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Abstract

There is a well-known tradeoff between speed and accuracy in judgments made under

uncertainty. Diffusion models have been proposed to capture the increase in response time

for more uncertain decisions and the change in performance due to a prioritisation of speed

or accuracy in the responses. Experimental paradigms have been confined to the visual

modality and model analysis have mostly employed Quantile-Probability (QP) plots –

response probability as a function of quantised reaction times. Here, we extend diffusion

modelling to haptics and test a novel type of analysis for judging model fitting.

Participants classified force stimuli applied to the hand as “high” or “low”. Data in QP

plots indicate that the diffusion model captures well the overall pattern of responses in

conditions where either speed or accuracy has been prioritised. To further the analysis, we

compute Just Noticeable Difference (JND) values separately for responses delivered with

different reaction times – we define these plots as JND-Quantile (JQ). The pattern of

results evidences that slower responses lead to better force discrimination up to a plateau

that is unaffected by prioritisation instructions. Instead, the diffusion model predicts two

well-separated plateaus depending on the condition. We propose that analysing the

relation between JNDs and response time should be considered in the evaluation of the

diffusion model beyond the haptic modality, thus including vision.

Keywords: Force Perception, Haptics, Diffusion Model, JND, Response Time
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Speed/Accuracy Tradeoff in Force Perception

Introduction

Research on force perception dates back to Ernst Heinrich Weber (1834) and has

been focused on the determination of the perceptual range and resolution of haptic

perception under various experimental conditions. Force is one of the most fundamental

haptic signals which is necessary for perceiving properties such as stiffness or weight.

Despite its importance, experimental investigations of force sensing have focused primarily

on the determination of the just noticeable difference (JND) and perceived

magnitude (Jones, 1986). Few studies have however investigated the temporal aspects of

haptic perception, i.e. the time that is required to build up a specific percept. Exploration

time, for example, has been shown to have an impact on the accuracy of shape perception

(Heller, 1984; Ernst, Lange, & Newell, 2007) as longer exploration times lead to better

recognition performance in a matching task. Cholewiak and Collins (2000) investigated the

effects of two temporal properties, stimulus duration and stimulus onset asynchrony, on the

perception of spatial direction using an array of tactile effectors attached to the body. Both

temporal properties of the stimulation have an influence on the precision of the sensed

direction. We are unaware of any work on the temporal characteristics of force perception.

One of the most renown temporal characteristics of speeded perceptual judgments

under uncertainty is the speed/accuracy tradeoff, the negative relation between response

speed and accuracy (Luce, 1986). Such trade off is well studied in the visual modality,

where it has been shown that the instruction about judgment speed modifies the accuracy

of the responses (i.e. Swensson, 1972; Wickelgren, 1977; Ratcliff, Thapar, & McKoon, 2001;

Ratcliff & Smith, 2010; P. L. Smith, Ratcliff, & Sewell, 2013; Ratcliff, 2002). Numerous

studies found a speed/accuracy tradeoff in motor behaviour, such as the classic Fitts’s

Law (Fitts, 1954) for manual pointing tasks. Several computational models from a motor

control perspective have been advanced to capture this quantitative relation (for a review,

see Todorov, 2004). Such a tradeoff has not yet been demonstrated for haptic judgements,
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and here we will do this for force perception. Different computational models have been

proposed to account for the speed/accuracy tradeoff in judgment under uncertainty and

most of them are based on sequential sampling of a random process (P. Smith, 2000;

Ratcliff, 1978; Luce, 1986). The fundamental idea behind these models is the accumulation

of noisy information over time. If the judgment is made after a long exposure to the

sensory evidence, the accumulated evidence for a response is strong, allowing for a precise

judgment. On the other hand, if the time for information accumulation is limited, then the

intrinsic noise in the system has more influence on perception, leading to more erroneous

judgments. In recent years, diffusion models have received specific attention since they can

account for a large number of experimental phenomena, including visual detection and

lexical discrimination (e.g. Ratcliff & Tuerlinckx, 2002; Ratcliff, 2002; Ratcliff et al., 2001;

Ratcliff, Gomez, & McKoon, 2004). Current assessments for the goodness-of-fit of the

diffusion model are mostly limited to Quantile-Probability (QP) functions, where response

time quantiles are plotted over the probability of responses in a specific experimental

condition. While containing a huge amount of information about the participants’ response

characteristics, these plots are unable to capture patterns between experimental conditions

such as a change in perceptual sensitivity from the instruction to focus on making a very

fast or very accurate judgment.

