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Large-scale community detection based on node 

membership grade and sub-communities integration  

Ronghua Shanga, Shuang Luoa, Yangyang Lia, Licheng Jiaoa and Rustam Stolkinb 

(a Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian 

University, Xi’an, China; b School of Mechanical Engineering, University of Birmingham, UK) 

Abstract: Community detection plays an important role in research on network characteristics and 

in the mining of network information. A variety of algorithms have previously been proposed, but 

with the continuous growth of network scale, few of them can detect community structure 

efficiently. Additionally, most of these algorithms only consider non-overlapping community 

structures in networks. This paper addresses these problems by proposing a new algorithm, based 

on node membership grade and sub-communities integration, to detect community structure in 

large-scale networks. The proposed algorithm firstly introduces two functions based on the local 

information of each node in networks, namely neighboring inter-nodes membership function 

fMS-NN and node-to-community membership function fMS-NC. Firstly, local potential complete 

sub-graphs are efficiently mined using the function fMS-NN, and then these small graphs are merged 

into larger ones in light of local modularity. Secondly, incorrectly divided nodes are modified 

according to function fMS-NN. Additionally, by adjusting the parameters in fMS-NC, we can 

accurately obtain both non-overlapping communities and overlapping communities. Furthermore, 

the proposed algorithm employs a framework resembling label propagation, which has low time 

complexity and is suitable for detecting communities in large-scale networks. Experimental results 

on both artificial networks and real networks indicate the accuracy and efficiency of the proposed 

algorithm. 

Keywords: Large-scale network; node membership function; sub-communities integration; 

overlapping community 

1. Introduction 

Complex networks are prevalent throughout the natural world, human interactions and 

computer systems, e.g. the World Wide Web, interpersonal networks, biological networks, and 

many other examples [1-6]. An important property that exists in many of these networks is 

community structure [7-9]. A community is a set of nodes that connect more closely with each 

other than they do with other nodes in different communities [8-9]. Individuals of the same 

community usually have common characteristics [10] [45]. For example, web pages with similar 

subjects compose a community in the worldwide web network [11]. Additionally, it can be seen 

that individuals with similar characteristics often share more dense connections with each other 
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than they do with other parts of the same network. Thus, detecting community structures is helpful 

in understanding the structure and functioning of networks [22] and can also help to detect 

potentially useful information within a network, through mining relations between individuals. 

The problem of community detection is an area of rapidly growing interest within the 

complex network analysis research community, and a variety of methods have been proposed for 

its solution. Well-known approaches can be broadly categorized as graph partitioning methods 

[12-14], hierarchical clustering algorithms [15-17], and evolutionary algorithms [18-19]. 

Kernighan-Lin algorithm [12] is a well-known graph partitioning method, which works by 

randomly dividing a network into two communities, and then iteratively exchanging the nodes of 

the two communities until a modularity measure Q (see [23]) is maximized. Spectral bisection [13] 

also works by separating the network into two parts, using a Laplace matrix. Both of these 

algorithms rely on accurate prior knowledge of community size; they can only perform a simple 

binary division of a network into two communities; also their time complexity is high. 

The hierarchical clustering algorithm is based on notions of similarity between the nodes and 

edge betweenness. This class of algorithms is “hierarchical” in the sense that clusters are 

recursively merged (agglomerative methods) or split (divisive methods) as one moves up or down 

the hierarchy respectively. For example, GN [15], proposed in 2002, recursively removes 

whichever residual edge has the largest edge betweenness, thereby progressively decomposing a 

network into a number of smaller clusters. However, computing the betweenness of all the edges 

is time-consuming. 

In 2008, Clara Pizzuti [18] first proposed the use of evolutionary algorithms to solve the 

problem of community detection. The algorithm uses a single objective evolutionary algorithm to 

optimize community fraction CS as its objective function. Inspired by this method, Gong [20] et al 

proposed a memetic algorithm to optimize modularity density D to extract multilevel community 

structures. In 2013, Shang et al [21] improved on [20] by incorporating additional kinds of prior 

knowledge and using simulated annealing as a local search strategy to optimize a modularity 

measure, Q. In addition to the above methods, other algorithms have recently been proposed for 

detecting overlapping community structures. Some of these methods firstly extract maximal 

sub-graphs from the original networks and then merge small sub-graphs according to some index 

or strategy [57-59]. Other methods detect overlapping nodes in bipartite networks using key 

bi-communities and free-nodes [60]. 

However, with the rapid growth in worldwide computer prevalence and connectedness, the 

corresponding expansion of individual’s social circles, and the era of big data, the scale of 

networks is increasing, engendering a growing need for algorithms which are fast and efficient. In 

this lights some of the above methods are no longer suitable for community detection in large 

scale networks, for example the time complexity of KL [12] is O(n2) and GN [15] is O(n3). 



 

Although evolutionary algorithms have shown potential for finding global optima, and are not 

constrained by the type of optimization function, they often take a long time to converge. Besides, 

the detection results still have some room for improvement, such as improving the detection 

precision and finding more multilevel solutions.  

To overcome the limitations of the above algorithms, this paper proposes a large scale 

community detection algorithm based on node membership grade and sub-communities 

integration. First, we propose a neighboring inter-nodes membership function fMS-NN to evaluate 

the closeness of each node with its neighbors. Through merging the couple-node with highest 

fMS-NN value, this method can quickly find the potential complete sub-graph structures and 

effectively obtain a preliminary partitioning for the network. Next, those sub-communities 

achieved from the above steps are integrated by optimizing modularity Q. However, once these 

sub-communities have been merged together, it is difficult to correct nodes that have been wrongly 

placed. Therefore we propose another membership function fMS-NC which is used to estimate the 

intimacy of nodes that connect with different adjacent communities and can modify misclassified 

nodes, thereby preventing the result from falling into local optima. Finally, through adjusting the 

parameters of fMS-NC, the proposed algorithm can be used to detect overlapping nodes and find 

overlapping community structures at different levels. Because the proposed algorithm adopts a 

learning strategy similar to label propagation, which involves only local information in each 

iteration, our method has low time complexity and is therefore suitably efficient for detecting 

communities in large and medium scale networks. 

