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ABSTRACT 

An important question for Human-Computer Interaction is to understand the 

visual search strategies that people use to scan the results of a search engine and find 

the information relevant to their current task. Design proposals that support this task 

include space-filling thumbnails, faceted browsers, and textually enhanced 

thumbnails, amongst others. We argue that understanding the trade-offs in this space 

might be informed by a deep understanding of the visual search strategies that people 

choose given the constraints imposed by the natural ecology of images on the web, 

the human visual system, and the task demands. In the current paper we report, and 

empirically evaluate, a computational model of the strategies that people choose in 

response to these constraints. The model builds on previous insights concerning the 

human visual system and the adaptive nature of visual search. The results show that 

strategic parameters, including the number of features to look for, the evaluation-

stopping rule, the gaze duration and the number of fixations are explained by the 

proposed computational model. 

 

Keywords: Image Search, Strategic Adaptation, Utility Maximization, Ecology, 

Information Design, Eye movements 

1. INTRODUCTION 

The question of how to design interfaces so as to facilitate search for information 

on the web is an important challenge for Human-Computer Interaction researchers 

and designers (Cutrell & Guan, 2007; Klöckner, Wirschum, & Jameson, 2004; Rele & 

Duchowski, 2005; Russell-Rose & Tate, 2013; Tseng & Howes, 2008). For example, 



many alternative designs for the standard list of search engine results have been 

proposed. They include Space-filling thumbnails (Cockburn, Gutwin, & Alexander, 

2006), Tabular interface (Resnick, Maldonado, Santos, & Lergier, 2001), Faceted 

category interfaces (Yee, Swearingen, Li, & Hearst, 2003), and Textually-enhanced 

thumbnails (Woodruff, Faulring, Rosenholtz, Morrison, & Pirolli, 2001), amongst 

others (Bederson, 2001; de Bruijn & Spence, 2000 ; Fertig, Freeman, & Gelernter, 

1996; Öquist & Goldstein; Snavely, Seitz, & Szeliski, 2006; Walter, Weßling, Essig, 

& Ritter, 2006). The number of proposals is, in part, a reflection of the scale of the 

design space, and in part, a reflection of how pervasively search engines are used for a 

range of everyday tasks.  

Identifying which of the potentially hundreds of interesting points in this space is 

best might be informed by empirical usability testing that directly contrasts one 

design to another. However, while an empirical basis to any design work is essential, 

such an approach, used exclusively, carries the danger of leaving mysterious the 

underlying interactive processes that lead to one advantage, or the other, and may be 

unlikely to lead to rapid convergence on good designs. For example, some designs 

will be better or worse in different circumstances and explaining the differences 

demands theory. An alternative approach is to rely on design guidelines. For example, 

findings concerning the function of human mind, using conventional laboratory tasks, 

have implied user-centered design guidelines for more efficient use (Shneiderman, 

1992). However, it is possible that guidelines may have similar problems to pairwise 

usability tests if they encourage a somewhat shallow understanding of the task and the 

constraints imposed by the design. This is one of a set of known problems with design 

guidelines (e.g. see Introduction in Johnson, 2010).  



Empirical studies and guidelines can be complemented with cognitive modeling, 

with the potential advantage of developing a deeper understanding of how and why 

one design is better than another. Many cognitive models of visual search have been 

proposed. For example, integrated ACT-R and EPIC models of the cognitive, motor, 

and perceptual processing required to achieve visual search tasks provide one 

approach (Anderson et al., 2004; Halverson & Hornof, 2011; Kieras & Meyer, 1997; 

Meyer & Kieras, 1997a, 1997b). One key idea to emerge from this literature is that it 

is difficult to ascertain whether one design is better than another unless a detailed 

analysis is conducted of how the user’s strategy changes with the task demands 

(Charman & Howes, 2003; Eng et al., 2006; Howes, Lewis, & Vera, 2009; Howes, 

Vera, & Lewis, 2007; Kieras & Meyer, 2000; S. J. Payne & Howes, 2013; S. J. Payne, 

Howes, & Reader, 2001; Pirolli, 2007). The purpose of the current article is therefore 

to report and test a computational model of visual search in which the search strategy 

is adjusted to the constraints imposed by (a) interface design, (b) the human visual 

system and (c) the priorities of the user, particularly priorities concerning time costs 

relative to the quality of the acquired results. The model explains how choices that 

people make about, for example, gaze duration, number of fixations, and which 

images to look at and which to select, are a consequence of ecological distributions of 

relevance, the diminishing acuity of the visual system with eccentricity from the 

fovea, and the priorities of the user. 

In the following section we review the background to the problem addressed in 

the current article (Section 2). Subsequently, we described an experimental task 

environment that models the naturalistic task environment of images on the web 

(Section 3) and then a model of human behavior in this environment (Section 4), 



followed by an empirical investigation (Section 5). The results are reported in Section 

6 and discussed in Section 7. 

 

2. BACKGROUND 

2.1. The effect of design on strategy choice 

In an effort to understand how to build better interfaces, researchers in HCI have 

suggested that the details of interface design affect visual search and overt attention 

strategies (e.g., Everett & Byrne, 2004; Halverson & Hornof, 2004, 2011; Pirolli, 

Card, & Van Der Wege, 2003; Tseng & Howes, 2008). Everett and Byrne (2004), for 

example, showed that a small difference of 1.6 degrees of visual angle between items 

can result in participants either fixating on an icon or not. Similarly, Halverson and 

Hornof (2004) provided evidence that low density, task-meaningless large font words 

could lead participants to use fewer and shorter fixations and so shorter overall search 

time than when given high density and small words. Presumably, when items are 

more closely packed together then more use can be made of peripheral vision. 

However, the pattern of findings is complex. In contrast to the previous results, Pirolli 

et al. (2003), for example, found that participants used more but shorter fixations 

when using a Hyperbolic browser (please see Lamping & Rao, 1996) than when using 

a standard browser, especially in areas of the Hyperbolic browser in which small size 

and low information scent items were grouped closely together.  