In this article, we investigate whether the diffusion model can account for the

temporal characteristics of force perception, by asking participants to make a response of

whether a force applied to a gripped handle is perceived as being “high” or “low”. In order

to fit the pattern of responses with a diffusion model, we adapted the visual paradigm

reported in (Ratcliff et al., 2001) to the haptic modality. In addition to assessing the

goodness-of-fit with QP functions, we introduce the new notion of JND-quantile (JQ)

plots, capturing perceptual sensitivity over the range of response times.
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The Diffusion Model

Ratcliff’s diffusion model has been shown to be able to capture the tradeoff between

speed (response time) and accuracy (response correctness) of perceptual judgments in two

alternative forced choice tasks in many experimental paradigms, including visual

detection (Ratcliff, 2002; Ratcliff et al., 2001; Ratcliff, 1978) and recognition (Ratcliff et

al., 2004). An illustration of the diffusion model is shown in Figure 1. The exposure to

sensory information starts at time t = 0. The starting point for the information

accumulation process varies at every trial and it is assumed to be equally distributed

around z with a width sz. Similarly, there is a time offset after the stimulus starts which is

uniformly distributed around Ter with a width st. The information accumulation is

captured by a Wiener process X(t) with drift ν and variance η2. The drift rate is related to

the amount of information provided by the sensory stimulus over time and drives the state

of the process X(t) away from the initial position. There are two possible responses R1 and

R2. If X(t) reaches a, the “correct” answer is given (Ratcliff et al., 2001). Alternatively,

response “R2” is initiated when X(t) ≤ 0 (“wrong” answer). Response time (RT)

distributions are skewed and their shape depends on several factors, including the drift

rate, variance, distance between the initial level and the boundary. Methods for fitting the

diffusion model to experimental data are presented in (Vandekerckhove & Tuerlinckx, 2007)

and implemented in the DMAT MATLAB toolbox (Vandekerckhove & Tuerlinckx, 2008).

Here we adapted the experimental task employed in Ratcliff et al. (2001) to the

haptic domain. In their study, participants judged whether the distance between two dots

presented visually is categorised as being either “large” or “small”. Two sets of instructions

were given in separate blocks: Participants were either required to make a judgment as

accurately as possible (“accuracy” condition) or they were given the instruction to respond

as fast as they could with a time limit after which the answer was not valid any more

(“speed” condition). The observed speed/accuracy tradeoff in the responses has been

accounted for using a different value of a, the information needed for making a decision
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(see Figure 1). The distance between the two dots affected the drift rate ν such, that very

large and very small distances had a large absolute drift rate that lead to a quicker decision

with a higher probability of correct responses. Since our focus lies on force perception,

participants in the our current experiment were asked to judge whether a force applied to

their hand was either “high” or “low”.

Methods

Participants sat in an upright position, facing a haptic interface placed on a table.

Their elbow was placed on the table surface with a 2 cm layer of cushioning material

beneath. A ball-shaped endeffector of 5 cm diameter, firmly and continuously held with the

right hand, conveys force stimuli towards the participant’s elbow. The task was to decide

whether the force is perceived as being “high” or “low”. Ten force stimuli f ∗
i , i = 1 . . . 10,

evenly spaced between 2.6 N and 4.4 N were commanded to the haptic interface. The force

that splits the range of forces in two equal portions is named point of objective equality

(POE). Forces higher than this value are labeled as “high” forces.

In contrast to Ratcliff et al. (2001), feedback about the correct answer was given

deterministically instead of probabilistic in agreement with other published works, e.g.

(Ratcliff & Smith, 2010). Each time the participant responded “high” to a “low” force

stimulus (or vice versa) a red LED with the label “wrong” lit up for 1 s after the response

was given. For correct responses a green LED lit up instead. In addition, an orange LED

lit up if the response was given after 0.7 s of stimulus presentation in “speed” trials,

indicating that answers were supposed to be given faster. The next trial started 1 s after

the release of the response button. Prior to experimentation, all subjects were familiarised

with the range of stimuli and they were instructed on how to respond to each force level.

Apparatus. The force stimuli were rendered using a force.dimension delta.3 haptic

interface at a rate of 1kHz. Correct timing was ensured by using the Simulink

CoderTMenvironment (MathWorks R©) using a PC running WindowsTM 7. Recorded time
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stamps of every simulation step guaranteed a timing accuracy of 0.001 s for the response

times. Responses were collected using the arrow keys of a customised computer keyboard

where the connectors of the keys were directly wired to digital inputs of a National

Instruments PCI-6229 DAQ card, controlled by the same process as the haptic rendering.

Figure 2 shows a picture of the experimental setup.

Participants. Ten psychology students were recruited from the Universtity of

Birmingham and paid 15 GBP for their participation (age range 19-27, 8 female, 1

left-handed as assessed by a questionnaire). They all gave their written informed consent

prior to participating in the study, which has been approved by the local ethics committee.