The remaining part of this paper is arranged as follows. In section 2, related algorithms are 

introduced and the motivations for the proposed algorithm are explained. In section 3, the details 

of is the proposed algorithm are described. Section 4 presents the results of experiments on both 

artificial and real networks. Section 5 discusses the results and presents conclusions. 

2.  Related works and motivation 

In this section, we will introduce some related strategies employed for community detection 

in large scale networks, and discuss the motivations for designing the new algorithm proposed in 

this paper. 

2.1 Local modularity 

Modularity Q, proposed by Newman [23], is used as a general evaluation index of the 

partitioning result. A variety of algorithms have been proposed for dividing a network into 

communities by maximizing Q. However, calculating modularity Q requires global information of 

a network, which causes fundamental problems for community detection as the scale of networks 

becomes large. Therefore, to improve the detection efficiency in large-scale networks, more recent 



 

algorithms have been proposed which exploit the local information of each node, [24-29], 

especially those which are based on local modularity optimization [25-29].  

This paper is particularly concerned with networks which are unweighted and undirected, so 

that the local modularity incremental function can be reduced to: 
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Equation (1) shows the increment of modularity Q when a node i (or community i) merges 

with node j (or community j), where l i,j represents the connections between node i (or community i) 

and node j (or community j), di and dj donates the degrees of all the nodes in node i (or community 

i) and node j (or community j) respectively, while m is the number of edges in the whole network. 

2.2 Efficient ways of optimizing local modularity 

  Methods for optimizing local modularity can be broadly divided into two categories：local 

node search strategies and sub-communities integration strategies. Local node search focuses on 

information about each node’s neighbours in the network, and divides nodes into communities 

according to an optimization function. For example, LPAm [26] employs the framework of LPA 

[25], which treats each node as a separate community with its own label. In each iteration, LPAm 

updates each node’s label according to equation function which is equivalent to local modularity, 

converging on an optimized set of communities corresponding to an increase in modularity 

optimization. LPAm has low time complexity, O(m), and is more stable than LPA. In order to 

overcome the vulnerability of LPAm to local optima convergence, Liu et al [27] extended LPAm 

by incorporating the sub-communities integration strategy of multistep greedy, similar to MSG 

[28]. The sub-communities obtained by LPAm are iteratively merged according to the local 

modularity function until no further improvement can be made. The optimization result is greatly 

improved, and its time complexity is only O(mlog2n). 

An alternative approach to optimizing local modularity are sub-communities integration 

strategies, which merge existing sub-communities in a greedy way. FM [29], initializes each node 

as a separate small community, and iteratively merges whichever pair of current sub-communities 

causes the largest increment of local modularity. This procedure is repeated until no pair of 

communities can be merged to make a positive improvement in local modularity. The algorithm 

has a time complexity of O(nlog2n). BGLL [30] is another algorithm which uses a 

sub-communities integration strategy. In contrast to FM [29], in BGLL the pair of 

sub-communities to be merged need not be globally optimal, but is only required to cause a locally 

optimal increase in modularity, Q. This method has a near linear time complexity for sparse 

networks and achieves good detection results. However, like LPAm, BGLL is prone to local 

optima convergence because, during the merging of sub-communities, if a single node is wrongly 



 

assigned, it will become part of a larger community, after which it cannot be divided back out of 

that community in future iterations. To overcome this problem, a correction method was proposed 

by Rotta et al [31]. In this method, a multi-level correction strategy is employed, that employs a 

local node search strategy during each iteration. 

From the above discussion it is apparent that the idea of combining local nodes search and 

community integration together, can help algorithms overcome vulnerability to local optima, while 

offering the potential for low computational complexity. Hence, in this paper, the idea of 

combining these two strategies is employed for detecting community structures in large scale 

networks. 

2.3 Pre-processing method 

Unfortunately, the algorithms discussed in section 2.2 share a common problem. After 

initialization, when every node is individually labeled as a separate community, in accordance 

with the formula (2), l i,j will be equal to unity. Consequently, the maximum increment of local 

modularity will correspond to two nodes with smaller degrees, di and dj, so that such nodes are 

more likely to be partitioned into the same community [32]. This tends to contradict the principle 

that individuals with closer connections should be partitioned together. Thus, inspired by literature 

[37-40] which adopts pretreatment methods, we firstly employ a neighboring inter-nodes 

membership function named as fMS-NN to generate a preliminary community division for the 

network. This function, based on the neighboring nodes membership relation, divides those nodes 

with more close connections into the same community. At the same time, by adjusting the 

parameters of fMS-NN, potential complete sub-graphs can be found, which helps to improve the 

accuracy of the algorithm. The details of this pre-processing step are introduced in Section 3.2. 

2.4 Detecting overlapping communities based on non-overlapping structures  

 Overlapping communities are widely prevalent in real networks, but are comparatively 

under-explored in the community detection literature. Existing methods for overlapping 

community detection in large-scale networks include COPRA [33] and LFM [34]. These are 

comparatively fast algorithms with low computational (using objective functions based on the 

local node information or optimization of local fitness), however their classification accuracy is 

relatively poor. Other algorithms, that are suitable for large-scale networks, detect overlapping 

communities based on already having prior knowledge in the form of existing accurate detection 

results for non-overlapping communities. For example, the CONA algorithm [35] efficiently 

detects overlapping communities based on using the BGLL and Infomap [36] division results as a 

starting point. High quality overlapping community detection with this method, is often dependent 

on first establishing accurate knowledge of the non-overlapping communities within networks.  