There is further evidence showing that visual search strategy is adapted to the 

demands imposed by task environments, particularly the density of items on the 



display (Bertera & Rayner, 2000; Näsänen, Ojanpää, & Kojo, 2001; Ojanpää, 

Näsänen, & Kojo, 2002; Vlaskamp & Hooge, 2006; Vlaskamp, Over, & Hooge, 

2005). For example, Ojanpää et al. (2002) found that decreased spacing in a vertical 

list of words (common Finnish verbs, nouns and adjectives) resulted in longer but 

fewer fixations. Longer fixations enable more information to be gathered from fovea 

and peripheral vision, although longer fixations can only be effective if the 

information is available within the perceptual span. Vlaskamp et al. (2005) found that 

the fixation duration, number of fixations, and search time increased dramatically 

with decreasing item spacing, as the range of spacing became smaller than 1.5° visual 

angle. On the other hand, their data showed that at wide spacing range between 1.5° 

to 7.1° fixation duration, number of fixations, and search time increased slightly as 

the spacing increased. Bertera and Rayner (2000) found that as the item spacing 

increased, the number of fixations and fixation duration also increased. These results 

indicate that people need to manage the trade-off between the increased information 

gain of longer fixations and the effort and time cost of holding a fixation. 

The spacing of fixations is also known to change during the course of a search 

(Over, Hooge, Vlaskamp, & Erkelens, 2007; Rao, Zelinsky, Hayhoe, & Ballard, 

2002). Over et al. (2007) found that fixation duration increased and the amplitude of 

saccade decreased gradually as search progressed. They called this a coarse-to-fine 

strategy. Rao et al. (2002) used a coarse-to-fine matching mechanism to model the 

skipping saccades because it could increase the probability of an early match. In 

contrast, Brumby and Howes (2008) found a fine-to-coarse search strategy. People 

increased saccade amplitude once they had found, but not committed to, a highly 

relevant target. 



Although allowing a high degree of experimental control, many tasks used in 

vision science lack ecological validity (Bertera & Rayner, 2000; Ojanpää et al., 2002; 

Vlaskamp et al., 2005). For example, Vlaskamp et al. (2005) used abstract shapes 

(e.g., squares) in their search task, and, Bertera and Rayner (2000) used an 

unstructured alphanumeric array. Ojanpää et al. (2002) used common-words, which 

reduced the task to a simple visual pattern match, rather than a match of information 

relevance but it is known that search behavior is contingent on label relevance 

(Brumby & Howes, 2008). The different materials may account for the different 

effects. Both tasks are far from an ecologically valid HCI task in which the stimuli are 

more heterogeneous and complicated.  

The task of Brumby & Howes (2008) had high ecological validity but the task, 

involving words, required limited graphical information processing. To explore 

graphical information processing in a task environment involving search for pictures, 

Tseng and Howes (2008) used real photo thumbnails and the real display to simulate 

the pages of thumbnails returned by a search engine and found that the number of 

alternatives in a search set and the density of the display influence how people make 

small but significant changes to eye-movement strategy. For example, as item density 

changed their participants adjusted the duration that they attended to each item. There 

was a negative correlation between the number of items and the gaze duration. Longer 

gazes were only used when they were efficient, i.e. when expected information gain 

was high. Also, longer visits to items were combined with skipping. Tseng and 

Howes (2008) found that participants were observed to reduce the number of items 

that they visited, i.e. they skipped, when there was a larger number of alternatives in a 

search set. These findings support the view that people adjusted their visual search 

strategy to their expectations of information gain, and that these expectations were 



contingent on (a) the density of items, and (b) the prior likelihood that an item is the 

one that they will want to select.  

2.2. Visual information processing constraints modulate strategy 

choice 

There is a substantial body of literature showing how the constraints of the visual 

information processing system modulate strategy choice. Geisler (2011) reviews work 

that shows how visual search strategies are adapted to the biological constraints of the 

human visual system, such as the optics of the eye, the spatial and chromatic sampling 

by the photoreceptors, photon noise, and retinal spatial summation, all of which 

provide noisy neural representations of the stimulus. 

Some of these constraints are embedded in an active vision model (Halverson & 

Hornof, 2011; Kieras & Hornof, 2014). By using the EPIC cognitive architecture 

(Kieras & Meyer, 1997) to model visual search behavior, they attempt to explain the 

relationship between strategies and the underlying architectural mechanisms. These 

models provide answers to the four questions of active vision: when do the eyes 

move? What can be perceived? Where do the eyes move to? What information is 

integrated between eye movements? In this model (Halverson & Hornof, 2011; Kieras 

& Hornof, 2014),  they emphasized the importance of the constraints of the visual 

information processing system, particularly the spatial resolution of the retina which 

decreases as eccentricity increases (also see Geisler, 2011).  Therefore, the saccade 

mechanism is required to bring the higher acuity visual receptors to where they can 

sample relevant information. In addition the model captures the fact that preparing 

and executing eye movements takes time, and that encoding the visual properties and 



interpreting the visual information also take time. Time costs not only make 

performance slower, they motivate different strategy choices.  

2.3. The effect of reward and user preference on visual search 

strategy 

While there is some work that directly probes the ecological priorities of users 

(Toomim, Kriplean, Pörtner, & Landay, 2011), there is also work that tests the 

consequence of manipulating priorities by making use of different reward schemes. 

Selection bias toward previous rewarded items has been found in lots of recent studies 

using behavioral and neural approaches (see Awh, Belopolsky, & Theeuwes, 2012 for 

a review; Kiss, Driver, & Eimer, 2009; Libera & Chelazzi, 2009; Navalpakkam, 

Koch, Rangel, & Perona, 2010; Raymond & O'Brien, 2009). Furthermore, Tseng and 

Lleras (2013) manipulated the rewards of the spatial contexts and found that the 

rewards (either related to arousal or valence) associated with the spatial context can 

accelerate the implicit learning of the repeating contexts. In other words, a rewarding 

environment can have implications for the acquisition of efficient strategies.  

