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Summary 

Traumatic injury results in a systemic inflammatory response syndrome (SIRS), a 

phenomenon characterised by the release of pro-inflammatory cytokines into the circulation 

and immune cell activation. Released from necrotic cells as a result of tissue damage, damage 

associated molecular patterns (DAMPs) are thought to initiate the SIRS response by 

activating circulating immune cells through surface expressed pathogen recognition 

receptors. Neutrophils, the most abundant leukocyte in human circulation, are heavily 

implicated in the initial immune response to traumatic injury and have been shown to elicit a 

robust functional response to DAMP stimulation.  

Here, we confirm that mitochondrial DAMPs (mtDAMPs) are potent activators of human 

neutrophils and show for the first time that signalling through the mitogen-activated-protein-

kinases p38 and Extracellular-signal-related-kinase 1/2 (ERK1/2) is essential for this 

response. At 40 and/or 100 µg/ml, mtDAMPs activated human neutrophils, indicated by a 

significant reduction in the surface expression of L-selectin, and triggered a number of 

functional responses from both resting and Tumour necrosis factor-α primed neutrophils, 

which included reactive oxygen species (ROS) generation, degranulation, secretion of 

interleukin-8 and activation of p38 and ERK1/2 MAPKs. Pre-treatment of neutrophils with 

Cyclosporin H, a selective inhibitor of Formyl Peptide Receptor-1 (FPR-1), significantly 

inhibited mtDAMP-induced L-selectin shedding as well as p38 and ERK1/2 activation, 

suggesting that N-formyl peptides are the main constituents driving mtDAMP-induced 

neutrophil activation. Indeed, no evidence of L-selectin shedding or p38 and ERK1/2 

activation was observed in neutrophils challenged with mitochondrial DNA alone. 

Interestingly, pharmacological inhibition of p38 or ERK1/2 either alone or in combination 

significantly inhibited L-selectin shedding and IL-8 secretion by mtDAMP-challenged 



 
 

neutrophils, revealing for the first time that MAPK activation is required for mtDAMP-

induced neutrophil activation and function. 

Our findings demonstrate that signalling through FPR-1 and activation of p38 and ERK1/2 

MAPKs are key events in mtDAMP-induced neutrophil activation. Gaining an understanding 

of the signalling pathways involved in mtDAMP-induced neutrophil activation may assist in 

the development of future therapeutic strategies aimed at targeting the SIRS response to 

improve the outcome of the hospitalised trauma patient. Reducing the severity of the 

inflammatory response may realise substantial benefits for the severely injured trauma 

patient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Introduction 

Ranking in the top ten causes of death worldwide, traumatic injury accounts for nearly six 

million fatalities per year [1]. Whilst recent advancements in medical care, notably those 

targeting blood loss and coagulopathy, have markedly reduced mortality rates that are due to 

trauma, the development of secondary complications, such as acute respiratory distress 

syndrome (ARDS), sepsis and multiple organ failure (MOF) remains a significant cause of 

morbidity and mortality in the hospitalised trauma patient. Common to the development of 

these and other post-traumatic complications is an overt systemic inflammatory response. 

Termed the systemic inflammatory response syndrome (SIRS), this phenomenon is 

characterised by a robust pro-inflammatory cytokine and chemokine response, activation of 

the complement system and immune dysregulation [2-4].  

In a seminal paper published in 2010, Zhang and colleagues described a potential mechanistic 

explanation for how tissue damage arising from traumatic injury initiates a SIRS response 

[5]. The group showed for the first time that severe injury in humans leads to the release of 

endogenous damage-associated molecular patterns (DAMPs) from ruptured mitochondria [5], 

an observation that has since been confirmed by numerous independent groups [6-8]. In vitro, 

these so called mitochondrial DAMPs (mtDAMPs), which include mitochondrial DNA 

(mtDNA) and formyl peptides, trigger robust functional responses from neutrophils, such as 

degranulation, chemotaxis and secretion of the chemokine interleukin (IL)-8, all of which 

were accompanied by activation of the mitogen-activated protein kinases (MAPK) 

extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 [5]. Furthermore, the study 

showed that injecting mtDAMPS into mice triggered an in vivo SIRS response, characterised 

by amongst other things, “priming” of circulating neutrophils and neutrophil-mediated organ 

damage [5]. Thus, these results along with those of other studies [9-11], suggest that the 



 
 

systemic inflammation observed in severely injured patients may be attributable in part to 

mtDAMP-induced activation of circulating neutrophils [10].  