 

3. The proposed method 

This section introduces the design of neighboring inter-nodes membership function fMS-NN, 

the procedure for merging of sub-communities based on local modularity, the node-to-community 

membership function fMS-NC, and the detection of overlapping communities. Finally, the overall 

framework of the algorithm is presented and the time complexity of the algorithm is analyzed. 

3.1 Representation and decoding  

Consider a network G={V, E}, where V represents the vertex set and E is the edge set, |V|=n 

is said to be the number of nodes in the network and |E|=m is the total number of edges in the 

network. Here we use the real coded representation as the network partition: 

[ ][ ] where 1 2 3 11 2 i n ix ,x ,...x ,...x ,  i , , ,...n,x ,n= = ∈g                (2) 

Where g means a partition of the network and xi is an integer representing the label of the 

community to which node i belongs. According to expression (2), if xi = xj, for i, j=1, 2, ..., n, then 

node i and node j belong to the same community. For example, for a network with 12 nodes shown 

in Fig.1(a), if the partitioning result is g1=[2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 3], that means node set {3, 4, 

7, 8} is in the community 1 and node set {1, 2,5,6,9} is in community 2, and the rest nodes are in 

community 3. The corresponding community structure can be displayed by Fig. 1(b), which is 

shown in different colors and shapes. 

       

(a)                                            (b) 

Fig.1. Test network 1 

3.2 Preprocessing based on neighboring inter-nodes membership function fMS-NN 

The question of how to judge the similarity of nodes in a network is an important problem. 

Commonly, the intimacy between any two nodes is decided according to the number of their 

common neighbors, e.g. cosine similarity [61] or Jaccard similarity [62]. As a simple example, 

consider that two people could be defined as knowing each other well, if they share many 



 

common friends. If most people connected with individual A are also known to individual B, then 

we can infer that A belongs to the community of B. The extent to which B is connected to the 

individuals that connect with A, represents the membership degree with which A belongs to B. In 

light of this phenomenon, we propose a neighboring inter-nodes membership function fMS-NN 

which indicates the membership degree with which i belongs to j: 
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Where n represents the number of nodes in the network, Γk is the neighbor set of node k, and dk 

denotes its node degree. Greater values of fMS-NN(i,j) indicate higher likelihoods that node i 

belongs to node j, and suggest that node i should be partitioned into the community of node j. If all 

the neighbors of node i are connected to node j, namely fMS-NN(i,j)=1, then node i is completely 

attributed to node j. TABLE 1 presents the procedure for network pretreatment using the function 

fMS-NN. 

TABLE 1: The framework of pretreatment of a network based on function fMS-NN 

Input: The node number n; initialization representation g=[1,2,3…n];number of each node’s neighbors Neilen; 

neighboring node information Neiglist={Γ1,Γ2,…Γk,…Γn}，k=1,2,…n，where Γk represents the neighbor 

nodes set of node k; parameter α. 

Output: The preliminary partition result g. 

Step1: for i=1 to n do 

Step2:      Neilen <—  the number of node i’s neighbors: |Γi|; 

Step3:      if Neilen≠0 

Step4:         for j=1 to Neilen do 

Step5:              FMS_NN(j) <— Compute fMS-NN(i,j) ; 

Step6:         end for 

Step7:      end if 

Step8:      if max(FMS_NN)≥α 

Step9:        Attribution node ims_n <— arg max
l

( fMS-NN(i,l))，l∈Γi , (breaking ties randomly if more than one 

l’s satisfy the condition) ; 

Step10:         Community label of node i : g(i) <—Community label of node ims_n: g(ims_n); 

Step11:     end if 

Step11: end for 

Step12: g <—Decode(g); 

For example, Figure 1(a) is a simple network which contains 12 nodes and its community 

structure is clear. Intuitively, we can conclude that node v1 to node v9 belong to one community 

while nodes v10 to node v12 belong to a separate community. According to the framework shown 

in TABLE 1, we can pretreat the network presented in Fig.1. The corresponding membership 

function value of fMS-NN for each node is shown in TABLE 2. 



 

TABLE 2: The value of function fMS-NN of each node in test network 1 

node i node j fMS-NN(i,j) node i node j fMS-NN(i,j) 
1 2 0.60 4 8 0.25 
1 3 0.60 5 1 0.75 
1 4 0.60 5 2 0.50 
1 5 0.60 5 4 0.50 
1 10 0.20 5 9 0.25 
2 1 0.75 6 2 1 
2 3 0.50 7 3 1 
2 5 0.50 8 4 1 
2 6 0.25 9 5 1 
3 1 0.75 10 1 0.33 
3 2 0.50 10 11 0.67 
3 4 0.50 10 12 0.67 
3 7 0.25 11 10 1 
4 1 0.75 11 12 1 
4 3 0.50 12 10 1 
4 5 0.50 12 11 1 

According to the results in Table 2, assuming that the membership function fMS-NN satisfies 

the condition that fMS-NN(i,j) ≥ α, we will put node i into the community for which adjacent node j 

has the highest value of fMS-NN(i,j). For example, if α is set to be 0.75, the the node v1 will stay in 

its own community since no fMS-NN(1,j) exceeds the threshold. Node v2 is divided into the 

community of node v1 since fMS-NN(2,1) is the highest of all fMS-NN(2,j), where j=1,3,5,6,others 

followed by analogy. Ties are broken randomly if there is more than one highest value. Fig. 2(a), 

Fig. 2(b), Fig. 2(c) show the network pre-treatments corresponding to α set at 0.5, 0.75 and 1 

respectively (different communities are shown in different colors): 

                         
(a)                                    (b) 

 

(c) 

Fig.2. Preliminary partition results of test network 1. (a) Pre-treatment result when α=0.5. (b) Pre-treatment result 

when α=0.75. (c) Pre-treatment result when α=1. 