The role of user preference and information gain in determining visual attention 

from stimuli with basic visual features has been modeled by accumulation models of 

perceptual and attentional decision tasks, such as two-alternative forced choice 

(2AFC) of the current directions of motion dots (Bogacz, Hu, Holmes, & Cohen, 

2010; Britten, Shadlen, Newsome, & Movshon, 1993; Shadlen, Britten, Newsome, & 

Movshon, 1996; Shadlen & Newsome, 1996, 2001) and the 2AFC of the current 

oddball color (Tseng, Glaser, Caddigan, & Lleras, 2014). In spatial decision making, 

Najemnik and Geisler (2005) further show that fixations are better predicted by a 



model that makes eye movements so as to maximize information gain about the 

location of the target than a model that makes eye movements so as to maximize the 

probability of fixating the target. The model exhibits phenomena such as center-of-

gravity effects, where people fixate between two places each of which is associated 

with evidence that it contains the target. These findings support the view that search 

and selection is guided by the goal to maximize information gain (Najemnik & 

Geisler, 2005, 2008, 2009) given the natural texture and the acuity of the human 

visual information processing system, particularly the fall off in acuity with 

eccentricity.  

 More generally, information gain will be traded against other user priorities 

such as time cost. People can be thought of as seeking to maximize some subjective 

expected utility function (Cox & Young, 2004; Geisler, 2003; Howes et al., 2009; 

Lelis & Howes, 2011; Najemnik & Geisler, 2005; Sperling & Dosher, 1986; 

Trommershäuser, Maloney, & Landy, 2008; Tseng & Howes, 2008). Priorities can 

also include the internal costs of decision processing (Droll & Hayhoe, 2007; Duggan 

& Payne, 2009; O'Hara & Payne, 1998; J. W. Payne, Bettman, & Johnson, 1993; 

Smith & Walker, 1993) and external time costs (Bogacz, Brown, Moehlis, Holmes, & 

Cohen, 2006; Bogacz et al., 2010; Forstmann et al., 2008; Kocher & Sutter, 2006; 

Maule & Edland, 1997; J. W. Payne, Bettman, & Luce, 1996). For example, in two 

alternative forced-choice tasks, people try to adjust the threshold of evidence 

accumulation to balance the speed-accuracy tradeoff and thereby maximize the rate of 

rewards (i.e. reward rate or utility) (Bogacz, 2007; Bogacz et al., 2006; Bogacz et al., 

2010; Gold & Shadlen, 2002). Moreover, gains and time constraints are known to 

play a role in perceptual-motor control tasks (Bogacz et al., 2006; Bogacz et al., 2010; 



Howes et al., 2009; Hudson, Maloney, & Landy, 2008; Maloney & Mamassian, 

2009).  

 

3. THE TASK  

In order to investigate the role of visual search in Human-Computer Interaction, 

we studied a scenario in which a person has the goal of finding an image with a 

particular set of features for some purpose such as illustrating a book, or contributing 

to a presentation. A goal may be, for example, to find an image of a church with blue 

sky and people. We assume that a set of keywords have been chosen and entered, and 

that the search engine has returned a 2 dimensional array of images (See Figure 1-

search display). The user then scans the images to gather information about them 

using some pattern of fixations and saccades. Once the user identifies an image as 

meeting the criteria, i.e. matching to the features, then they select it by clicking on it 

and the task ends. 

(It is sometimes the case that the scan of the results of a search leads a user to enter 

new search keywords and generate a different search page. Similarly, a user may 

expand an image but subsequently return to the search results to further consider 

alternatives. These activities are not addressed in the current paper.) 



A critical element of this natural task environment is the prior probabilities that an 

image will meet the criteria. Modeling these prior probabilities is an essential 

requirement of achieving ecologically valid study materials. It is possible to imagine a 

world in which the precision of searches is so high that they tend to return a very high 

proportion of relevant images (images that match the features specified in the user’s 

 

 

Figure 1. An example of one search trial. The gap between each thumbnail 

was 0.85° of visual angle. The task was to look for an image that 

included as many of the target features as possible and as quickly as 

possible. In this example, the target features are Castle, Clouds, Sky, 

Tree, and Water. There were 26 images with 1 target feature, 6 

images with 2 target features, 2 images with 3 target feature, and 1 

image with 4 target features and 1 image with 5 target features). 

The size of each thumbnail was 2.15° × 2.15° square. 



goal). It is also possible to imagine a world in which the precision of searches is very 

low. The natural distributions are likely somewhere between these extremes. We 

expect that the scanning strategy adopted by users will partly reflect the actual 

distribution of relevance in the environment and for this reason we gathered data 

concerning this distribution. 

In order to investigate the real world distribution we conducted a pilot study with 

Google Images (https://images.google.com/). The goal was to determine the 

relationship between the number of keywords entered and the number of images 

returned that matched all of the keywords. The study did not use participants, rather 

the idea was to infer the distribution of images with different numbers of features by 

inspecting the number of images in Google search results for different queries. The 

study results are shown in Figure 2a. For example, when “water” and “bridge” were 

entered, 644,000,000 images were returned. When “water”, “bridge” and “sky” were 

entered, 53,700,000 images were returned. The distribution follows a power-law 

reflecting that the more keywords are entered, the fewer the number of results that 

match *all* keywords entered. These results are consistent with statistics from natural 

environments and other man-made environments (Adamic & Huberman, 2000; 

Stewart, Chater, & Brown, 2006)  

Given the above finding, we designed the materials for an experiment in which the 

number of images with each number of features (1 to 5) followed a power-law (Figure 

2b). In each display of 36 images the number of images given the number of features 

was equal to 26 x n-2.2 where n is the number of features.  