Stimuli. Force stimuli were rendered using the force profile shown in Figure 3. The

force was directed towards the participant’s elbow which was supported on the table to

minimise movements of the arm due to the stimulus.

The onset of the force stimuli was smoothed using a third-order polynomial to

overcome the inherent dynamic limitation of the haptic interface and to minimise tactile

cues arising from fast-changing force stimuli. A list of 30 stimuli, consisting of three

repetitions of all 10 force conditions was blocked and presented in randomised order. After

every second list, participants were encouraged to take a small break; an interruption of

the experimental procedure of at least two minutes was ensured after every five lists of

conditions, and a break of at least five minutes after every 10 lists. Every list was repeated

25 times while participants focused on response accuracy, and 25 times while participant

focused on speed; the order of lists was randomised. This led to a total of 1500 trials which

were completed in less than 2.5h.

To verify the experimental conditions, the actual rendered force profiles were

measured using an ATI Mini 145 Force/Torque sensor connected to the DAQ card. Force

profiles for all experimental conditions were recorded with five repetitions at three different

locations within the workspace of the haptic device. A constant, rigid contact between the

handle and a wall ensured the elimination of any relative movement between device and
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the sensor. While the measured force profile did not show appreciable differences with the

instructed profile in terms of the force rise time, differences in the force plateau could be

distinguished clearly. The differences between the instructed forces and the measured ones

is summarised in Figure 3. The measured (stationary) force f for each of the instructed

forces f ∗ has been approximated by the regression function

fmea = 0.96f ∗ − 0.08 N

obtaining a correlation coefficient of R2 = 0.98. In the following sections, all analyses are

based on the measured force levels, being 2.4 N, 2.6 N, 2.8 N, 3.0 N, 3.2 N, 3.4 N, 3.6 N,

3.8 N, 4.0 N and 4.1 N. Consequently the POE splitting the range in two is 3.3 N.

Results

Response times are normalised by performing a logarithmic transformation(Ratcliff,

1993) and trials that deviate more than 3 standard deviations from the mean (separately

for “speed” and “accuracy” condition for each participant) are identified as outliers (0.9 %

of all responses). Responses are faster in the “speed” condition than in the “accuracy”

condition (paired sample t-test on the transformed RT values t(9) = 3.74, p < 0.01).

Responses given very fast are sometimes not based on sensory evidence, but are only

guesses or a “startle” process. In previous research, these responses have been accounted

for by introducing a lower threshold on response times before modelling with a diffusion

process (Ratcliff & Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007; Ratcliff, 1993;

Vandekerckhove & Tuerlinckx, 2008; Ratcliff & Smith, 2010). To identify these fast

guesses, we consider the easiest force condition and analyse the probability of correct

responses within time windows of 0.05 s length as depicted in Figure 6 (right). For each

individual participant, the threshold response time leading to more than 80 % of correct

responses is identified as a lower bound and responses earlier than this are excluded from

the diffusion modelling.
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A joint visualisation of RT as a function of the probability of responses is the

so-called Quantile-Probability (QP) plot (Ratcliff, 2002; Ratcliff et al., 2001, 2004; Ratcliff

& McKoon, 2008; Ratcliff & Smith, 2010) where we will use a form of visualisation plotting

the probability to respond “high” and the probability to respond “low” separately (as in

(Ratcliff & McKoon, 2008)). We will discuss the general components of the representation

and refer to Ratcliff and Smith (2010) for a comprehensive discussion. Response times

are separated into “high” and “low” responses, sorted and binned in the fastest 10, 30, 50,

70 and 90 % response time quantiles as illustrated in Figure 4. RT quantiles are then

plotted for every force magnitude as a function of probabilities phigh to respond “high” and

plow to respond “low”. QP functions are shown in Figure 5 separately for the “speed” and

“accuracy” conditions. It can be seen that the 10% quantile is approximately constant,

regardless of the probability of “high” and “low” responses. This means, that the fastest

answers are given at a minimum time which is unaffected by the stimulus condition.

Differences between experimental conditions are evident in the 70% and 90% RT quantiles:

Conditions with a response probability near 0.5 (that means, where participants guessed

whether a high or low force was presented) tend to be slower in these percentiles. Response

time distributions for force levels near the PSE thus have the same onset as the ones on the

extreme ends of the tested range, but longer tails.