 

As we can see from Figure 2, when α = 0.5, the preliminary partition result of network 1 is 

the most compatible with the intuitive result. When α increased to 0.75, node v10 becomes 

regarded as a sole community as it has the trend to be an overlapping one. If we set α = 1, which 

has the most stringent membership relation, then only those nodes who are completely affiliated to 

their neighbors become partitioned into the same community. Thus, changing the membership 

function threshold α can usefully lead to multi-level pretreatment results. 

3.3 Sub-communities integration based on local modularity 

Based on the preliminary partition result obtained in section 3.2, a sub-communities 

integration strategy is next employed. This method is similar to the second step in BGLL [30]. The 

first thing to do is to agglomerate those nodes in the same community as a new node. The method 

for agglomerating the nodes is as follows. Firstly select those nodes within a single common 

community as a whole group. Then this group is re-labeled as a “big new node”. This “big new 

node” has both a self-link and external links. Its self-link is set to be twice the number of internal 

links of nodes within this group, and its external links are those that connect with other 

communities. The process of sub-communities integration of the pre-proceed network of Fig. 2(c) 

is shown in Fig. 3 (unlabeled lines connection degree is 1). 

       
(a)                                             (b) 
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(c)                                             (d) 

Fig.3. The process of sub-communities integration of network in Fig. 2(c). (a) The initial network before 

integration. (b) Agglomerate the node in same community. (c) Merge sub-communities according to local 

modularity. (d) The final result corresponding to the original network. 



 

Figure 3 shows the process of using sub-communities integration, based on local modularity, 

to partition the network shown in Fig. 2(c). As shown in Figure 3 (a), v2 and v6 are in the same 

community, and the connection number between two nodes is 1. Therefore, these two nodes 

agglomerate into one node and its self-link becomes 2. After all nodes within the same community 

have been agglomerated into a single node, these new nodes will merge according to formula (1) 

to increase the local modularity. As shown in Figure 3(b) and Figure 3(c), new nodes 2, 4 and 5 

agglomerate into one community 2, and new nodes 1, 3 become merged into one. Finally, the 

result is re-drawn corresponding to the nodes of the original network. At this stage, the 

partitioning result is the best (with Q=0.3223). 

3.4 Modifying the network using node-to-community membership function fMS-NC 

From the analysis of Section 2, it is apparent that sub-communities integration strategies 

based on incremental local modularity can efficiently obtain partitions in large-scale networks. 

However, nodes that are wrongly partitioned once can never be correctly recovered, leading to a 

sub-optimal final result. Hence, we propose a strategy for modifying the partitions based on a 

node-to-community membership function fMS-NC. In the spirit of LPA [25], we begin with the 

assumption that the possibility of a node belonging to its adjacent nodes is in proportion to their 

connection number. However, such an approach is “node-centric”, and ignores the extent to which 

a community might actually be receptive (or not) to its adjacent nodes. Therefore, we take both 

sides into consideration and propose a new membership function fMS-NC to measure the intimacy of 

a node and its neighboring communities: 
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Where l i,c represents the number of links between node i and its adjacent community c; |c| 

represents the number of nodes in community c; λ and β are the parameters of this function and 

their values lie in the range [0,1]. The first term (before the “+”) represents the possibility of a 

node belonging to its adjacent community c and the second term shows how likely community c 

is to accept node i. Since 0<l i,c≤di , and the node number of community c is |c|, then the value of 

the whole equation range is (0,1]. Initially, the size of sub communities is small and fMS-NC 

changes mainly with the connection number of each node to its adjacent communities. With the 

growth of these sub-communities, the gaps between communities widening, and the link numbers 

being equal, the value of fMS-NC representing the intimacy of a node with a smaller community is 

higher, and the node is more easily partitioned into a small community. At the same time, 

adjusting the parameters λ and β can also adjust the proportion of the first and second item in the 

formula (4). The overall procedure is presented in TABLE 3. 



 

TABLE 3: Modify the network based on node-to-community membership function fMS-NC 

Input: Node number n; Network representation after pretreatment and sub-communities integration 

g=[r1,r2,…rn]，rk∈[1,n]，k=1,2,…n; Parameters λ，β; Iteration number Iter. 

Output：Detection result g. 

Step1: for loop=1 to Iter do 

Step2:    for i=1 to n do 

Step3:        Find all the adjacent sub-communities of node i : Nc={c1,c2,…cp}，where p is the number of 

sub-communities; 

Step4:        for j=1 to p do 

Step5:              FMS_NC(j) <— Compute  fMS-NC(i, ct),where t=1,2,3…p; 

Step6:        end for 

Step7:        Attribution community index : ims_c <—
u
maxarg (FMS_NC(u))，u=1,2,…p (breaking ties 

randomly if more than one u’s satisfy the condition) ; 

Step8:       Community label of node i: g(i) <— Community label of sub-community g(Nc(ims_c));  

Step9:   end for 

Step10: end for 

Step11: g <—Decode(g); 

Figure 4 shows the detection result on the Zachary Club network [41] after using our 

proposed strategy based on node-to-community membership function fMS-NC. Fig. 4(a) shows the 

detection result of using only node search strategy and sub-communities integration, Fig. 4(b) 

represents the network modified by our proposed algorithm as summarized in TABLE 3. 