In general, the benefits of obtaining a higher value image had to be offset against 

the cost of longer visual search times in a digital image repository. A search engine 



will usually return more images than can be individually evaluated by a user. One 

problem for the user is to decide how to allocate time, one of their most scarce 

resources, to the evaluation of some subset of images. Another problem is to decide 

when to stop the search. It may be the case that the ideal is to find an image that 

matches 5 goal features but that an image that matches only 4 will do. This problem is 

known as a speed/accuracy trade-off problem. It is a type of problem that has been 

extensively studied in psychology (e.g., J. W. Payne et al., 1996). In order to model 

the speed/accuracy trade-off in the experimental task environment, images containing 

more target features had a higher value (e.g. 200 points for a 5-feature image) but, of 

course, they were rarer in the environment (e.g. there is only one 5-feature image in 

36 alternatives in Figure 2b) and were therefore likely to require more time to find.  

 

4. THE MODEL 

The model makes the following assumptions: 

a. Each image is scanned without repetition. This assumption follows from work 

suggesting that people seldom revisit the same items during visual search 

(Peterson, Kramer, Wang, Irwin, & McCarley, 2001) but no assumptions are 

made about the scan order.  

b. The input to the scan function consists only of the features of the foveated 

image and the function generates a noisy estimate of the number of matching 

features. The noise is Gaussian distributed with variance σ2 and centered on 

the true value. This assumption is motivated by evidence that visual search 

limited by signal noise that negatively impacts acuity (Geisler, 2011). The 



level of noise is an invariant property of an individual’s visual system and is 

not under strategic control.  

 

 

Figure 2. (a) The frequency of n-feature images (matching n keywords) in 

the real world. The log-log plot shows the power-law relationship 

between the number of returned images and their corresponding 

number of input keywords in a natural image search engine (data 

resource: Google image search 10/Aug/2013); (b). The Number of 

images with n features = 26 x n-2.2 in the search task of our 

experiment. 



c. The strategy space is defined by two thresholds. If the number of detected 

features in an image exceeds the target criterion TC then the image is selected. 

This assumption is motivated by signal detection theory (Green & Swets, 

1966). If the number of gazes exceeds the evaluation-stopping rule, ST then an 

image with the highest number of detected features is selected. The strategy is 

defined by the pair (TC, ST).  

d. We assume that participants select a strategy (TC, ST) that maximizes a 

subjective expected utility function U which defines a speed/accuracy trade-

off. This assumption follows works suggesting that during simple choices, the 

brain tries to maximize the reward rate (Bogacz, 2007; Bogacz et al., 2006; 

Bogacz et al., 2010; Gold & Shadlen, 2002). 

The model incorporates the assumption that participants will adapt (TC, ST) to the 

error σ2 in the perception of features, the utility function U, and the ecological 

distribution E. The model predicts the strategy that participants should select. This 

prediction is tested in the following experiment. 

 

5. EXPERIMENT 

Participants were given a series of tasks and asked to search and select images. On 

repeated trials they were presented with a display of 36 images that were arranged so 

as to look like the results page of an internet search engine, such as Flickr. They were 

free to select one image. After each trial they were given feedback that consisted of a 

reward signal that was calculated by dividing the image value (explained below) by 



the trial search time (the duration between the time when the images first appeared to 

the time when a selection was made).  

In the experiment, the value of an image was a function of the number of target 

features that it contained and there were two value conditions (Figure 3): a power-law 

condition and a linear condition. In the power-law condition a 5-feature image, for 

example, had a value of 200 points whereas in the linear value condition it had a value 

of 120 points (Figure 3).  

5.1 Participants  

Sixteen naïve participants from the University of Manchester, between 18 and 28 

years old, with normal color vision or corrected-to-normal vision, who provided 

informed consent, participated in the experiment for monetary compensation. 

Participants were aware that they would be paid a £5 voucher and entered a 

 

 

Figure 3. Image value as a function of its number of target features for each 

of the two value functions used in our experiment. Red filled 

squares denote the power-law value condition; open blue circles 

denote the linear value condition. 
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competition for three more £5 vouchers based on overall points (utility) scored from 

performance on the task. The local ethics committee approved the protocol.  

5.2 Apparatus 

The experiment used a Tobii 1750 eyetracker system which was integrated with a 

17” TFT display monitor. The monitor’s response time was 8 msec. The eye tracker 

tolerated fairly large head movements. The freedom of head-movement (W × H × D) 

is 30 × 16 × 20 cm at a distance of 60 cm from the tracker. The Tobii tracker also 

provides long-lasting calibrations which allowed for a natural user environment. The 

eye tracker has a tracking rate or frame rate of 50 Hz. The position and duration of 

eye movements, the input of the participant’s mouse click, and every screen event and 

display are recorded during the experiment. The temporal resolution of 20 msec is 

sufficient to monitor long fixations and eye movements in our task. Although low 

temporal resolution could cause noise in eye signal sampling, noise was reduced by 

averaging several gazes per trial. The Tobii 1750 is a completely unobtrusive system, 

which removes the need for chin-rests and other restraints. Moreover, long studies can 

be performed without fatigue for the participant or reduced quality of data. Visual 

Basic, using the default set of Tobii 1750 functions, was used to present the stimuli 

and collect eye movement data. Before the experiment started, the eyetracker system 

was calibrated. 

5.3 Task 

The participants were instructed to find an image based on a target description 

which was given at the beginning of the trial. The target description contained five 



unique target features, e.g. Castle, Clouds, Sky, Tree, Water (see Figure 1-target 

description display). The task was similar to a visual search paradigm in which people 

are asked to search for a target among distractors. However, the task in this 

experiment was different in three respects: (i) the description of the five target 

features comprised higher level features such as ‘cloud’ and ‘sky’ rather than lower 

level features such as a letter shape; (ii) participants were allowed to select any 

images in the search set; and (iii) the result of the search was not dichotomous; it was 

not either correct nor incorrect. Rather than being judged as correct or incorrect, 

participants were given points according to a utility function defined in terms of the 

image value and their search time. Feedback was given after each trial (Figure 1-

feedback display).  