The probability of “high” responses over the stimulus force level is depicted in

Figure 6 (left). Cumulative Gaussian distributions are fitted to the experimental data

separately for each participant using the Bayesian inference method (Wichmann & Hill,

2001). The point of subjective equality (PSE) corresponds to the force level resulting in a

0.5 probability of “high” responses. The just noticeable difference (JND) is defined as the

force difference between the force corresponding to the 0.75 probability and the PSE. PSE

values for the “accuracy” and “speed” conditions are 3.16±0.04 N (mean ± s.e.m.) and

3.17±0.05 N. These values are significantly lower than the 3.3 N POE (one sample test

t(9) = −3.82, p < 0.01; t(9) = −2.86, p < 0.05) and they do not differ according to the
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condition (paired sample t-test, t(9) = 0.16, p = 0.88). However, the PSE values are almost

coincident with the stimulus nearest to the POE (3.18 N).

JND values indicate a higher sensitivity to force in the “accuracy” condition,

0.36±0.05 N than in the “speed” condition 0.57±0.1 N (one-tailed t-test t(9) = −2.14,

p < 0.05). To be able to capture the temporal properties of such sensitivity values

analogously to the QP function, here we perform a new type of analysis that we define as

JND-Quantile (JQ) plot. Participants’ responses are split according to the RT quantile and

a psychometric function is fitted to the data from each subdivision. JNDs are estimated

separately from data between the 0% and 10% quantile of the RT distribution as well as

from data between the 10% and 30%, 30% and 50%, 50% and 70%, and the 70% and 90%

quantile. The values obtained in the “speed” and “accuracy” conditions are depicted as a

function of the RT for that quantile in Figure 7. We discuss JQ functions with and without

the identified fast guess responses as discussed above. A two-way repeated measure

ANOVA on JQ data including fast guesses with factors quantile and condition reveals a

significant change in JND as a function of time, but not instruction (F (4, 36) = 3.68,

p < 0.05; F (1, 9) = 4.81, p = 0.055). The interaction between the two factors is not

significant (F (4, 36) = 1.1, p = 0.38). A linear regression analysis on the JND over RT

quantile reveals a slope which is significantly different from 0 in the “speed” condition

(t(9) = −2.8, p < 0.05) but no significant trend in the “accuracy” condition (t(9) = −0.85,

p = 0.42).

Parameters for the diffusion model (Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002;

Ratcliff, 2002; Ratcliff et al., 2001) are identified using the DMAT Toolbox for

MATLAB (Vandekerckhove & Tuerlinckx, 2007, 2008) for every individual participant (see

Appendix). The model parameters (Figure 1) are constrained to be identical across the

various experimental conditions except for:

1. the boundary separation a that varies between the speed and accuracy instructions,

2. the initial state of the diffusion model z, and
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3. the drift rate’s mean ν being proportional to the force level.

The predictions of a numerical approximation of the diffusion model (Ratcliff & Tuerlinckx,

2002) with the identified parameters is shown in the QP plot of Figure 5. The values in the

JQ plot in Figure 7 are instead obtained by fitting a psychometric function to 1000

simulated trials from the diffusion model with the identified parameters.

Discussion

Results indicate a consistent difference between the PSE and the POE across

participants. This difference could be explained by appealing to the nonlinear perception of

force magnitude, such as the commonly reported power function (Jones, 1986). It is

expected that participants infer the force level separating “high” and “low” forces in two

equal intervals by estimating the middle point of the perceived force range, rather than the

physical force range. Since PSEs are smaller than the POE, this means that participants

overestimated smaller forces and underestimated large ones. This is consistent with a

power function with an exponent between 0 and 1, which is in the range of exponents

reported for haptic tasks (Jones, 1986).

Quantile-Probability (QP) plots

The QP plots in Figure 5 exhibit typical features of a speed/accuracy tradeoff which

is also found in similar studies on visual perception (Ratcliff et al., 2004; Ratcliff & Smith,

2010; Ratcliff et al., 2001; Ratcliff, 2002). Responses are faster in the “speed” condition,

but discrimination is better in the “accuracy” condition. All QP plots show an inverse

U-shape where the curvature of the shape gets more pronounced with higher quantiles, the

U-shape is generally more noticeable in the “accuracy” condition. This seems to indicate

that participants tend to take more time when the judgement is difficult as the probability

to respond “high” or “low” is near the chance level, in line with what has been found in the

visual modality. The difference between the two experimental instructions is evident from

the time values of the 90% quantile – while almost all responses were given within 0.7 s
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after the stimulus onset in the “speed” condition, participants took longer in the

“accuracy” condition. This is irrespective of the 10 % quantile being similar for both

experimental manipulations. We may partially associate the latter result to the censoring

procedure applied to eliminate fast guesses, since this affects predominantly the responses

in the “speed” instruction (Fig. 6, right panel).