       
(a)                                    (b) 

Fig.4. Partitioning result of Zachary’s karate club. (a) Detection result of using only node search strategy and 

sub-communities integration. (b) Detection result using our proposed method with fMS-NC. 



 

As you can see from Figure 4, after modification, a number of misclassified nodes have been 

corrected. For example, the 33rd node, which has more connections with the 34th node, is 

wrongly divided into the same community as the 29th node. Once the 33rd node has been 

modified, the 19th node and 15th node are corrected successfully. Similarly, note that the 2nd node 

has a node degree of 9, while its number of connections with the community denoted as triangles 

is 5, which accounts for more than half of the total links. Thus the 2nd node is corrected by being 

assigned to the community of the 1st node. After that, the 22nd node, 3rd node, 14th node and 

10th node are also modified. In addition for node correction, some potential small community 

structure has also been identified. For example, nodes 5, 6, 7, 11 and 17 form a closely connected 

small network. After correction, the value of Q also increases from 0.276 (shown in Fig. 4 (a)) to 

0.419 (shown in Fig. 4 (b)). 

3.5 Detecting overlapping communities using the node-to-community membership 

function fMS-NC 

In real networks, those nodes which belong to multiple communities are known as 

overlapping ones. Since the definition of fMS-NC implicates the membership grade of a node and its 

neighboring communities, we can assume that if the membership value between a node and 

several of its adjacent communities are the same, then this node can be regarded as an overlapping 

node. Additionally, as stated in Section 2, high quality prior knowledge of the non-overlapping 

community structure usually contributes to accurate detection results for overlapping communities. 

Therefore, our proposed algorithm makes use of the membership function introduced in Section 

3.4 and mines overlapping nodes based on the non-overlapping communities obtained by the 

previous steps. The overall framework of the detection procedure is shown in TABLE 4. 

TABLE 4: Overlapping community detection based on fMS-NC. 

Algorithm 3: Overlapping community detection based on fMS-NC 

Input: Number of nodes in network n; Detection results of non-overlapping community g=[r ’
1, r

’
2,…, 

r ’
n], where r ’

k∈[1,n], k=1,2,…n; parameters λ, β; Max iteration number Iter1. 

Output: Overlapping node list Nod_ov. 

Step1: Nod_ov <— {} ; 

Step2:for  loop=1 to Iter1 do 

Step3:   for  i=1 to n do 

Step4:      Find all the adjacent sub-communities of node i : Nc1={co1, co2,…, cop}，where p is the 

number of sub-communities; 

Step5:      if not all the community label of sub-communities in Nc1 are the same; 

Step6:           for j=1 to p do 

Step7:              FMS_NC(j) <— Compute  fMS-NC(i, cot),where t=1,2,3…p; 



 

Step6:           end for 

Step7:          Membership index set vov <— argmax
v

( FMS_NC(v))，v=1,2,…p; 

Step8:           if  | vov | >1 

Step9:               i is an overlapping node, hence Nod_ov=Nod_ov∈{ i}; 

Step10:          else 

Step11:              i is a non-overlapping node and Nod_ov =Nod_ov﹨{ i} if i is in Nod_ov 

Step12:          end if 

Step13:        node i belongs to community cov, namely co v= co v∈{ i}, v=1,2,…p; 

Step14:     end if 

Step15:  end for 

Step16: end for 

Step17: g <—Decode(g); 

According to the procedure of TABLE 4, and using the Zachary’s karate network obtained in 

Fig.4. (b) as an example, we set the parameters λ and β respectively equal to 1 and 0 or 0.2 and 1, 

with the corresponding overlapping community detection results shown in Figure 5 (a) and Figure 

5 (b), in which the overlapping nodes are depicted in white. From Fig. 5 (a) it can be seen that 

when β=0, whether a node is overlapping is mainly decided by the number of connections between 

it and its adjacent communities. Thus only the 10th node satisfies the overlapping condition. In 

contrast, when β=0.2, after considering the acceptance degree between the community and its 

neighbors, a greater number of overlapping nodes are identified, as shown in Fig. 5 (b). Thus, we 

can obtain overlapping communities at different levels by adjusting these parameters. 

       

(a)                                 (b) 

Fig.5. Overlapping community detection results on the Zachary’s karate club network when (a) λ =1, β =0 (b) 

λ =0.2, β =1. 



 

3.6 Overall framework of the proposed algorithm 

According to the descriptions of Sections 3.1 to 3.5, the overall framework of our proposed 

algorithm is shown in Figure 6. 

 

Fig.6. Overall flow chart for the proposed algorithm 

3.7 Time complexity analysis of the proposed algorithm 

In this section, we analyze the time complexity of the proposed algorithm. Supposing a 

network with n nodes and m edges, at the stage of the preprocessing introduced in Section 3.2, the 

membership between each node and its neighbors need to be calculated, with time complexity 

O(m). The second stage needs O(mlogn) time as stated in [28], and if the procedure runs for for l1 

iterations, the total time used in the second stage is O(l1mlogn). The third stage, in which 

misclassified nodes are modified, has to consider the topological relationship between each node 

and its adjacent communities, thus it takes a time complexity of O(kcn) in each iteration, where kc 

is the average number of communities that a node may be connected with. The time complexity of 

the third stage after l2 iterations is O(l2kcn). The time used in searching overlapping communities is 

almost the same as that used in the third stage. Supposing it takes l3 iterations for the second and 

the third stage to converge, thus the whole complexity of the proposed algorithm is 

O(m)+l3(O(l1mlogn)+ O(l2 kcn))+ O(l2 kcn). Since l1≈logn [27], the overall time complexity is only 

O(mlog2n). 