MtDAMPs are a collection of molecules, which include mtDNA, cytochrome C, formyl 

peptides and ATP [12]. Pre-treating neutrophils with either chloroquine, an inhibitor of toll-

like receptor 9, which recognises mtDNA, or cyclopsorin H (CsH), a potent and selective 

formyl peptide receptor (FPR) antagonist has been shown to significantly reduce mtDAMP-

induced MAPK activation, calcium signalling and degranulation [9;11], suggesting that 

mtDNA and formyl peptides are the main instigators driving mtDAMP-induced activation of 

neutrophils.  ATP on the other hand has been shown in an in vivo model of sterile injury to 

assist in neutrophil recruitment to the site of tissue damage by activating signalling pathways 

in endothelium that initiate neutrophil adhesion [13].  

Although it is well established that exposing neutrophils to mtDAMPS induces a multitude of 

functional responses and activates the MAPK signalling cascade [5;9-11], these aspects have 

only ever been studied in isolation. Thus, the primary aim of this study was to determine 

whether activation of the MAPKs ERK 1/2 and/or P38 is required for the functional 

responses elicited by neutrophils following mtDAMP stimulation. In addition, we 

investigated which of the two prominent constituents of mtDAMPS, namely mtDNA and             

N-formyl peptides, are primarily responsible for mtDAMP-induced neutrophil activation.     

  



 
 

Results 

MtDAMPs are potent activators of human neutrophils and stimulate robust functional 

responses 

Shedding of L-selectin, a receptor that facilitates the initial interaction of circulating 

neutrophils with the endothelium, from the surface of neutrophils is considered a marker of 

neutrophil activation [14]. When compared to untreated controls, we found that freshly 

isolated human neutrophils exposed to 40 or 100 µg/ml mtDAMPs expressed significantly 

less L-selectin on their surface, with this reduction occurring as early as five minutes post 

treatment (Figure 1A). In addition to surface density, a significant decline in the percentage 

of neutrophils that expressed L-selectin was observed following a ten minute exposure to 

mtDAMPs (Figure 1A). Thus, mtDAMPs are potent activators of human neutrophils.  

In addition to activating resting neutrophils, treatment with mtDAMPs induced robust 

functional responses. In agreement with observations made in previous studies [5;9-11], we 

found that exposure to 40 and/or 100 µg/ml of mtDAMPs resulted in the rapid generation of 

ROS (Figure 1B), secretion of the chemokine IL-8 (Figure 1C) and degranulation                   

(Figure 1D).  

MtDAMP stimulation activates ERK1/2 and p38 signalling in human neutrophils 

To investigate the effect of mtDAMP treatment on the activation kinetics of the MAPKs p38 

and ERK1/2, we treated neutrophils with 40 or 100 µg/ml mtDAMPs over a 10-minute 

period, after which, activation was measured by assessing phosphorylation using 

phosphospecific antibodies and Western blotting. At each concentration, mtDAMPs led to a 

rapid activation of ERK1/2 (Figure 2A) and p38 (Figure 2B) MAPK, with a significant 

increase in phosphorylation detected for both MAPK within two minutes of stimulation. This 

activation was more prolonged in response to 100 µg/ml mtDAMPs with a significant 



 
 

increase in MAPK phosphorylation still detectable ten minutes after stimulation. In contrast, 

phosphorylation of both kinases had returned to baseline levels within five minutes of 

stimulation with 40 µg/ml mtDAMPs. 

Formyl peptides but not mtDNA activate and induce functional responses in resting 

neutrophils 

The term mtDAMPs describes a collection of molecules, which includes proteins, lipids and 

DNA. In the seminal paper that first described an immune stimulatory capacity of mtDAMPs, 

mtDNA was highlighted as a potent activator of neutrophil function [5]. However, we found 

no evidence of neutrophil activation or function when freshly isolated human neutrophils 

were challenged with mtDNA (Figure 3). When compared to untreated controls, neutrophils 

treated with 1 or 5 µg/ml mtDNA did not differ in their expression of L-selectin, when 

measured as either mean fluorescent intensity, an indicator of surface density, or as the 

percentage of L-selectin positive cells (Figure 3A). Furthermore, we observed no activation 

of either P38 or ERK1/2 MAPK signalling in neutrophils exposed to mtDNA over a ten-

minute time course (Figure 3B). However, phosphorylation of both kinases was observed in 

neutrophils treated with 100 µg/ml mtDAMPs over the same time course (Figure 3A and 3B).   