JND-Quantile (JQ) plot

QP plots contain detailed information about the response time distributions for

correct and erroneous responses. The distributions are plotted as a function of the

averaged probability of responses across the whole condition. In doing so, there is the

assumption that responses and thus their precision are independent from their response

time (quantiles are plotted vertically aligned). In the JQ plot, on the other hand, force

level conditions are combined to capture performance separately for responses given with

different delays. In other words, the JQ plot can evidence the pattern of speed/accuracy

tradeoff rather highlighting the difference in response time for each force stimulus condition

as in the QP plot. In a similar way, the conditional accuracy function as discussed e.g. in

(Luce, 1986, p. 236) as an empirical representation of the speed/accuracy tradeoff could

theoretically capture related patterns. However, to represent our current data,we would

have to plot one conditional accuracy function for every force level and for every

instruction (“speed”/“accuracy”), leading to a total of 20 individual functions, making an

intuitive interpretation rather difficult. Moreover, to obtain a compact representation of

the speed/accuracy tradeoff using conditional accuracy functions requires the control of the

number of errors the participant makes, otherwise this could lead to problems in

visualisation (Bonnet & Dresp, 1993). An example of such problems is the ceiling effect as

visible in the “accuracy” condition in Figure 6 (left) where responses are always correct

independently of the time taken to respond. The JQ plot does not have this limitation as it

can capture patterns in the data with several levels of the independent variable, e.g. the
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seamless transition between fast and accurate responses that would be harder to see in RT

distributions for correct and error responses or individual conditional accuracy functions.

In Figure 7 we show JND over response time quantile for “speed” and “accuracy”

conditions discarding the fast guess responses to make a fair comparison between model

predictions and experimental data. The results from the regression analysis indicate that

judgment accuracy depends on the response delay (especially in the “speed” condition):

the later the response is given, the more accurate is the judgment. The decrease in

performance at low RTs is due to the presence of fast but random responses, as shown in

Figure 6 (right). Another possible explanation for this pattern is that the stimulus

intensity is the dimension to be judged, whereas this seldom happens in visual experiments

(visual intensity is often orthogonal to the property under scrutiny). Force stimuli are also

inherently time-varying (they always rise from 0 N to the respective force stimulus level in

0.1 s). But as participants anticipate the stimuli’s onset time, the stimulus rise-time could

lead them to respond “low” shortly after the expected force onset, irrespectively of the

actual stimulus presented. The data pattern suggests that such type of answer happens

only for very fast responses. Instead, after 0.6 s the judgment accuracy does not improve

further by accumulating additional information.

A second difference between JQ and QP plots is the ability to jointly visualise

“speed” and “accuracy” conditions. In this way, it is possible to detect that the JND values

for the “speed” and “accuracy” condition overlap substantially so that the “accuracy” curve

seems to extend the “speed” curve towards longer RTs. Irrespective of the experimental

instructions, additional time to responds improves the quality of responses until RTs reach

0.6 s. This suggests that the perceptual sensitivity reaches a maximum performance and

additional decision time does not help. Interestingly, we observed such a phenomenon also

in a similar study, where participants move their hand instead of keeping it static (Rank &

Di Luca, 2014). While we did not include a “speed” condition in (Rank & Di Luca, 2014),

the different movements caused the JND to differ only at fast response times, but the values
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were not influenced by the experimental manipulation for responses given after ~650 ms.

These results suggest a robust relation between sensitivity and reaction time in force

magnitude perception which is independent of prioritisation instructions. Somewhat

opposite to the idea of the diffusion model where reaching a decision boundary determines

the reaction time, here it seems that the prioritisation of a fast response requires

participants to give a response using the information acquired, thus limiting the response

quality. We speculate that in the data analysed there are two mechanisms involved - one

limiting perceptual sensitivity in fast responses and another in slow responses. It is still to

be determined whether this phenomenon is unique to the stimuli employed and to the

haptic modality or it is ubiquitous across sensory systems. In haptics, such duality in

temporal sensitivity might be connected to the presence of mechanoreceptors with different

in temporal characteristics. Whereas Meissner corpuscles fire for fast-changing forces,

Merkel disks react slowly to force stimuli (Lederman & Klatzky, 2009). In vision there is a

similar dualism as two separate processing streams exist - the parvocellular (P-) and

magnocellular (M-) visual pathways (Livingstone & Hubel, 1987) – and this can lead to

marked differences in tasks involving spatial and temporal properties.

Diffusion Model Fit

Predictions of the parameterised diffusion model are depicted in Figures 7 and 5.

Parameter values for the diffusion model are summarised in the Appendix, see Table A1.