 

4. Experimental results and analysis 

This section presents and discusses the results of detecting both non-overlapping and 

overlapping communities in experiments performed on both artificial and real network examples. 

4.1 Evaluation index 

To test the detection results of networks whose true partitions are known, here a standard 

mutual information index (NMI) is introduced, defined as follows: 
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Here Nh1 (Nh2) is the number of communities in the partition h1 (h2). H is the confusion 

matrix and its element Hij is the number of nodes that belong to community i of partition h1 that 

also belong to community j of partition h2. The element Hi· (H·j) is the sum of the elements row i 

(column j) in matrix H. When the partitioning results h1 is the same with h2, then I(h1, h2) =1; 

otherwise, the larger the difference of the two partitions, the lower the value of I(h1, h2). When 

they are completely opposite, I(h1, h2) =0. 

For other networks whose true partitions are unknown, modularity Q [23] is employed here 

as another index to test the detection results for non-overlapping communities. Its definition can 

be found in [23]. As to the evaluation of the overlapping nodes, Shen [42] et al. proposed a simple 

function EQov for the evaluation of overlapping communities in unweighted and undirected 

networks. The definition of EQov is as follows: 
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In the equation (6), Aij represents the link number of nodes i and j. If i is connected with j, 

then Aij=1; otherwise, Aij=0. Ov represents the number of communities to which node v belongs, dv 

represents the degree of node v, m represents the sum edges in the network. From equation (6) we 

can see that EQov=Q if the network does not contain any overlapping nodes. 

4.2 Setting of parameters 

In the proposed algorithm, we introduced membership function fMS-NN and 

node-to-community membership function fMS-NN, in which some parameters should be set. To 

obtain more accurate experimental results, some prior work has been done on several small 

networks whose ground truth partition results are known. As Fig.2 shows, different hierarchical 

network structures are found when parameter α changes from 0.5 to 1. Hence, to mining more 

multilayered structures, here we set α to 1. Another two parameters, λ and β, are flexible settings 

according to the detecting results of each network. That means we can get much better detection 

results through adjusting these two parameters. 



 

 4.3 Detection of non-overlapping communities 

This section describes the algorithms employed for comparison, the artificial networks and 

real-world networks used in the experiment, and the corresponding analysis is given. 

4.3.1 Algorithms for comparison  

In order to fully demonstrate the effectiveness of the proposed algorithm, some representative 

algorithms such as GA algorithm [18], MODPSO algorithm [44], LPAm [26], LPAm+ [27], 

Infomap [36] and BGLL [30] (part of the code can be downloaded from [45]). In addition, in order 

to verify the effectiveness of each component of the proposed algorithm, we will combine the 

preprocessing strategy introduced in Section 3.2 with sub-communities integration introduced in 

Section 3.3 as the comparison algorithm, which is denoted as Pre-processing+BGLL. 

4.3.2 Detection results on artificial networks 

The first artificial network employed in our experiments is the extended GN benchmark 

networks, proposed by Lancichinetti et al. [43]. This network has 128 nodes, and is divided into 4 

communities. µ is a parameter which represents the fraction of the number of links of each node 

within the community and the degree of the node. When the value of 1-µ becomes large, it 

suggests that the community structure of this network is much clearer, and can be more easily 

detected. Therefore, with increasing µ, the difficulty of detection is also increased. The key 

parameter values set for our algorithm in this experiment are: α =1, λ =0.15, β =1. Parameters in 

other algorithms are the same as those suggested in their corresponding publications. Figure 7 

shows the best results over 30 runs on extended GN benchmark networks for the detecting of 

non-overlapping communities. 

 

Fig.7. Best results over 30 runs on extended GN benchmark networks.  



 

As we can see from Figure 7, our proposed algorithm clearly generates the best testing results. 

When µ ≤ 0.4, apart from GA algorithm, all other algorithms were able to obtain completely 

accurate results, but when µ=0.45, Infomap is unable to detect the community structure, only 

LPAm+, MODPSO and the proposed algorithm can get the true partition results, and the value of 

NMI obtained by other detection algorithms has declined. Meanwhile, because the Pre-Processing 

+BGLL algorithm makes a preparatory division of network based on the function fMS-NN, thus it 

generates more accurate results compared to using only the BGLL algorithm. When µ=0.5, the 

proposed algorithm generates the closest results to the true partition (NMI value is close to 0.9). 

Another set of artificial networks is the LFR benchmark networks [43]. Compared to the 

extended GN benchmark networks, LFR benchmark networks has more adjustable parameters, 

which control the number of nodes generated, the size of communities and the degree of nodes. 

For our experiments, the parameters chosen in the LFR benchmark networks are as follows: 

network node number n=1000, average node degree is 20, maximum node degree is 50, the degree 

distribution exponents are τ1=2, τ2=1. In this experiment, parameter µ changes from 0 to 0.7 and 

17 network are generated. Figure 8 shows the best results over 30 runs on LFR benchmark 

networks. 

 

Fig.8. Best results over 30 runs on the LFR networks 

It can be seen form Figure 8 that the detection results obtained by the proposed algorithm are 

not completely optimal and perform very slightly less well than some of the comparison methods 

(e.g. LPAm and Infomap) for relatively easy detection problems. However, as µ increases, the 

results remain relatively stable and it obtains the best results when µ is greater than 0.65. In 

contrast, Infomap produces a completely correct partition of the networks only when µ<0.65. 

Similarly, the value of NMI obtained by MODPSO declines after µ=0.6. The results obtained by 

Pre-Processing + BGLL outperform those obtained by BGLL alone, which indicates the 

effectiveness of the preprocessing strategy proposed in this paper. 