In contrast to mtDNA, we found formyl peptides present within mtDAMPs to be potent 

activators of human neutrophils. When compared to their untreated counterparts, neutrophils 

pre-treated with CsH, a selective antagonist of formyl peptide receptor 1, expressed 

significantly greater amounts of L-selectin on their surface (Figure 4A) and a greater 

percentage of CsH-treated neutrophils retained L-selectin on their surface at the end of a              

sixty-minute time course. In terms of a functional response, preventing formyl peptide 

receptor signalling markedly reduced the activation kinetics of both P38 and ERK1/2 MAPK 

(Figure 4B).  



 
 

ERK1/2 and p38 signalling is crucial for mtDAMP-induced neutrophil activation and 

function 

The data presented so far has confirmed the findings of previous studies by demonstrating 

that exposure to mtDAMPs, in particular formyl peptides, elicits robust functional responses 

from neutrophils and activates MAPK signalling [5;9]. However, whether the activation of 

the MAPKs ERK1/2 and/or p38 is required for mtDAMP-induced neutrophil activation and 

function has not been determined. To address this issue, we treated freshly isolated 

neutrophils with 10 µM of the ERK inhibitor PD098059 and/or the p38 inhibitor SB202190 

prior to mtDAMP stimulation.  

Inhibition of ERK1/2 or p38 signalling alone partially reduced mtDAMP-induced neutrophil 

activation. This is demonstrated in Figure 5A, which shows significantly greater amounts of 

L-selectin was retained on the surface of SB202190 or PD098059-treated neutrophils 

following stimulation with 100 µg/ml mtDAMPs when compared to untreated controls 

(Figure 5A). Similar results were obtained when the percentage of L-selectin positive 

neutrophils was measured (data not shown). However, when used in combination,                    

pre-treatment with ERK1/2 and P38 inhibitors completely abrogated the reduction in                     

L-selectin expression that we observed from the surface of untreated neutrophils following 

exposure to 100 µg/ml mtDAMPs (Figure 5A). 

In line with the results for neutrophil activation, inhibition of MAPK signalling also reduced 

the functional response of neutrophils when challenged with mtDAMPs. We found that when 

compared to their untreated counterparts, neutrophils that had been pre-treated with 

PD098059 or SB202190 either alone or in combination secreted significantly less IL-8 

following stimulation with 100 µg/ml mtDAMPs (Figure 5B). Thus, both p38 and ERK1/2 



 
 

activation is crucial not only for mtDAMP-induced activation of neutrophils but also their 

functional response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Discussion 

Traumatic injury leads to a systemic inflammatory response syndrome (SIRS), which is 

characterised by the release of pro-inflammatory cytokines and immune-dysregulation. 

Damage-associated molecular patterns released from necrotic tissue are thought to initiate the 

SIRS response via their binding to pattern recognition receptors (PRRs) on immune cells. 

Lam and colleagues were the first to demonstrate that mitochondrial derived DAMPs were 

released into the circulation following trauma, showing that plasma mitochondrial DNA 

(mtDNA) levels were thousands fold higher in trauma patients when compared to healthy 

controls [15]. Since then, numerous studies have shown elevated mtDNA levels in trauma 

patients [5;6;8;16]. In addition, post-trauma plasma levels of mtDNA have been associated 

with post-traumatic complications including SIRS and sepsis [6;8], as well as mortality [16]. 

The group of Hauser were the first to demonstrate a link between mtDAMPs and the 

initiation of the SIRS response by showing that mtDAMPs not only serve as chemoattractants 

for neutrophils but also stimulate IL-8 production and MMP-8 release by these cells. 

Moreover, intravenous mtDAMP injection into rats resulted in neutrophil lung infiltration and 

tissue damage. Following cellular necrosis, mitochondria release a range of mtDAMPs 

including mtDNA, N-formyl peptides, ATP, cytochrome-c and mitochondrial lipids. Despite 

the association between tissue damage, elevation of mtDAMPs and SIRS, the precise 

mechanism of mtDAMP-induced neutrophil activation has been under studied.   

