uncertainty associated with an estimate formed by the trapezoidal rule exceeds that associated with the
corresponding sample mean density estimate.

The accuracy control on coarse grids remains, perhaps, the most difficult issue in the general problem of pest
abundance evaluation. Let us emphasise again that the asymptotic error estimates (20) (which are the conventional
way of assessing a method of numerical integration) do not necessarily hold whenN is small. This is evident
by inspection of the convergence curves in figures 4a–4f and has been discussed at length in [14, 31, 32, 31]. As
explained in [31], on coarse grids the error can be considered a random variable and we have thus recommended
that a method of numerical integration should instead be assessed probabilistically. In other words, the probability
of obtaining a desired level of accuracy should be calculated rather than the error of an estimate. An initial
methodology for such an assessment is presented in [31] for exact data only, however the findings of this paper
indicate that the results would also apply for noisy data as the effects of noise can be ignored on coarse grids.
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N 3 5 9

u(Ĩstat) 0.0121 0.0081 0.0055
u(Ĩtrap) 0.0099 0.0067 0.0049
u(ĨSimp) 0.0085 0.0068 0.0054

Estat
rel 0.2838 0.1327 0.0643

Etrap
rel 0.1409 0.0235 0.0011

ESimp
rel 0.0021 0.0156 0.0063

�(Ẽstat
rel ) 0.2839 0.1335 0.0668

�(Ẽtrap
rel ) 0.1428 0.0452 0.0304

�(ẼSimp
rel ) 0.0521 0.0439 0.0332

(a)

N 3 5 9

u(Ĩstat) 0.0042 0.0229 0.0132
u(Ĩtrap) 0.0037 0.0285 0.0148
u(ĨSimp) 0.0036 0.0379 0.0108
Estat

rel 0.6681 0.3138 0.0048
Etrap

rel 0.6948 0.5459 0.0823
ESimp

rel 0.7214 0.9595 0.0723

�(Ẽstat
rel ) 0.6681 0.3139 0.0502

�(Ẽtrap
rel ) 0.6948 0.5459 0.0907

�(ẼSimp
rel ) 0.7214 0.9595 0.0760

(b)

N 3 5 9

u(Ĩstat) 0.0403 0.0244 0.0170
u(Ĩtrap) 0.0518 0.0263 0.0262
u(ĨSimp) 0.0659 0.0182 0.0176

Estat
rel 0.3701 0.0628 0.0824

Etrap
rel 0.6069 0.0526 0.0798

ESimp
rel 0.8438 0.2725 0.0888

�(Ẽstat
rel ) 0.3701 0.0711 0.0830

�(Ẽtrap
rel ) 0.6069 0.0666 0.0806

�(ẼSimp
rel ) 0.8438 0.2725 0.0893

(c)

N 3 5 9

u(Ĩstat) 0.0407 0.0255 0.0175
u(Ĩtrap) 0.0306 0.0177 0.0145
u(ĨSimp) 0.0205 0.0157 0.0164

Estat
rel 0.2205 0.0414 0.0369

Etrap
rel 0.0568 0.2455 0.1384

ESimp
rel 0.3341 0.3084 0.1027

�(Ẽstat
rel ) 0.2230 0.0670 0.0501

�(Ẽtrap
rel ) 0.0837 0.2455 0.1384

�(ẼSimp
rel ) 0.3341 0.3084 0.1031

(d)

N 3 5 9

u(Ĩstat) 0.0190 0.0150 0.0105
u(Ĩtrap) 0.0210 0.0160 0.0108
u(ĨSimp) 0.0248 0.0176 0.0110
Estat

rel 0.2009 0.1828 0.2268
Etrap

rel 0.1579 0.1567 0.2193
ESimp

rel 0.1148 0.1563 0.2401
�(Ẽstat

rel ) 0.2009 0.1828 0.2268
�(Ẽtrap

rel ) 0.1580 0.1567 0.2193
�(ẼSimp

rel ) 0.1173 0.1563 0.2401

(e)

N 3 5 9

u(Ĩstat) 1.30e-06 9.53e-07 6.87e-06
u(Ĩtrap) 1.54e-06 1.03e-06 7.13e-07
u(ĨSimp) 1.89e-06 1.05e-06 7.41e-07

Estat
rel 0.99852 0.99867 0.998711

Etrap
rel 0.99833 0.99861 0.99869

ESimp
rel 0.99815 0.99871 0.998714

�(Ẽstat
rel ) 0.99852 0.99867 0.998711

�(Ẽtrap
rel ) 0.99833 0.99861 0.99869

�(ẼSimp
rel ) 0.99815 0.99871 0.998714

(f)

Table 2: Contributions to the error of an estimate calculated from noisy data. For grids of a small number of traps
and for each of the numerical integration methods (3)-(5), the quantitiesu(Ĩ),Erel, and�(Ẽrel) are compared. The
same superscript notation is used as in Figure 4. For a fixed value ofN , the greatest of each quantity is highlighted
in bold and the lowest is given in grey text. The position of the bold/grey text in the�(Ẽrel) row matches that of
theErel row. 21



7 Concluding Remarks

We have considered the problem of pest abundance evaluationwhen data used for such evaluation have random
error. Several methods of numerical integration employed in the evaluation problem have been compared in terms
of their accuracy. For each method of numerical integrationwe have studied the behaviour of the mean error
�(Ẽrel) arising when pest abundance is evaluated from randomly perturbed data. We have also investigated the
credible interval[Ẽmax, Ẽmax] to which the error of evaluation belongs with a given probability P (z). Whilst the
motivation for this work was to shed light on the problem of estimating pest insect abundance, the results could be
applicable to abundance estimates for other kinds of species. This would be the case so long as the evaluation of
abundance for that species requires the pest density, and that the results of the measurements made can indeed be
converted to the density. Furthermore, it should be reasonable to assume that there is random error present in the
density data and that it is normally distributed about the true density values.