 

4.3.3 Detection results on real-world networks 

In this section 9 real-world networks are tested, and their important attributes are as shown in 

TABLE 5: 

TABLE 5: Information of real-world networks 

Network node number edge number average degree Reference 

Zachary’s karate (N1) 34 78 4.59 [46] 

dolphins (N2) 62 159 5.13 [47] 

American football (N3) 115 613 10.66 [15] 

elegans (N4) 453 2025 8.94 [48] 

netscience(N5) 1589 2742 3.45 [49] 

power (N6) 4941 6594 2.67 [50] 

PGP (N7) 10680 24340 4.55 [51] 

Internet (N8) 22963 48436 4.22 [52] 

Enron(N9) 36692 367662 20.04 [53] 

All algorithms are run 30 times on the 9 real-world networks, and their best results and 

average results are shown in Table 6 (for conciseness the Pre-Processing+BGLL algorithm is 

abbreviated as Pre_BGLL): 

TABLE 6: The results of all the algorithms run 30 times on 9 real-world networks (the symbol "—" indicates 

that the algorithm cannot effectively detect communities within the networks). 

network Index GA MODPSO Infomap LPAm LPAm+ BGLL Pre_BGLL proposed 

N1 Qmax 

Qavg 

0.4198 

0.411 

0.4198 

0.4186 

0.402 

0.402 

0.406 

0.384 

0.4198 

0.4176 

0.4188 

0.4172 

0.3949 

0.3894 

0.4198 

0.4181 

N2 Qmax 

Qavg 

0.5238 

0.5138 

0.5268 

0.5249 

0.5285 

0.5285 

0.511 

0.501 

0.5285 

0.5240 

0.520 

0.518 

0.5285 

0.5202 

0.5276 

0.5244 

N3 Qmax 

Qavg 

0.5683 

0.5021 

0.6046 

0.6035 

0.6005 

0.6005 

0.6044 

0.5814 

0.6046 

0.6038 

0.6044 

0.6036 

0.6044 

0.6032 

0.6046 

0.6035 

N4 Qmax 

Qavg 

0.2832 

0.2732 

0.3585 

0.3566 

0.4168 

0.4168 

0.3999 

0.3796 

0.450 

0.440 

0.434 

0.432 

0.4156 

0.4074 

0.4505 

0.4417 

N5 Qmax 

Qavg 

0.8979 

0.8581 

0.9501 

0.950 

0.931 

0.931 

0.8471 

0.8363 

0.9513 

0.9436 

0.9517 

0.9504 

0.9481 

0.935 

0.9579 

0.9549 

N6 Qmax 

Qavg 

0.666 

0.6354 

0.8422 

0.8385 

0.8298 

0.8298 

0.6121 

0.6055 

0.9302 

0.9289 

0.9349 

0.9341 

0.9363 

0.9351 

0.9382 

0.9366 

N7 Qmax 

Qavg 

0.645 

0.604 

0.335 

0.328 

0.8135 

0.8135 

0.7222 

0.7124 

0.8643 

0.8632 

0.8822 

0.8817 

0.8799 

0.8787 

0.8831 

0.8820 

N8 Qmax 

Qavg 

0.3912 

0.3850 

—— 

—— 

0.5755 

0.5755 

0.4748 

0.4669 

0.6500 

0.6381 

0.6608 

0.6597                                                                         

0.6668 

0.6644 

0.6756 

0.6742 

N9 Qmax 

Qavg 

0.1071 

0.1068 

—— 

—— 

0.2584 

0.2584 

0.2450 

0.2297 

0.2716 

0.2663 

0.2741 

0.2724 

0.2762 

0.2728 

0.2780 

0.2769 

We can see from TABLE 6 that GA and LPAm struggle to detect useful results, even when 

the scale of networks is relatively small. The results obtained by Infomap are relatively stable, but 

it can only achieve the best results in few of the example networks. As the size of the test networks 

increases, the performance of MODPSO (also based on an evolutionary algorithm) is greatly 



 

improved compared to GA, but fails on several large scale networks. LPAm+ which is based on 

LPAm using a sub-communities integration strategy, overcomes the vulnerability of LPAm to local 

optima, and thus generates superior results than those achieved by LPAm. In contrast to LPAm+ 

(which is based on global sub-communities and multistep greedy integration), BGLL uses 

integration strategy based on local sub-communities and thereby achieves better results in some 

large and medium-sized networks as shown in TABLE 6. Pre-BGLL denotes our proposed 

pre-processing strategy (building on BGLL) which considers the intimacy between each node and 

its neighbors. TABLE 6 shows that the accuracy of results obtained by Pre-BGLL is improved 

compared with that obtained by the unmodified BGLL when testing on large scale networks. 

Furthermore, the proposed algorithm employs the node modification strategy based on the 

Pre-BGLL algorithm and the accuracy of its detection results is therefore further improved. Thus 

the proposed algorithm achieves the best detection results when tested on the majority of these 

benchmark networks. 

4.4 Detection of overlapping communities 

For detection of overlapping communities, we compare COPRA [33], CFinder [54], CONGA 

[55], as well as a recent algorithm proposed by Li [58] (Li’s Alg), as well as our proposed 

algorithm on the 9 real-world benchmark networks. COPRA is based on the LPA algorithm, and is 

suitable for large-scale overlapping community detection. CFinder is a k-clique percolation 

algorithm, in which a node can belong to multiple k factions, thus achieving the detection of 

overlapping nodes. The CONGA algorithm is based on the well-known GN algorithm [15], 

joining the node splitting strategy to make sure that nodes can be accepted to multiple 

communities. The source code of these algorithms can be obtained from [56]. Li proposed two 

noble algorithms for the detecting of overlapping communities [58][63]. In paper [58], he employs 

depth and breadth searching to extract the maximal cliques and then merge sub-graphs according 

to rules. Through these steps, overlapping nodes can be found and satisfactory results are obtained. 

