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Abstract 

Heavy oil and bitumen are a potential alternative energy source to conventional light crude. 

However, recovery of these resources can have substantial environmental impact. Downhole 

upgrading offers the prospect of both improving recovery, and decreasing environmental 

impact. However, use of catalysts to enhance downhole upgrading is limited by the need for 

one that can survive the extreme coking conditions arising from the cracking of heavy oil. In 

this work the potential of hydrogen donors to improve upgrading and enhance catalyst 

lifetime was considered. In order to extract detailed information on the catalyst structural 

evolution during reaction a novel parallel adsorption and thermoporometry characterization 

method was used. This technique allows detailed information to be obtained on the spatial 

juxtaposition of different pores, and their relative connectivity, as well as on size 

distributions. For catalyst operated at the conditions studied, it has been found that coking 

arises in smaller pores branching off the larger pores providing access to the catalyst interior. 

It has been found that while coking following use of different types of hydrogen donor leads 
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to similar primary patterns of evolution in the pore-scale descriptors of the remaining 

accessible void-space, differences do arise in the overall accessible volume. Hence, it seems 

the hydrogen donor affects the location rather than general nature of the pore structure 

changes. However, at a secondary level of scrutiny, some differences in pore-scale evolution 

are also identified for different hydrogen donors. These differences identified helped the 

understanding of variations in the performance of different hydrogen donor and catalyst 

combinations.  

 

Keywords: bitumen; in-situ combustion; thermoporometry; adsorption; porosity 

 

1. Introduction 

 

Peak production of conventional light oil is likely to occur before 2035 (IEA, 2011). 

Thereafter there will be a decline in supply if alternative sources are not found and exploited. 

Heavy oil and bitumen represent a potential alternative to conventional oil. However, heavy 

oil and bitumen cannot be refined by conventional refineries without upgrading to convert 

them to synthetic light crude oil (Hart et al., 2013,2014). Heavy oil and bitumen can be 

recovered using in-situ combustion. In-situ combustion methods involve burning part of the 

oil to recover the rest, by using the heat produced from the combustion reactions to reduce 

the viscosity of the remaining oil and allow it to flow to a producer well. One such method is 

the Toe-to-Heel Air Injection (THAI) method (Shah et al., 2010). In THAI, air is injected 

through a vertical injector well to supply the oxidant for a flame front which sweeps through 

the reservoir. The oil mobilized by the heat from the flame front flows down to a horizontal 

producer well towards the base of the reservoir. Very high temperatures, up to 600-700 
○
C 

can be obtained in the reservoir. Hence, the oil may undergo pyrolysis, and, also, upgrading 

reactions due to the natural catalytic activity of the host rock. The CAtalytic upgrading 

PRocess In-situ (CAPRI) is a way to further enhance the upgrading arising from the THAI 

process itself. In CAPRI the horizontal producer well is wrapped around with an annular 

packed-bed of upgrading catalyst. As the mobilized heavy oil flows towards the producer 

well it passes through the packed bed of catalyst and undergoes further upgrading reactions. 

While the catalyst lifetime need only be of the order of a few days, which is the time for the 

flame front region to pass a particular location, the conditions the catalyst experiences are 

severe.  
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The reactions involving heavy oil taking place on the catalyst are highly likely to produce 

solid carbonaceous deposits, generally called ‘coke’. This coke can smother active sites, 

and/or prevent access of reactants to the catalyst pellets completely by blocking of surface 

pores. The spatial distribution of coke depends upon the balance between the rates of reaction 

and mass transfer. A rapid coking reaction, relative to the rate of mass transport, is likely to 

lead to pore-mouth blocking, whereas a slower reaction is likely to lead to a more even 

distribution of coke. The rate of mass transfer is affected by the pore structure of the catalyst 

pellet.  

 

Hart et al.
 
(2013), successfully demonstrated that with better control of the oil flow, injected 

hydrogen can significantly improve the quality of the produced oil and reduce the coke build 

up on the surface of the catalysts.  However due to the difficulties and expense of supplying 

gaseous hydrogen to the well, hydrogen donor solvents may be considered as an alternative. 

Cyclohexane and tetralin are widely used as hydrogen donor solvents for industrial 

applications such as nylon and coal liquefaction respectively. Dehydrogenation  of 

cyclohexane for hydrogen storage and supply  as well as the use of tetralin as a donor solvent 

for coal/oil shale liquefaction, heavy oil and thermal/catalytic upgrading of heavy vacuum 

residues have been extensively documented (Biniwale et al, 2005; Peden and Goodman, 

1987; Liu et al, 2002; Alemán-Vázquez et al, 2012). In this study both of these solvents have 

been used as a potential source of continuous supply of hydrogen for the CAPRI catalyst to 

effect upgrading and as diluent for higher recovery. 

 

The pore structures of catalysts are generally characterized using techniques such as gas 

adsorption. An additional technique, which is gaining popularity, is thermoporometry. 

However, these techniques have problems with pore-pore interaction phenomena affecting 

the accuracy of the pore size distributions for disordered solids that are particularly acute for 

coked catalysts (Gopinathan et al., 2013). However, these issues, which will be described in 

more detail below, can be overcome by the novel integrated method used in this paper (Shiko 

et al., 2012). In this work, rather than using gas sorption or thermoporometry separately, we 

will combine them into a composite technique. This new technique consists of performing 

thermoporometry studies using the adsorbate from an adsorption experiment as the probe 

fluid at different levels of pellet saturation (with adsorbate). As will be seen below, this novel 

method delivers much more information on the relative proximity and connectivity of pores 
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affected by coking or left open, and thereby gives a more detailed picture of the coking 

process. This more detailed picture of pore structure evolution during coking enables a better 

idea of how to make catalysts more resistant to coking to be obtained. 