Compared to the visual experiment that motivated our study, we had to include a non-zero

value for the variability in the non-decision time st in order to achieve a good fit. With

st = 0, the fit obtained had goodness-of-fit values of X2 ≥ 500 for all participants. A

possible reason why a parameter st 6= 0 was needed could be found in the smooth onset of

our force stimulus. It has been shown (Ratcliff, 2002) that all parameters of a modified

diffusion process with time-variant drift rate rising from 0 to a constant level can be

successfully recovered except for an increase in sz, Ter and st. The shape of the predicted
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and experimental QP plot data in Figure 5 is similar. The X2 measure of fit has a critical

value of 231.8 to indicate a significant difference between model and data with p = 0.05,

given our fitting method with 198 d.o.f.. In our case, 8 out of 10 participants stay below

this critical value, indicating a reasonable good fit which is comparable to the one found

in (Ratcliff et al., 2001). The model parameters fitting our haptic data differ in some ways

from those found in Ratcliff et al. (2001): First, the non-decision time Ter seems

remarkably large with 0.44 s, whereas the 0.1 RT quantile in the “speed” condition is only

slightly higher than in the reported visual study. We could associate this large value with a

potential time-varying drift rate at the force onset, as discussed above. However, Ter − 0.5st

is smaller than the 10% quantile which indicates a reasonable match between model and

data. The range of drift rates between -0.36 and 0.42 is in the range of values reported in

other studies as well. The mean drift rate at the POE is 0.028, thus slightly larger than 0,

leading to a tendency to respond (“high”) in this (virtual) condition. This coincides with

our finding from the psychometric function, suggesting that forces are generally

overestimated in the task described here, leading to a PSE which is smaller than the POE.

We attempted to further increase the goodness of fit with several model variations.

• Force magnitude perception has been reported to follow a power function (Jones,

1986). We identified the exponent of a power function for each individual subject from

freely identified drift rates and used it to fit the model.

• Haptic perception is known to follow Weber’s Law (Weber, 1834); the accuracy of a

force perception judgement depends on the magnitude of force applied. A linear increase in

the standard deviation of the Wiener process η could account for such behaviour.

• The polynomial smoothing of the force onset could affect the start of the

information accumulation Ter. Assuming the force exceeding a (constant) absolute

detection threshold triggers the information accumulation process, Ter would evolve

approximately reciprocal with the magnitude of the target force f .

None of the modifications improved the fit above significance in a likelihood ratio test for
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more than 2 participants.

Instead, the pattern of results has a notable deviation from the predicted evolution of

the JQ plot. While the experimental data evidences a steep decrease in JND for small RT

in the “speed” condition, the curves obtained from the diffusion model simulation are much

flatter. This could be due to the absence of that fast error responses in the model fitting.

There is a second, more critical aspect of the model which becomes evident when

inspecting the JQ plot. The data obtained from the fitted diffusion model does not capture

the fact that JND curves of the “speed” and the “accuracy” conditions overlap when RTs

are in a similar range and both curves appear to converge to a lower bound. The diffusion

model postulates a specific threshold a for the information accumulation process to

terminate causing non-overlapping data in the JQ plot for the two conditions. In the

reported studies, a could be influenced by the instruction given to focus either on the time

or the accuracy of the judgment. Finding overlapping patterns of data in the JQ plot over

different instructions suggests a common perceptual mechanism for the decision making

process instead of a discrete threshold value for each condition.

Alternative Models

Accounting for the observed pattern of data in the JQ plot must capture the smooth

transition between “speed” and “accuracy” condition. One possibility is a decision criterion

a(t) changing its value over time. When decisions are made early, less information is to be

accumulated, later more information is taken into consideration to make a (precise)

judgment. The drawback of this modification is that response times are likely no longer

inherently predicted by the model, but a preference whether to respond early or late must

be assumed a priori in order to parameterise a(t). Our previous assumption of different

values for a is in line with previous findings (Ratcliff et al., 2001; Vandekerckhove &

Tuerlinckx, 2007; Ratcliff, 2002). However, it is possible to account for the pattern

observed in the JQ plot by assuming a single decision criterion and a change of the drift
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rate between “speed” and “accuracy” conditions. We compared the goodness-of-fit of the

model with decision boundary dependent on instruction (whose results are shown are in

Figure 5) with a diffusion model using only one value for the decision criterion but

independent (linear) relations of the drift rates in “speed” and “accuracy” conditions.

Using this model structure, we were able to account for overlapping JQ plot characteristics;

the X2 values for these models are though higher compared to the model structure

reported in the Appendix (t(9) = −2.3, p < 0.05).

Conclusion

We presented a psychophysical experiment on the speed/accuracy tradeoff in human

force perception. Participants judged whether a force applied to their resting hand is

perceived to be “low” or “high”. A diffusion model has been fitted to the responses. The

prediction error is in the range of error values reported for studies in the visual domain,

suggesting that despite the difference in spatiotemporal properties of the stimuli, the

diffusion model is applicable to force perception as well. However, the diffusion model fails

in predicting how sensitivity in force judgments depends on response time as evidenced by

a new kind of analysis called JND-Quantile (JQ) plot. The JQ plot evidences the

speed/accuracy pattern suggesting that sensitivity increases with response times up to

0.6 s, regardless of the experimental instruction to focus on response “accuracy” or “speed”.