Here, we have confirmed that mtDAMPs are potent activators of human neutrophils. At 

concentrations of 40 and 100 µg/ml, mtDAMPs elicited a range of functional responses from 

resting or TNF-α primed neutrophils, which included L-selectin shedding, ROS production, 

degranulation and IL-8 release. This activation was abrogated in the presence of CsH, a 

potent and selective FPR-1 antagonist, suggesting a key role for mitochondrial derived                    

N-formyl peptides in mtDAMP-induced neutrophil activation. Indeed, we found no evidence 



 
 

of neutrophil activation (as measured by shedding of L-selectin) or function (induction of 

MAPK signalling) when these cells were treated with mtDNA alone. This latter observation 

is in contrast to the findings of earlier studies that have demonstrated robust MAPK 

activation in neutrophils following mtDNA stimulation [5;11]. The results are however in 

line with those of Crouser et al [17] who showed that stimulation of monocytes with 

mtDAMPs led to a significant increase in IL-8 secretion, a response that was not altered by 

the removal of mtDNA from the mtDAMP preparation [17]. Moreover, Sun et al [18] 

demonstrated that mtDAMPs could induce endothelial cell permeability and that this could be 

abolished by protease treatment of the mtDAMPs, implicating a predominant role for 

mitochondrial proteins in driving this permeability response [18].  

Whilst the contradictory findings outlined above raise questions as to whether mtDNA is 

directly involved in driving neutrophil activation following sterile injury, evidence is 

accumulating that suggests circulating levels of mtDNA are an indicator of injury severity 

[6;15] and can be linked to patient outcome [6-8;16]. Regarding this latter point, significantly 

higher concentrations of mtDNA have been measured in plasma samples taken from 

traumatically injured subjects upon hospital admission who subsequently succumb to their 

injuries when compared to those who survive the insult [7;8]. Besides mortality, elevated 

levels of plasma mtDNA have been linked to the onset of multiple organ dysfunction 

syndrome [7] and shown to be an independent predictor for the development of a SIRS 

response following acute traumatic injury [6].   

In addition to N-formyl peptides, mitochondria contain a number of other proteins that can 

act as mtDAMPs when released into the circulation. For example, numerous studies have 

demonstrated extracellular ATP to have immunomodulatory properties. In particular, the 

work of Kubes and colleagues, in a murine model of sterile injury, has shown extracellular 

ATP to have a role in neutrophil recruitment via P2X7R signalling and Nlrp3 inflammasome 



 
 

activation [13]. Furthermore, a recent study has demonstrated that human neutrophils can be 

directly activated by ATP via the P2Xl receptor [19]. It has also been demonstrated that 

serum cytochrome-c levels are elevated in patients with SIRS and that high levels were 

associated with the development of multi-organ failure [20], thus suggesting a possible link 

between serum cytochrome-c levels and systemic inflammation. Interestingly, intra-articular 

injection of cytochrome-c has been shown to induce arthritis in mice, an effect that was 

abrogated by depletion of neutrophils [21]. Studies such as these raise the possibility of a link 

between mitochondrial proteins (other than N-formyl peptides) and the initiation of the SIRS 

response via neutrophil activation.   

The precise signalling mechanisms by which mtDAMPs induce neutrophil activation have 

not previously been fully characterised. The group of Hauser showed that mtDAMPs lead to 

the activation of p38 and ERK1/2 MAPK signalling pathways in neutrophils [5;9]. However, 

the requirement of these pathways in mtDAMP induced neutrophil activation was not 

determined. Here, we show that the activation of these signalling pathways is required for 

mtDAMP induced neutrophil activation. Firstly, we showed that mtDAMP treatment, but not 

mtDNA treatment, led to the activation of p38 and ERK1/2 MAPK signalling pathways in 

neutrophils. Importantly, pharmacological inhibition of these pathways prevented mtDAMP 

induced L-selectin shedding and IL-8 release. Furthermore, blocking of the FPR-1 receptor 

using CsH, not only prevented mtDAMP induced p38 and ERK1/2 activation, a finding in 

line with previously published data [9], but also inhibited L-selectin shedding. To the best of 

our knowledge, these data demonstrate for the first time that p38 and ERK1/2 signalling 

downstream of the FPR-1 receptor is crucial for mtDAMP-induced neutrophil activation, 

thereby implicating extracellular N-formyl peptides as key initiators in the systemic 

inflammatory response to sterile injury. This is important as it offers a therapeutic possibility 

to dampen down an inappropriate SIRS response in trauma patients. 