5.4 Stimuli and display 

5.4.1 Sets of target descriptions 

There were 5 sets of target descriptions in this experiment. The 5 sets were (a) 

Sun, Water, Sky, Boat, People; (b) Castle, Clouds, Sky, Tree, Water; (c) Bridge, 

Water, Sky, Church, Tree; (d) Animal, Patterned-Fur, Grass, Tree, Sky; and (e) Night, 

Building, Street, Car, People. One of these 5 sets was used in each trial of the 

experiment. For example, in the first trial a participant might be asked search for an 

image matching the set of target features in set ‘a’; in the second trial they might 

search for matches to set ‘b’; and so on. After all five sets of target descriptions were 

used, they were repeated (Although the target descriptions repeated, the images in the 

search display never repeated). An additional set "Boat, People, Water, Sky, Sun" was 

used in the practice trials. There were 20 repetitions of each set giving a total of 100 



trials. The task order was generated for each participant in a counter-balanced random 

sequence. 

5.4.2 Stimuli 

Scene image thumbnails were used as search stimuli in this experiment. These 

images were carefully selected from a photo sharing website, Flickr. The standard 

square images in the website were used. Poor resolution pictures and those with 

special effects, such as High Dynamic Range (HDR) images were removed. The size 

of each square image was 75 × 75 pixels square, which subtends a visual angle of 

2.15°. No image was used twice so as to prevent a possible memory effect on search 

performance.  

5.4.3 Search display 

On each trial, 36 images which were randomly positioned in a 6 x 6 display. Some 

images had more target relevant features and some had fewer. The distribution of 

images with each number of features was fixed. In each set of 36 images, there were 

26 images with 1 target feature, 6 images with 2 target features, 2 images with 3 

target feature, 1 image with 4 target features, and 1 image with 5 target features 

(Figure 2b). We define an n-feature image as an image with n number of target 

features. For example, a 3-feature image is an image with 3 target features; all of its 

other features were non-target features.  

5.5 Trial procedure 

In each trial, the goal for a participant was to maximize the utility feedback by 

selecting a thumbnail from the display 6 × 6 array of images. At the beginning of the 



experiment they were told that on each trial utility would be calculated as the value of 

the image that they selected divided by the time that they had spent (the search time). 

Each trial had three steps (see figure 1). (i) In the first step, the target description and 

a start button were presented in the top-left corner of the display (see figure 1-target 

description display). Participants were informed that they had unlimited time to 

familiarize themselves with this list of the five target features; they were aware that 

the time spent on the target description screen was not included in the calculation of 

utility. (ii) Participants clicked on the start button below the target description to show 

the search display which contained the 6x6 array of images (see figure 1-search 

display). Participants were allowed to select any image in the search set using the 

mouse and a mouse button click. Participants were aware that the more target features 

in the selected image, the higher the potential utility; but they were also aware that 

longer search times would reduce their utility. (iii) After they had selected an image, 

the search display disappeared and was replaced by the utility feedback display (right 

panel-feedback display in figure 1). The feedback provided was an estimate of the 

utility, which was calculated by dividing the image value by the trial search time 

(from the search display onset to the selection click). The feedback screen consisted 

of the utility, the search time, and value of the selected image. Participants had 

unlimited time to study the feedback; they were encouraged to try to attain the highest 

utility by balancing the trade-off between image value and search time.  

5.6 Experiment Design 

The experiment was a repeated-measures design. There were 4 conditions (2 

density conditions × 2 value function conditions). The presentation of the 4 conditions 

was counterbalanced across participants. In the high-density condition, the edge-to-



edge item spacings were 3 pixels (visual angle=0.085°). In the low-density condition, 

the edge-to-edge item distances were 30 pixels (visual angle=0.85°). In the linear 

value condition, an image’s value decreased linearly with the decrease in the number 

of target features (Figure 3). The images that had 5, 4, 3 or 2 target features had an 

image value of 130, 100, 70 and 40, respectively (Figure 3). In the power-law value 

condition, the relationship between value of an image and its number of target 

features was a power-law function (Figure 3). If an image had 5, 4, 3 or 2 target 

features, the image’s value would be 200, 60, 30 and 20, respectively (Figure 3). A 

short introduction, which described the relation between an n-feature image and its 

value (i.e. value function), was shown before each block. Participants were thereby 

made aware of the expected image value. 

Participants performed an initial practice session of 8 trials followed by 100 test 

trials. The 100 trials were separated into 4 blocks. Block 1 had 10 trials, block 2 had 

10 trials, block 3 had 40 trials and block 4 also had 40 trials. The utility function was 

manipulated within participant. Participants performed one 10 trial block with power-

function utility and one 40 trial block. The other 10 and 40 trial blocks used the linear 

utility function. The order of the utility conditions was counter-balanced between 

participants. 

The two display densities (high and low density image arrays) were mixed in each 

block and the presentations of two density conditions were counterbalanced across 

participants.  

 

6. RESULTS AND DISCUSSION 



We first inspected the data for evidence of practice effects. Participants performed 

better on the last two blocks (each of 40 trials) than on the first two blocks (each of 10 

trials). As we were interested in performance once it is adapted we discarded the data 

from the first two blocks. All analyses presented in this section are therefore for the 

last two blocks.  

 

Figure 4. Mean search performance as a function of four conditions (16 

participants). a. Search time (msec); b. Gaze duration (msec); c. 

Number of gazes; d. Average number of target features in the selected 

images; e. Utility=image value/search time (unit: sec). Error bars 

represent standard error (SEM).  

 



We inspected the effect of the manipulation of utility on measures of strategic 

adaptation. Several measures of search performance (Figure 4) provided evidence of 

adaptation to the temporally constrained utility functions. Most importantly, and as 

predicted by the need for a higher threshold in the power-law condition, participants 

found higher value images (with more goal features) in the power-law condition than 

in the linear condition (F[1,15]=56.98, p<0.001; Figure 4d).  

In addition, there was evidence that participants made a number of other 

adaptations to strategy. Gaze durations were longer in the power-law condition than in 

the linear condition (F[1,15]=4.6, p<0.05; Figure 4b). There were longer gaze 

durations (F[1,15]=12.68, p<0.05; Figure 4b) in the high-density display than in the 

low density display, suggesting, perhaps, that participants increased gaze durations to 

compensate for crowding effects -- though crowding of foveated images only occurs 

over very small distances (Levi, 2008).  