The unexplained feature in the JND as a function of response time quantile gives rise

to the question whether an alternative to the diffusion model could capture this

phenomenon. Candidates to start with could include Bayesian observers, i.e, the Kalman

filter or particle filters. The Kalman Filter is a special case of a diffusion process and is

capable of mimicking different established perception models as well, e.g. the

Ornstein-Uhlenbeck process used in other studies (P. L. Smith et al., 2013).

The novel analysis technique of the JQ plot should be further investigated. In

particular, it would be interesting to see whether perceptual sensitivity increases over time
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and regardless of the experimental instructions in other experimental paradigms and with

information coming from other sensory modalities such as vision.
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Figure 1 . The diffusion model captures information accumulation in perceptual processes.

Two sensory stimuli with different information content are depicted in solid and dotted

lines. Sensory stimuli with more informative content (|ν1| � 0, solid lines) are judged

faster and with a higher accuracy than ambiguous stimuli with drift rate ν2 ≈ 0 (dashed

lines). The distribution of RT with less informative stimuli (and with stimuli near the

decision boundary) has a longer right tail.
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force
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response keys
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Figure 2 . Force stimuli were rendered using a 3 degree-of-freedom haptic interface. Forces

were aligned with the participant’s forearm and directed towards the elbow to prevent any

movement that could affect the discrimination of force magnitude.
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Figure 3 . (left) Force stimuli were step-like functions whose onset was smoothed by a

third-order polynomial. The force actually produced by the haptic device deviates from the

commanded force as indicated by the discrepancy between the measured force (solid line)

and the commanded force (dotted line). (right) Force measured 0.3 s after onset is on

average lower than the commanded value for each of the force stimuli employed in the

experiment. The values identified by a regression line are used in the paper. Error bars

indicate the standard error of the mean of 15 sample measures.
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Figure 4 . Every force stimulus has two possible responses (“high” and “low”) that when

averaged across trials lead to the probabilities phigh and plow, respectively. (left) For one

participant, the probability of responding “high” as a function of force increases from low

to high force stimuli, with a slope that represents the sensitivity (see Fig. 6). (right) The

two inserts show response time distributions for one force stimulus (4.1 N) separated for

the two types of responses. The dotted lines represent 5 quantiles (10, 30, 50, 70, 90 %),

which are calculated separately for each type of response and stimulus. Reaction times are

higher (i.e. longer right tail) for the less-frequent (and wrong) “low” responses. From this

data, two types of representations can be obtained. Quantile-Probability plots (Fig. 5) are

obtained by plotting the 5 response time quantiles as a function of the two probabilities of

response for each stimulus level. To calculate JND-Quantile plots (Fig. 7), instead, the 5

quantiles are used to separate the data and then fit a psychometric function for each

quantile (as shown on the left side of Fig. 6).
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Figure 5 . Quantile-Probability (QP) plots averaged across participants (shaded symbols)

and predictions of the diffusion model after parameter identification (lines). “Accuracy”

and “speed” prioritisation conditions are displayed separately in two rows. The data is also

separated in two columns depending on the response (“low” and “high”). The 5 response

time quantiles (as shown in Fig. 4 for one participant) are depicted from light to dark grey

as a function of average probability of response (phigh and plow, respectively). The QP plot

highlights how response time increases for force level stimuli that lead to an equal number

of “high” and “low” responses (data is situated in the middle of the horizontal axis). The

pattern is however asymmetrical with slower reaction times for responses that are less

numerous for a given condition (situated in the left portion of the horizontal axis). The

diffusion model captures these two features well as evidenced by the similar pattern of lines

and symbols. QP plots allow to see that the “accuracy” and “speed” conditions lead to

different pattern of responses, with slower responses on the top row, but probability values

that are more spread along the horizontal axis suggesting better discrimination of force

level. However, QP plots do not allow quantitative comparisons of performance (as possible

with JNDs shown in Fig. 6) nor allow the analysis of sensitivity as a function of reaction

time.
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Figure 6 . (left panel) Psychometric functions for “accuracy” (light grey, square) and

“speed” (dark grey, round) conditions for data pooled across the 10 participants. (right

panel) Conditional accuracy graph for the lowest force stimulus f = 2.4 N in the two

conditions. The graph is obtained by plotting the probability of correct responses as a

function of RT binned in 0.1s windows. Responses given with a RT less than 0.4 s do not

significantly deviate from chance level.
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Figure 7 . JQ plots are obtained by plotting JNDs (see Fig. 6) obtained with data

separated in RT quantiles (see inserts of Fig. 4) over the respective quantile’s mean RT.