 
 

In a recent article, Fernandez-Ruiz and colleagues showed that isolated human monocytes 

pre-treated with mtDAMPs generated significantly less IL-1β, IL-6, IL-12p70 and TNF-α 

upon lipopolysaccharide challenge when compared to their untreated counterparts [22]. This 

observation of mtDAMP-induced endotoxin tolerance led the group to speculate that the 

refractory state of monocytes observed in many “sterile” pathologies may result in part from 

their in vivo exposure to mtDAMPs [22]. Whether this phenomenon also applies to 

neutrophils is to our knowledge currently unknown. However, it is of interest that in studies 

where impaired neutrophil function has been reported post trauma, the presence of exhausted 

neutrophils in the circulation has been proposed as a possible mechanism by which to explain 

the functional aberrations reported [23;24]. Thus, given the results presented in this paper 

combined with those of others [5;9-11], it is plausible to suggest that exposure to mtDAMPs 

may be responsible in part for the hyperactive state of neutrophils that is observed in the 

immediate aftermath of traumatic injury as well as the refractory state of neutrophils that has 

been described in the days following injury. Initial mtDAMP exposure would activate 

circulating neutrophils, triggering a multitude of functional responses such as ROS generation 

and degranulation, which would result in a circulating pool of exhausted neutrophils that are 

refractory to subsequent stimulation. Thus, by influencing the function of circulating 

neutrophils, the generation of and exposure to mtDAMPs may be one factor underlying the 

increased susceptibility of the hospitalised trauma patient to nosocomial infection.  

 

 

 

 

 

 

 



 
 

Materials and methods 

Preparation of mitochondrial DNA (mtDNA) and mitochondrial damage associated 

molecular patterns (mtDAMPs) 

MtDNA and MtDAMPs were obtained from mitochondria that had been isolated from the 

K562 tumour cell line (ATCC
®
, Teddington, Middlesex, UK). To isolate mitochondria, K562 

cells were treated for 10 minutes on ice with 1X RIPA lysis buffer (Upstate Biotechnology, 

New York, USA) supplemented with protease inhibitor cocktail (1:100; Sigma-Aldrich, 

Dorset, UK) prior to being subjected to 120 strokes in a tight fitting dounce homogeniser. 

Once lysed, cells were centrifuged at 800 x g for 10 minutes at 4
0
C to pellet nuclear material. 

Supernatants were then spun at 3000 x g for 30 minutes at 4
0
C to pellet mitochondria.  

 

MtDNA was extracted from mitochondrial pellets using a QIAamp
® 

DNA blood mini kit 

according to manufacturer’s instructions (Qiagen, Manchester, UK). The concentration and 

purity of isolated MtDNA was determined by spectrophotometry (Nanodrop 2000; Thermo 

Scientific, MA, USA). For purity measurements, the A260/A280 ratio was routinely 1.8-2.0, 

indicating no significant contamination by mitochondrial proteins. Once isolated, mtDNA 

was stored at -80
o
C prior to use. To prepare mtDAMPs, isolated mitochondrial pellets, re-

suspended in 1 ml of Hank’s balanced salt solution (Gibco, Life Technologies, Paisley, UK) 

containing protease inhibitor cocktail (1:100; Sigma-Aldrich) were disrupted in a sonicating 

water bath for 12 minutes. Post treatment, samples were centrifuged at 15,000 x g for                  

10 minutes at 4
0
C. Supernatants containing mtDAMPS were collected and protein 

concentration determined by spectrophotometry. Samples were stored at -80
o
C prior to use.  

 

Neutrophil Isolation and treatment 

Peripheral blood neutrophils were isolated by Percoll density gradient centrifugation. 

Neutrophil purity and viability was assessed by Giemsa staining (Diff-Qik; Gentaur Europe, 

Brussels, Belgium) and trypan blue (Sigma-Aldrich) staining respectively. Routinely, the 

purity of neutrophil preparations and cell viability were ≥98%. Following isolation, 

neutrophils were re-suspended at a concentration of 1 or 5x10
6
 /ml in RPMI-1640 media 

supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin and 

10% fetal calf serum (Sigma-Aldrich; hereafter referred to as complete medium) or Hank’s 

balanced salt solution (HBSS) supplemented with calcium and magnesium (hereafter referred 

to as HBSS
+/+

; Gibco, Life Technologies). 