The payoff function had a main effect on the number of gazes (F[1,15]=64.414, 

p<0.001; Figure 4c). Participants examined more thumbnails in the power-law 

condition. This is consistent with the fact that they found images with more matching 

features in this condition and with the greater reward associated with these high value 

images. Lastly, there were fewer gazes in the high density display (F[1,15]=5,121, 

p<0.05; Figure 4c), presumably because peripheral vision was more effective when 

the images were closer together. 

6.1  Modeling the experimental results 

While the experimental results reported in the previous section are encouraging, 

suggesting effects of the utility and density manipulations that are in the predicted 



directions, they only offer evidence of adaptation and do not tell us whether the 

amount of adaptation was predicted by the utility maximization theory. The following 

analyses focuses on answering this question. We report two models, a best fit model 

and a utility maximization model. We examine whether the utility maximization 

model predicts the best fit model. 

6.1.2 The best fit model 

The model’s parameters were fitted to two measures of each participant’s 

performance. The first measure was the observed percentage of target features that 

matched the selected images in each condition. We called this measure Percent-

match. The second measure was the number of gazes. However, rather than using the 

raw number of gazes we used the quantile gaze probability, called Quantile-gaze (Hu, 

Tseng, Winkler, & Li, 2014; Ratcliff & Tuerlinckx, 2002; Tseng et al., 2014). We 

used this measure because fit to quantile performance takes the shape of the 

performance distributions into account and not just the mean values (Ratcliff, 1979). 

We used this measure to fit each participant’s distribution of gazes across conditions 

and thereby capture that on some trials they used very few gazes and on others many 

more. The quantile-gaze method makes a chi-square assumption that was met by our 

data. 

Three of the model parameters were fitted to these measures: (i) target criterion, 

TC; (ii) evaluation-stopping rule, ST; and (iii) the sensitivity to the stimulus, d’. These 

parameters were calibrated to each individual participant’s data. TC had a range from 

1 to 5 which corresponded to the space of possible targeting strategies. The range of 

evaluation-stopping rule thresholds, ST was [1, 3, 6, 9, 12, 15, 18, 21, 24, 36, 48, 60, 

72]. d’ was set to 1/σ where σ had a range from 0.3 to 1.3. The size of the search space 



was therefore TC x ST x d’ is 5 x 13 x 12. The model was calibrated separately to 

each individual participant’s data using Monte Carlo simulation (10,000 simulations 

for each parameter set). The calibration parameters were determined using the 

minimum sum of Pearson's chi-square (χ2) value of the model fitting of Percent-

match and Quantile-gaze. Percent-match was similar to the four types of responses in 

STD so it was sensitive to TC and d’. E.g., when TC=3 all 3-, 4-, and 5-feature images 

were accepted. When d’ was higher, an image with fewer matching features was less 

likely to be selected (i.e. fewer false alarms). (Note: the source code of these 

simulations can be found in the Open Science Framework https://osf.io/x2rt6/). 

The mean parameter values for the individual best fit models are shown in Table 

1. The higher target criterion (TC) values for the Power condition are consistent with 

the fact that on average participants selected images with more matching features in 

this condition. In the next section, we examine whether these parameter values 

correspond to the parameter values when utility is maximized. 

6.2 The utility maximization model 

In addition to finding the best fit model, we also derived the utility maximization 

model. Rather than fitting to the data, the utility maximizing model was found by 

determining the utility maximizing strategy given the constraints on each individual’s 

performance. We tested the correspondence between the utility maximization model 

and the best fit model and therefore whether the former explained the latter. In order 

to do this we set d' to the best fitting value and then found the values of TC and ST 

that maximized utility.  We found that the utility maximizing values were TC=51 and 

ST=2.94 for the linear-high density condition, TC=46.13 and ST=2.94 for the linear-



low density condition, TC=54 and ST=3.94 for the power-law-high density condition 

and TC=56.25 and ST=3.94 for the power-law-low density condition. These 

correspond closely to the best fitting values reported in Table 1.  

The correspondence between best fit and utility maximization requires further 

explanation. We pursue this in the following section by expanding the utility of all 

plausible points in the strategy space. We first consider variation in the evaluation-

stopping rule ST, then consider variation in the target criterion TC, and lastly the 

sensitivity of the results to variation in d’.  

6.2.1 Evaluation-stopping rule 

Figure 5 shows the predicted utility as a function of each level of evaluation-

stopping rule, ST, given the best fitting TC and d’ for each individual. It shows low 

values of ST offered lower utility. It also shows the utility reaches the asymptote after 

24 evaluations and 36 evaluations in the Linear and Power-law condition, 

respectively. This finding is consistent with the intuition that the utility maximization 

theory predicts that participants should make more effort to look for the higher value 

items in the Power-law condition. The shape of the evaluation-stopping rule curve in 

Search 

condition 
ST d' TC 

Linear-High 49.50(4.98) 0.87(0.05) 2.94(0.11) 

Linear -Low 35.44(5.17) 0.84(0.06) 3.00(0.09) 

Power-High 48.38(4.60) 0.91(0.05) 3.81(0.10) 

Power-Low 46.13(4.22) 0.87(0.04) 3.81(0.10) 

Table 1. the mean parameter values for the individual best fit models (SEM 

in Parentheses) 



Figure 5 is not hard to understand. First, low values of ST stop search before an item 

is above TC and therefore offer limited utility. Second, high values of ST tend not to 

have an effect because an item will usually be found that is above TC before ST is 

reached and, hence, the utility plateau. 