The “speed” condition is marked by dark circles, the “accuracy” condition by light squares.

The data of the two conditions evidence a decrease in JND with slower responses until

values reach a plateau (performance ceiling). The pattern of the two prioritisation

conditions are largely overlapping, suggesting similar discrimination performance when

reaction time is considered. This empirical data is compared to JND values obtained from

the data of the diffusion model shown in Figure 5 which is marked with dashed lines inside

the shaded areas (dark for the “speed” condition and light for the “accuracy” one). The

two areas are largely separated, suggesting that the diffusion model predicts different task

sensitivity depending on prioritisation instruction. Error bars and shaded areas represent

s.e.m. across participants.
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Appendix

Diffusion Model Fitting

For fitting the diffusion model to experimental data, grouping data from conditions with

equal difference to the POE is a common technique to reduce the number of model

parameters and increase the statistical power, see e.g. (Ratcliff et al., 2001). To test

whether symmetric force conditions around the POE can be grouped together, their

response characteristics must be symmetrical to this experimental condition as well.

Participants’ individual PSEs, indicating the perceived threshold between “small” and

“large” forces are significantly lower than the POE being 3.3 N. As a consequence of this

significant difference, a grouping of symmetric experimental conditions is not possible here.

Instead, every experimental condition results in an individual set of model parameters.

Parameters are identified by minimising the X2 value between the model predictions

and the experimental data. The relation between physical stimulus and drift rate is often

(but not always) linear as discussed in a recent paper by Ratcliff (2014). To test which

drift rate function is a feasible choice, a linear function and four alternative models are

tested, constraining drift rate depending on the force level and the starting point of the

diffusion model as follows:

1. drift rate ν independent (ν1...10 = const.), z = a/2;

2. ν proportional to the force level, z = a/2;

3. ν proportional to the force level, a free;

4. ν follows a power function, a free;

5. ν varies freely with each force level, a free.

All other constraints on the model parameters remain. Since these models are nested, that

means, model 1. with 7 degrees of freedom (df) is a special case of 2. (8 df); 2. is a special

case of 3. (10 df) and so on, a likelihood ratio test (LRT) can be used to investigate

whether the additional degrees if freedom justify the improvement in model

fit (Vandekerckhove & Tuerlinckx, 2007). In all participants, a linear variation of drift rate
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with force condition (model 2) leads to significantly improved modelling accuracy

(p < 0.001) over model 1. Identifying the starting point as another free parameter improves

the quality of fit significantly over the fixed initial point at a/2 in 7 subjects. However,

only one participants’ quality of fit improves significantly with the additional degrees of

freedom introduced by models 4 and 5. The identified parameter values for a model with

drift rates linearly related to the force level and free starting point are summarised in

Table A1. The relation between drift rate and force level is reported as

νi = I +mfi (1)

where I is the intersection and m the slopes of thet linear function.
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Table A1

A summary of identified parameters and the final value of the X2 optimisation criterion. A

subscripted acc refers to conditions with instruction to focus on accuracy, sp on speed. All

values in this table except X2 are multiplied by 1000 for better readability.

Subject aacc asp Ter η zacc zsp sz st I m X2

P1 71.6 61.1 400.5 3.6 36.8 30.5 60.1 173.5 -737.9 222.7 180.3

P2 117.5 74.3 445.2 185.3 62.3 40.8 43.9 159.7 -1237.4 382.4 135.7

P3 107.4 61.4 455.3 240.1 49.8 30.7 27.3 183.1 -1938.8 612.7 144.6

P4 119.4 59.1 498.1 266.3 60.7 29.6 58.1 147.4 -2280.8 702.3 152.9

P5 96.8 54.5 461.7 249.9 41.8 26.4 0.0 162.4 -1597.1 527.4 241.6

P6 77.3 66.0 473.0 7.9 34.7 39.3 0.0 6.7 -699.4 226.1 27.9

P7 92.6 3.4 442.0 200.0 37.3 0.6 0.5 397.8 -1205.9 387.5 54.9

P8 79.0 61.7 423.9 195.1 45.9 34.4 52.2 189.5 -1902.4 586.6 122.0

P9 200.3 71.9 371.0 118.7 99.7 40.5 54.0 96.3 -1135.3 331.7 127.1

P10 83.4 62.7 425.1 189.9 46.1 37.1 19.7 208.0 -1793.9 546.7 139.4

mean 104.5 57.6 439.6 165.7 51.5 31.0 31.6 172.4 -1452.9 452.6 132.6

sem 11.9 6.3 11.5 29.7 6.1 3.7 8.0 31.0 168.3 52.5 18.8