 
 

 

To assess the importance of mitogen activated protein kinase (MAPK) signalling in the 

functional response of neutrophils to mtDAMP stimulation, neutrophils were treated for        

1 hour (37
o
C, 5% CO2) with 10 µM of the P38 inhibitor SB203580 (Cell Signalling 

Technology) and/or 10 µM of the ERK 1/2 inhibitor PD98059 (Cell Signalling Technology) 

or vehicle control prior to treatment with mtDAMPS. To inhibit signalling through formyl 

peptide receptors, freshly isolated neutrophils were treated with 1 uM cyclosporin H (Abcam, 

Cambridge, UK) for 1 hour at 37
o
C in a humidified 5% CO2 atmosphere prior to mtDAMP 

stimulation.      

 

Measurement of L-selectin expression  

2x10
5 

freshly isolated neutrophils and those pre-treated with 10 µM SB203580 and/or                 

10 µM PD98059 or 1uM cyclosporin H were stimulated for 0, 5, 10, 30 and 60 minutes at 

37
o
C in a humidified 5% CO2 atmosphere with either 1 or 5 µg/ml of mtDNA  or 40 µg/ml or 

100 µg/ml of mtDAMPs. Post treatment, cells were pelleted (250 x g, 5 minutes, 4
0
C), 

supernatants discarded and neutrophils stained with 10 µg/ml of a mouse anti-human                    

L-selectin-FITC conjugated antibody (Clone Dreg56; eBioscience, Hatfield, UK) or its 

concentration-matched isotype control for 20 minutes on ice. Post incubation, cells were 

washed (250 x g, 5 minutes, 4
0
C) once in phosphate buffered saline (PBS) containing 1% 

bovine serum albumin (BSA)), re-suspended in PBS and transferred to polypropylene FACS 

tubes. Flow cytometry was conducted using an AccuriC6
TM

 bench top cytometer (BD 

Biosciences, Oxford, UK) with 10,000 neutrophils acquired for analysis, which was 

performed using CFlow Plus (BD Biosciences). The percentage of antigen positive cells was 

recorded along with the corresponding mean fluorescence intensity (MFI) values.   

 

Measurement of reactive oxygen species (ROS) generation 

ROS generation was assessed by luminol-amplified chemiluminescence, a technique that 

measures the generation of myeloperoxidase-derived oxygen metabolites [25]. Neutrophils 

(1x10
5
 in HBSS

+/+
) were dispensed into wells of a 96-well white-bottomed flat plate 

(Corning) that contained 1µM luminol (pH 7.3; Sigma-Aldrich). Cells were then stimulated 

with 100 µg/ml mtDAMPS or vehicle control, after which ROS generation was assessed at 1 

minute intervals over a period of 60 minutes using a Berthold Centro LB 960 luminometer 

(Berthold Technologies, Hertfordshire, UK). Experiments were performed in quadruplicate, 



 
 

with ROS production measured as relative light units (RLU) and calculated as area under the 

curve (AUC). 

 

Neutrophil degranulation assay 

A myeloperoxidase (MPO) release assay was used to measure neutrophil primary granule 

release. Freshly isolated neutrophils (4 x 10
5 

in HBSS
+/+ 

containing 1% BSA) were primed 

for 30 minutes (37
o
C, 5% CO2) with 10 ng/ml tumour necrosis factor-alpha (TNF-α; Sigma-

Aldrich). Post treatment, neutrophils were stimulated with 40 or 100 µg/ml mtDAMPS or 

vehicle control for 1 hour (37
o
C, 5% CO2). Untreated neutrophils served as a marker of 

spontaneous degranulation, whilst neutrophils treated for 5 minutes (37
o
C, 5% CO2) with 1% 

Triton X-100 (Sigma-Aldrich) served as the readout of maximum degranulation. Following 

treatment, cells were pelleted (250 x g, 5 minutes) and supernatants collected, to which 50 µl 

of 3,3’,5,5’-Tetramethylbenzidine (Life Technologies) was added. Samples were incubated 

for 30 minutes in the dark at room temperature, before being read at 650 nm (ELx808 

absorbance microplate reader, BioTek
® 

UK, Bedfordshire, UK). MPO release was calculated 

using the following equation: % MPO release = (Experimental degranulation – spontaneous 

degranulation)/ (Maximum degradation – spontaneous degranulation) X 100.  