6.2.2 Target criterion 

The d’ and ST from the best fitting model was used to test the utility predicted by 

each of the plausible strategies, TC. Figure 6 provides a plot of mean utility against 

mean number of features in the selected image in each level of TC for each value 

condition (blue solid circle: linear value condition and red solid square: power-law 

 

Figure 5. Predicted utility for each evaluation-stopping rule (blue solid circle: 

linear value condition; red solid square: power value condition) given 

the best fitting target criterion, TC and d’ of each individual (N=16, 

data are from high-density display). The dark blue open circle is the 

best fitting utility in linear condition. The dark red open square is the 

best fitting utility in power-law condition. Error bars represent SEM.   
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value condition) and the mean human observations (blue open circle: linear value 

condition and red open square: power-law value condition). For the linear condition 

the highest utility model corresponded to a strategy with TC=3 and for the power-law 

condition it was TC=4. It can be seen that the highest utility model (the target 

criterion yielding the greatest utility) in both conditions, corresponds to the human 

data. The fact that, on average, participants selected images with 3 features in the 

 

 

Figure 6. Model utility with each possible targeting strategy (Target 

Criterion, TC=1 to 5) and the best fitting d’ of each participant 

(N=16, The data are from high-density display) and empirical 

utility by human subjects. Model utility for each targeting strategy 

plotted as curves for linear value (blue line and blue solid circle) 

and power-law value (red line and red solid square) condition. 

Human utility in the linear value condition (blue open circle) and 

power-law value (red open square) are shown (N=16). Error bars 

represent standard error (SEM) for each utility (vertical axis) and 

image-feature gain (horizontal axis). 



linear condition and 4 features in the power-law condition is precisely explained by 

the utility maximization models.  

Further, the utility maximization model accurately predicted thresholds in both the 

Linear and Power-law conditions for 12 out of 16 of the individual participants (Table 

2). However, there is very little between participant variation in the utility 

maximization models predictions and much more variation between best fitting 

thresholds. Only the utility maximization prediction for participant 10 Linear High-

density is different to the predictions for other participants (a threshold of 2 versus 3 

for the rest). In addition, participants 4, 10, and 16 had best fitting thresholds that 

were lower than utility maximization in at least one of the conditions, and participant 

Subject 

Best fitting TC Predicted bounded optimal TC 

Linear-

High 

Linear-

Low 

Power-

High 

Power-

Low 

Linear-

High 

Linear-

Low 

Power-

High 

Power-

Low 

1 3 3 4 4 3 3 4 4 

2 3 3 4 4 3 3 4 4 

3 3 3 4 4 3 3 4 4 

4 2 2 3 3 3* 3* 4* 4* 

5 3 3 4 4 3 3 4 4 

6 3 3 4 4 3 3 4 4 

7 3 3 4 4 3 3 4 4 

8 3 3 4 4 3 3 4 4 

9 3 3 4 4 3 3 4 4 

10 2 3 3 3 2 3 4* 4* 

11 4 4 4 4 3† 3† 4 4 

12 3 3 4 4 3 3 4 4 

13 3 3 4 4 3 3 4 4 

14 3 3 4 4 3 3 4 4 

15 3 3 4 4 3 3 4 4 

16 3 3 3 3 3 3 4* 4* 

* The predicted bounded optimal is higher than the best fitting (observed) TC.  

† The predicted bounded optimal is lower than the best fitting (observed) TC. 

 

Table 2. the utility maximization model’s predicted thresholds in both Linear and 

Power-law condition for 12 out of 16 of the individual participants. 



11 had best fitting thresholds that were above utility maximization in the linear 

conditions. 

6.2.3 Sensitivity analysis 



It may seem that the excellent correspondence between the prediction derived 

from the utility maximization model and the best fit to the observed human behavior 

was inevitable and that, therefore, the test only offered a weak test of the model. 

 

Figure 7. Predicted utility as function of target criterion, TC, for each level of 

sensitivity d’=1/σ (σ = 0.2 to 1.3). Upper panel is for the linear value 

condition and lower panel is for the power-law value condition. The 

predicted data are from high-density display, black circle: TC=1; green 

triangle: TC=2; red plus: TC=3; blue cross: TC=4; magenta diamond: 

TC=5, ST=36 was used in the model. Human utility plotted as the 

horizontal grey line (N=16). Error bars (the gray bar) represent SEM. 



However, this was not the case. Here we look at two sources of evidence for this 

argument.  

First, recall that the utility maximization model and the best fitting model only 

corresponded exactly for 12 of the 16 participants. In the remaining 4 cases there was 

a difference between utility maximization and best fit. The fact that not all 

participants were predicted by utility maximization supports the argument that 

correspondence was not inevitable and that instead utility maximization offers an 

explanation of 12 of the 16 observed behaviors. 

Second, we tested whether there were differences between the utility 

maximization target criterion TC and the observed value TC for the plausible range of 

d’ (Figure 7). Our aim was to investigate whether different values of TC would be 

required given different values of d’. Variation of TC with d’ provides further 

evidence that the utility maximization prediction was not an inevitable consequence 

of an overly constrained theory. Examine the Power-law panel (bottom panel) of 

Figure 7 showing that the maximum utility TC (i.e. TC=4, blue crosses) corresponds 

precisely to the best fitting TC=4 (blue cross) at d’=1, as previously observed, but that 

at values of d’ > 1/0.8 the best fitting strategy is TC=3 (red plus) whereas the utility 

maximization strategy remains TC=4. Now examine the linear panel (top panel). Here 

the utility maximization TC=3 (red plus when d’<1/0.5) corresponds precisely to best 

fitting strategy at d’ = 1, but that at values of d’ > 1/0.5 while the best fitting strategy 

remains TC=3, the utility maximization strategy is TC=2.  

As an aside, note that it is somewhat counterintuitive that for values of d’ > 1/0.5 

in the Linear value condition the maximum utility strategy is lower (TC=2) when for 

lower values of d’ a higher TC (TC=3) gives maximum utility. Higher values of d’ are 



associated with greater discrimination and therefore should, one might think, allow 

higher threshold strategies. However, further investigations of the model revealed that 

the greatest advantage of higher d’ is that it allows low value items, with fewer than 2 

features, to be avoided, even with low TC. We take from these findings that it is only 

in a subset of the possible discrimination values that the performance of the best 

fitting model corresponds to the predictions of the utility maximizing model.  