In our study we have distinguished between evaluation with alarge number of traps and a small number of
traps, as different accuracy criteria should be applied in the former and latter case. If the number of traps is large
(a fine grid of traps) the methods of numerical integration can be compared based on their convergence rate. The
convergence of the mean error has been investigated for three different methods of numerical integration. It has
been demonstrated in the paper that the mean error of an estimate formed from noisy data converges to zero at the
same rate. This despite the fact that the methods have different convergence rates when applied to exact data. The
result of our paper confirm that for a large number of traps noise becomes a dominant feature of the approximation
(cf. [15]). This conclusion, however, does not immediatelyresult in the recommendation to dismiss more advanced
(and therefore more accurate on exact data) methods of pest abundance evaluation for the sake of methods less
accurate yet easy to implement. It has been noted in the paperthat it becomes more probable that a smaller rather
than a larger error will be obtained in the theoretical limitwhen the number of trapsN → ∞. Hence a more
accurate method of numerical integration can still be superior when perturbed data are considered on fine grids of
traps. Further careful study of this topic is required and that will be in a focus of our future research.

We have also studied an ecologically important case when thenumberN of traps is small (a coarse grid of
traps). On coarse grids, there is no convergence rate and another approach should be designed to compare methods
of pest abundance evaluation. Generally, the mean error andthe bounds of the credible interval are determined by
the uncertainty associated with the estimateĨ formulated from measured pest densities as well as the relationship
between the exact pest abundanceI and the approximationIa formulated from exact values of the pest population
density. We have shown that the uncertainty depends on the spatial pattern of the density function when two
integration methods are compared on coarse grids. Hence, any a priori knowledge about the density distribution
can be helpful in order to decide what integration method should be used to reduce uncertainty of the evaluation
and obtaining such information will become a topic of our future work.

Meanwhile, it has been discussed in the paper that on coarse grids the most significant contribution to the error
of an estimatẽI formed from measured data is the relationship between an estimate formed from exact dataIa
and the true pest abundanceI. Our numerical experiments confirmed that the impact of the uncertaintyu(Ĩ) was
negligible in many ecologically meaningful test cases where the difference∣I−Ia∣ was large. Thus on coarse grids
of traps it is better to use a method that has a smaller error when exact data are considered and our further research
will be focused on careful investigation of evaluation methods that can provide good accuracy on coarse grids.

Our study leaves several open questions, the issue of reliability being one of them. We have assumed in
the paper that trap counts can be accurately converted into the values of the pest population density function
and therefore our approach does not take into account errorsrelated to such conversion. Meanwhile accurate
interpretation of indirect measurements is considered as one of the most challenging issues in integrated pest
monitoring, where a unified theory has not yet been developeddespite various conversion techniques having been
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discussed in the literature [1, 5, 16, 19, 37]. Clearly, inaccurate conversion of trap counts into the pest population
density distribution can significantly affect the results of pest abundance evaluation. This is especially true when
trap counts are small, as any small change in a small trap count will result in a relatively big change in the value of
the pest population density [11]. Hence estimating the conversion error and incorporating it into our approach to
obtain a reliable estimate of the pest abundance is a challenging task that requires further careful investigation.

It should also be noted that the theoretical quantities�(Ẽrel), Ẽmin andẼmax used in this paper to assess the
impact of noise on an estimate rely on the assumption that anymeasured pest densitỹfi is normally distributed
about the true pest densityfi and belongs to the range (11) with probabilityP (z). The counterpart to this assump-
tion is that there is a chance that anyf̃i can lie outside of this range. In particular the theory does not discount
a measured pest densitỹfi being negative. Of course a negative pest density is senseless, therefore instead each
measured pest density should be considered to belong to a truncated normal distribution. The effects of such a
truncation on the quantities�(Ẽrel), Ẽmin andẼmax will be the focus of future work.

Also, in the present paper we have considered uncorrelated noise making an implicit assumption that there is
no interference between traps. In reality there may exist some correlation between trap counts in neighbouring
traps, in particular when traps are installed sufficiently close to each other. Correlated noise may affect accuracy
of pest abundance evaluation in a different way, and we therefore intend to investigate a topic of correlation in our
future work.

Finally, another important direction of our research will be to investigate two-dimensional problems to extend
our previous study of2− d density distributions based on exact data. Our approach to pest abundance evaluation
on randomly perturbed data can readily be applied to2 − d problems and our next goal is to implement various
methods of numerical integration in problems where field data are available from real-life measurements.
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