 

Measurement of interleukin (IL)-8.  

Freshly isolated neutrophils (2x10
5 

in complete media) or those pre-treated with 10 µM 

SB203580 and/or 10 µM PD98059 were stimulated for 6 hours with 40 µg/ml or 100 µg/ml 

of mtDAMPS or vehicle control at 37
o
C in a humidified 5% CO2 atmosphere. Post 

stimulation, cells were pelleted (3000 rpm, 5 minutes), supernatants collected and stored at               

-80
o
C prior to analysis. The concentration of IL-8 in cell free supernatants was determined 

using singleplex technology according to manufacturer’s instructions (Bio-Rad, 

Hertfordshire, UK).  

  

Western blotting 

Freshly isolated neutrophils (1x10
6 

in complete medium) and those pre-treated with either                   

10 µM SB203580, 10 µM  PD98059 or 1uM cyclosporin H were incubated with 40 µg/ml or 

100 µg/ml mtDAMPS for 2, 5 and 10 minutes at 37
o
C in a humidified 5% CO2 atmosphere. 

Post stimulation, neutrophils were pelleted by centrifugation (1500 x g, 2 minutes, 4
o
C), 

supernatants discarded and cell lysates prepared by the addition of hot sodium dodecyl 



 
 

sulphate (SDS) sample buffer (4% SDS (v/v), 0.1 M dithiothreitol, 20% glycerol (v/v), 

0.0625 M Tris-HCL and 0.004% bromophenol blue (w/v)). Lysates were separated on 10% 

SDS-polyacrylamide gels and proteins transferred to polyvinylidene difluoride membranes 

(Scientific Laboratory Supplies, Yorkshire, UK). To prevent non-specific binding, 

membranes were incubated with 5% bovine serum albumin (BSA) in Tris buffered saline 

(TBS; 200 mM Tris (pH 7.5), 1.5 M NaCl) containing 0.1% Tween-20 (TBST) for 1 hour at 

RT, before being probed overnight at 4
o
C with either a rabbit anti-human phospho-p38 or a 

rabbit anti-human phospho-ERK antibody (both diluted 1:1000 in TBST containing 2.5% 

BSA; Cell Signalling Technology). Post incubation, blots were washed in TBST and 

incubated for 1 hour at RT with a goat anti-rabbit secondary antibody conjugated to horse 

radish peroxidase (HRP; diluted 1:4000 in TBST; GE Healthcare, Buckinghamshire, UK). 

HRP activity was detected using enhanced chemiluminescence (Geneflow, Staffordshire, 

UK). To confirm equal loading of proteins, blots were stripped with stripping buffer (10% 

(w/v) SDS, 62.5 mM Tris-HCl (pH 6.8), 0.08% (v/v) ß-mercaptoethanol) for 45 minutes at 

50
0
C, washed for 2 hours in distilled H20 and blocked for 1 hour at RT in 5% BSA/TBST, 

before being probed overnight at 4
0
C with either a total p38 or ERK 1/2 antibody (both 

diluted 1:2000 in TBST; Cell Signalling Technology). Densitometry was performed using the 

National Institute of Health ImageJ software package.  

 

Statistical analyses 

Statistical analyses were performed using GraphPad Prism
®
 software (GraphPad Software 

Ltd, California, USA). Data distribution was examined using the Kolmogorov-Smirnov test. 

For data that followed a normal distribution, paired student T-tests, a repeated measures 

ANOVA with Dunnett’s multiple comparison post hoc test or a two-way repeated measures 

ANOVA with a Bonferroni post hoc test were performed. For non-normally distributed data, 

a Friedman test with Dunn’s multiple comparison post hoc test or a Wilcoxon matched-pairs 

signed rank test was used. Data are presented as mean ± standard error of the mean (SEM). 