These results could be found in the url. 

http://myweb.ncku.edu.tw/~yctseng/expt5_model(individuals)_2015.zip 

 

 7. GENERAL DISCUSSION 

The goal of the paper was to report and test a model of the choices that people 

make about strategies for scanning search engine results. The empirical evidence and 

computational model presented in this paper show that people adapt visual search 

strategies to the statistics of the ecology of images on the web (the skewed 

distribution of probability of finding an image that has multiple features), to the 

human visual system (longer fixations enable more information to be gathered from 

foveal and peripheral vision, although longer fixations can only be effective if the 

information is available within the perceptual span), and to the shape of the reward 

function (in the power-law condition the reward was much higher for the rarer 

targets). Strategy choice, including adjustments to gaze duration and number of 

fixations can be explained as an optimal adaptation to these constraints.  

The findings are important for understanding human computer interaction because 

they expose how the strategy choices that people make are affected by interface 



design and user priorities. Small changes in the visual angle between items and 

changes in the reward structure cause qualitative changes in strategy. These findings 

support an adaptive view of interaction (S. J. Payne & Howes, 2013; Pirolli, 2007) in 

which people are modeled as agents that are sensitive to the statistical properties of 

the ecological context as well as to the costs and benefits of action. This framework 

for understanding human interaction with technology holds promise as a means of 

explaining, rather than merely describing, interaction. It thereby has the potential to 

predict how people will use new devices. The model reported above, for example, 

might form a basis for an approach to predicting performance in the various design 

proposals that have been made over recent years including Space-filling thumbnails 

(Cockburn et al., 2006), Tabular interface (Resnick et al., 2001) and Faceted category 

interfaces (amongst others). 

In addition, the empirical results, and the reported model, add to the growing body 

of evidence that computational models of adaptation to cognitive constraints offers a 

viable means of explaining behavior in HCI (Brumby, Salvucci, & Howes, 2009; Fu 

& Pirolli, 2007; Janssen, Brumby, Dowell, Chater, & Howes, 2011; S. J. Payne et al., 

2001; Vera, Howes, McCurdy, & Lewis, 2004). These models have been used to help 

explain not only visual search, but also web search, multi-tasking at the desktop, and 

multi-tasking in complex dynamic tasks such as driving. By framing the problem of 

explaining Human-Computer Interaction as the problem of calculating the 

implications of cognitive and ecological constraints for strategies, this work has 

embraced the extraordinary flexibility of human cognition while also enhancing the 

power of theory to predict rather than just describe behavior.   



In addition, to a contribution to the science of understanding how people adapt to 

interface design our work also adds evidence in support of the argument that some 

aspects of design might be automated. Pirolli (2007), Bailly, Oulasvirta, Kötzing, and 

Hoppe (2013) and Bailly and Oulasvirta (2014) have argued that it might be possible 

to discover ‘optimal designs’. For example, Bailly et al. define an optimal menu 

system as the menu system that best meets all design goals and relevant constraints 

and they thereby define menu design as an optimization problem. Bailly et al. pose 

five challenges that must be met if optimal designs are to be found. One of the 

challenges is to determine predictive models of human behavior – much like we have 

described above. A key property of a predictive model is that, given a proposed 

design, the strategy prediction be determined automatically, much as TC and ST were 

in our utility maximization model. The performance implications of design variations 

that have not been investigated empirically, e.g. levels of icon spacing other than 

those explored above, may then be determined by running the model. 

However, there are also limitations of our specific study. While our model 

explained the behavior of three-quarters of the participants, the quarter who failed to 

find a utility maximizing strategy remained unexplained.  One possible reason is that 

while we ensured that our study materials were sampled according to the ecological 

distribution of images returned by a web browser, we did not attempt to discover the 

ecological distribution of subjective utility or preferences (Toomim et al., 2011). It is 

known that people vary in their preferences concerning speed and accuracy (Bogacz 

et al., 2010; Hu et al., 2014). They may vary in the extent to which they choose to 

adopt the tradeoff imposed by an experiment and/or they will vary in their everyday 

preferences. More careful study of the ecology of preferences, such as is advocated by 

Toomim et al. (2011) would allow more careful study of user adaptation to design.  



In conclusion, we have reported and empirically evaluated, a computational model 

showing that user choice of interactive strategy, including adjustments of gaze 

duration and number of fixations, can be explained as an optimal adaptation to a 

combination of properties derived from the individual, from the statistics of images on 

the web, and from speed/accuracy trade-off functions. 
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Search 

condition 
ST d' TC 

Linear-High 49.50(4.98) 0.87(0.05) 2.94(0.11) 

Linear -Low 35.44(5.17) 0.84(0.06) 3.00(0.09) 

Power-High 48.38(4.60) 0.91(0.05) 3.81(0.10) 

Power-Low 46.13(4.22) 0.87(0.04) 3.81(0.10) 

 

 

Subject 
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* The predicted bounded optimal is higher than the best fitting (observed) TC.  
† The predicted bounded optimal is lower than the best fitting (observed) TC. 
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• Reports a computational model of eye movements over image search engine 
results. 

• Reports an empirical study of visual attention for image search engine results. 
• Shows that eye movements are rational given interface design and user 

priorities. 
• Provides evidence that strategies are adapted to the ecology search engine 

results. 
 
 
 
 



ABSTRACT 

An important question for Human-Computer Interaction is to understand the 
visual search strategies that people use to scan the results of a search engine and find 
the information relevant to their current task. Design proposals that support this task 
include space-filling thumbnails, faceted browsers, and textually enhanced 
thumbnails, amongst others. We argue that understanding the trade-offs in this space 
might be informed by a deep understanding of the visual search strategies that people 
choose given the constraints imposed by the natural ecology of images on the web, 
the human visual system, and the task demands. In the current paper we report, and 
empirically evaluate, a computational model of the strategies that people choose in 
response to these constraints. The model builds on previous insights concerning the 
human visual system and the adaptive nature of visual search. The results show that 
strategic parameters, including the number of features to look for, the evaluation-
stopping rule, the gaze duration and the number of fixations are explained by the 
proposed computational model. 
 