Another firstly extracted all the seed communities and absorbed more community members using 

the absorbing degree function. As this algorithm mining overlapping nodes in weighted networks, 

which is different from ours, hence here we only take the former one for comparison. 

Figure 9 shows the average detection results on overlapping networks over 30 runs within 2 

hours. It can be seen that CONGA can hardly detect community structures effectively when 

parameter µ increase to 0.25. The remaining algorithms, like Cfinder and COPRA can find relative 

better results, but with the increase of µ, these two algorithms can hardly get satisfying detecting 

results. Li’s Alg can obtain higher value of EQov with the increase of µ, but it is not the most 

efficient one. From Fig.9 we can conclude that the proposed algorithm can effectively mining 

community structures compared with other algorithms. 



 

 

Fig.9. Average detection results on overlapping networks over 30 runs within 2 hours 

Figure 10 shows the overlapping nodes detected in a single run on the dolphin network. 

Figure 9(a) shows the non-overlapping community structures obtained by the proposed algorithm. 

The color notation shows how the network has been divided into five distinct communities, and 

the triangles and squares respectively represent the two communities in the ground-truth division 

of the network. Figure 10(b) shows the detection of overlapping communities with white circles 

denoting the overlapping nodes. 

   

(a)                                            (b) 

Fig.10. Detection results on dolphin network when parameters are set as α =0.7, λ =0.15, β =1. (a) Detection 

results of non-overlapping communities. (b) Detection results of overlapping communities. 

 



 

For the detection of overlapping nodes in the dolphin network, the parameters were set as 

α=0.7, λ=0.15, β=1. As shown in Fig. 10(a), the proposed algorithm divides the single 

ground-truth triangle node into a number of small communities during the non-overlapping 

community detection stage, making the network a multi-level structure. On this basis, the 40th 

node, 29th node and 3rd node are detected as overlapping nodes, because they connect with 

several different communities which all share the same value of fMS-NC with them. 

In the following experiment, we set the parameters as λ = 0.15 and β =1, the evaluation index 

is EQov introduced in the Section 4.1. Table 7 shows the average value of EQov over 30 runs in the 

9 real-world networks. 

TABLE 7: Each algorithm run 30 times in the real network, the average EQov value are as below ("—" indicates 

that the algorithm cannot effectively detect the overlapping nodes). 

algorithm N1 N2 N3 N4 N5 N6 N7 N8 N9 

CONGA 0.278 0.3808 0.3372 0.1695 0.9506 0.9170 0.4916 —— —— 

COPRA 0.2576 0.3258 0.5934 0.3233 0.8464 0.75 0.6710 0.0914 0.315 

CFinder 0.1858 0.3612 0.5593 0.0957 0.5905 0.1577 0.3788 0.0149 —— 

Li’s Alg 0.3848 0.5077 0.5946 0.4024 0.8460 0.8712 0.8694 0.457 0.4623 

Proposed 0.4053 0.5238  0.5987 0.4349 0.9541 0.9362 0.8826 0.6621 0.6019 

As shown in Table 7, the overlapping community detection results of the proposed algorithm 

on the 9 real-world networks are significantly better than the other three algorithms. As CFinder 

needs to extract the maximum complete sub-graphs in each run, the running time is too long to 

detect community structure in larger networks, and its results are affected by the parameter k in the 

algorithm, so the value of EQov is low. CONGA in some networks, such as the netscience network 

(N5) and power network (N6) has good detection results. However, CONGA is also unable to 

detect the overlapping community structure of the last two networks as its time complexity is 

O(m3). Although the COPRA algorithm has lower time complexity, and it can accomplish the 

detection of all the networks, its detection results are not optimal. Li’s algorithm utilizes depth and 

breadth searching methods to extract the maximal cliques which is time-saving, enabling it to 

discover overlapping nodes in some large-scale networks effectively. However, it cannot achieve 

the best values of EQov in all the networks. The results suggest that our proposed algorithm can 

effectively detect the overlapping nodes in large and medium-scale networks. 

5. Conclusions 

In this paper we have proposed a large-scale community detection algorithm based on node 

membership grade and sub-communities integration. Firstly, considering the relationship between 

each node and its adjacent nodes, we proposed a neighboring inter-nodes membership function 

fMS-NN to extract sub-communities, thus providing fast preprocessing of the network. Next, after 



 

merging these sub-communities based on local modularity, we introduced another 

node-to-community membership function fMS-NC to modify any misclassified nodes, preventing 

convergence on local optima. Additionally, by adjusting the parameters of function fMS-NC, 

multilevel overlapping communities of high quality can be detected on the basis of the 

non-overlapping community structures obtained by the proposed algorithm. The experimental 

results demonstrate that, through the effective combination of the strategies of local node search 

and sub-communities integration, as well as node correction, the algorithm can not only accurately 

detect non-overlapping communities, but can also effectively mine the overlapping communities 

in large and medium scale networks. In addition, the algorithm relies mainly on only the local 

information of each node, which contributes to a relatively low time complexity (O(mlog2n)), 

making this method suitable for community detection in large scale networks. 

In future research, we will focus on the detection problem in networks with larger scale, such 

as networks with hundreds of thousands, or even millions nodes, and endeavor to further improve 

the detection accuracy while preserving low time complexity, so that the algorithm can detect 

community structures efficiently. 
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