The minimum level of confidence at which results were considered statistically significant 

was p≤0.05.  
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Figure Legends 

Figure 1. Exposure to mtDAMPs activates human neutrophils and triggers a robust 

functional response. (A) Neutrophil activation upon stimulation with 40 µg/ml (open bars) 

or 100 µg/ml (filled bars) mtDAMPs was assessed by L-selectin staining over a 60-minute 

period. Data are presented as L-selectin surface density (left panel) and the percentage of                 

L-selectin positive neutrophils (right panel). Data are mean ± SEM (n=3). * = P<0.05,                  

*** = P<0.0001 test vs. untreated sample. MFI, Mean fluorescent intensity. (B) ROS 

generation by freshly isolated neutrophils stimulated with 100 µg/ml mtDAMPs was 

measured over a 60-minute period by luminol-based chemiluminescence. In the left hand 

panel, ROS generation is presented as area under the curve (AUC) and represents the                  

mean ± SEM (n=3). In the right hand panel, a representative plot of ROS generation 

presented as relative light units (RLU) is shown. (C) IL-8 secretion by neutrophils stimulated 

with 40 or 100 µg/ml mtDAMPs (n = 10). Data are mean ± SEM. ** = P<0.01. (D) 

Degranulation by neutrophils upon stimulation with 40 or 100 µg/ml mtDAMPs or the 

bacterial peptide fMLP (positive control) assessed by measuring myeloperoxidase activity in 

culture supernatants. Data are mean ± SEM (n-7).   * = P<0.05, ** = P<0.01 test vs. untreated 

sample. 

Figure 2. Stimulation with mtDAMPs activates MAPK signalling in resting human 

neutrophils. (A-B) Activation of the MAPKs ERK1/2 (A) and P38 (B) assessed by Western 

blotting in freshly isolated neutrophils treated with 40 or 100 µg/ml mtDAMPs over a                     

10-minute time course. Top panels: Representative Western blots depicting MAPK 

phosphorylation kinetics. Bottom panels: Densitometric analysis of MAPK activation. Data 

are mean ± SEM (n=3). * = P<0.05, ** = P<0.01, *** = P<0.0001 compared to time 0. 

Figure 3. Mitochondrial DNA does not activate human neutrophils or induce MAPK 

phosphorylation. (A) Activation of neutrophils in response to 1 µg/ml (open bars) or                         

5 µg/ml (filled bars) mitochondrial DNA assessed by L-selectin staining. Data are presented 

as percentage of L-selectin positive neutrophils (top panel) and surface density by MFI 

(bottom panel). Data are mean ± SEM (n-5). Activation of the MAPKs ERK1/2 (B) and P38 

(C) in response to 5 µg/ml mtDNA or 100 g/ml mtDAMP stimulation assessed by Western 

blotting over a 10-minute time course. Representative Western blots depicting MAPK 

phosphorylation kinetics are shown. Data are mean ± SEM (n=3). 

 



 
 

Figure 4. Formyl peptides within mtDAMPs activate human neutrophils and trigger 

MAPK signalling. (A) Activation of neutrophils pre-treated with the formyl peptide receptor 

antagonist cyclosporin H (CsH; filled bars) or vehicle control (open bars) in response to 

stimulation with 100 µg/ml mtDAMPs assessed by L-selectin staining. Data are presented as 

percentage of L-selectin positive neutrophils (top panel) and surface density by MFI (bottom 

panel). Data are mean ± SEM (n=3). *=P<0.05, ***=P<0.0001 compared to samples treated 

with 100 µg/ml mtDAMPs alone. Activation of the MAPKs ERK1/2 (B) and P38 (C) in 

response to 40 and 100 µg/ml mtDAMP stimulation was compared between neutrophils pre-

treated with CsH or vehicle control by Western blotting over a 10-minute time course. 

Representative Western blots depicting MAPK phosphorylation kinetics are shown.  

Figure 5. ERK1/2 and p38 signalling is required for mtDAMP-induced neutrophil 

activation and IL-8 secretion. (A) Activation of neutrophils pre-treated with the ERK1/2 

inhibitor PD098059 (left panel; filled bars), the p38 inhibitor SB202190 (right panel; filled 

bars) or both (bottom panel; filled bars) in response to stimulation with 100 µg/ml mtDAMPs 

(open bars) assessed by L-selectin staining. Data, presented as surface density by MFI, are 

mean ± SEM (n=3). *=P<0.05, **=P<0.01 ***=P<0.0001 compared to samples treated with 

100 µg/ml mtDAMPs alone. (B) IL-8 production by neutrophils treated with PD098059                     

(left panel, n=9), SB202190 (right panel, n=9) or both (bottom panel, n=6) prior to a 6-hour 

stimulation with 40 or 100 µg/ml mtDAMPs. Data are mean ± SEM.    
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