 

In this work, we will look at the potential benefits of using a guard bed of activated carbon to 

protect the catalyst from deactivation, and the impact of the use of various different hydrogen 

sources for improving upgrading on coking. In particular, the aim of this work is to study the 

effects of the combination of choice of hydrogen source and a particular catalyst pore 

structure has on coking resistance for that catalyst. This is to enable a more informed 

selection of hydrogen source for a given catalyst.  

 

2. Theory 

 

2.1 Gas sorption 

Pore structural characterization by gas sorption is based on the phenomenon of capillary 

condensation. The Kelvin equation (Rouquerol et al., 1999) suggests that the logarithm of the 

relative pressure at which a vapour will condense within a pore is inversely proportional to 

the pore size: 
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where P/Po is the relative pressure at which condensation occurs in a cylindrical pore of 

radius rp, k is a geometry parameter and depends on the pore and meniscus geometry (for a 

cylindrical pore open at both ends k = 1; and for a pore with one dead end, or for adsorption 

from a hemi-spherical meniscus, k = 2), γ is the surface tension and Vm is the molar volume of 

the condensed liquid phase, θ is the contact angle with which the liquid meets the wall, and T 

is the absolute temperature. Based on the Kelvin equation, the relative pressure needed to 

condense vapour in a through cylindrical pore, with a sleeve-shaped meniscus formed by the 

surface adsorbed layer, is the square root of the relative pressure needed to condense vapour 

starting from a hemi-spherical meniscus formed at the end of a dead-end cylindrical pore 

(Rouquerol et al., 1999). This sensitivity to meniscus geometry means there is not necessarily 
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a monotonic relationship between the applied pressure and the characteristic size of pore in 

which condensation will have occurred for inter-connected, disordered solids.  

 

In a through ink-bottle pore geometry, consisting of a large pore body sandwiched between 

two narrower necks, the presence of the larger body may be concealed by the ‘advanced 

condensation effect’, originally proposed by de Boer (1958). As illustrated in Figure 1, 

condensation in the pore necks via a cylindrical sleeve-shaped meniscus will lead to the 

development of hemispherical menisci at the two entrances either end of the pore body. If the 

pressure for this neck-filling process exceeds that for filling of the pore body via a 

hemispherical meniscus, then the body will also fill simultaneously with the necks, and the 

two different pore sizes will appear as one. The physical occurrence of the advanced 

condensation effect has been observed experimentally using both integrated mercury 

porosimetry (Hitchcock et al., 2014) and magnetic resonance imaging methods (Hitchcock et 

al., 2010). The advanced adsorption effect, also known as the ‘cascade effect’, has also been 

seen in Monte-Carlo simulations of gas adsorption (Coasne et al., 2007).  

 

The ‘advanced condensation effect’ (de Boer, 1958) is a particular problem when studying 

coking catalysts with gas sorption because a situation of pore-mouth blocking with coke can 

give rise to the through ink-bottle geometry described above, but appear (from 

characterization data) to be more pervasive, complete site-coverage because the newly 

narrowed neck and remaining empty body fill with condensate as one. This is because the 

entire length of a coked pore may fill with condensate at a lower pressure than before even if 

just the pore mouth region has been narrowed by coke. It will then look like the size of the 

whole pore has been reduced by coke deposition, rather than just the entrance. Alternatively, 

if an ink-bottle geometry already exists, then coking of the pore mouth may make the neck 

size drop below the critical value required to permit advanced condensation, and create a 

spurious, apparent growth in the volume of pores with a large body size that might be 

mistaken for structural damage by the coke.  
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

Figure 1: Schematic diagrams showing the stages of the advanced condensation effect in a cylindrical 
through ink-bottle pore. (a) Condensation in pore necks via a cylindrical-sleeve type meniscus at 
pressure P1, immediately followed by (b) filling of pore body via ingress of hemispherical menisci 
formed at ends.  

 

 

2.2 Thermoporometry 

Thermoporometry makes use of the Gibbs–Thomson effect, whereby small crystals of a 

solidified probe fluid located within pores melt at a lower temperature than the bulk liquid 

(Riikonen et al., 2011). The melting point depression is inversely proportional to the crystal 

size, where the constant of proportionality depends upon the meniscus geometry between the 
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solid and the melt. The melting process for the frozen phase is initiated from existing molten 

phase, such as the liquid-like layer that is always retained at the pore wall for ice crystals that 

do not wet the solid. This is shown in Figure 2 for a through ink bottle pore model; the arrows 

show how the liquid-like layer initiates the melting process and this melting mechanism is 

said to occur via sleeve-shaped menisci. For such a melting mechanism, the smaller necks 

will melt first, and, then, as the temperature is raised, the large pore will also melt. Therefore, 

this type of melting event would give an accurate measurement of the both the neck and body 

sizes. 

 

 

 

(a) 

 

(b) 

Figure 2. Schematic depiction of the stages of the advanced melting process in a cylindrical, through 
ink-bottle pore system. The dark shading indicates the non-freezing surface liquid-like layer, while the 
light shading indicates the bulk frozen fluid. The arrows indicate the direction of the meniscus 
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movement on initiation of melting from (a) sleeve-shaped menisci in the pore necks, and (b) 
hemispherical menisci at the entrances to the pore body. 

 

 

However, in cylindrical pores, melting could occur at a lower temperature via a 

hemispherical meniscus (between solid and molten phases), than it would via a sleeve-shaped 

meniscus. For the through ink bottle pore in Figure 2, melting is initiated in the outer narrow 

necks from the thin cylindrical sleeve of permanently unfrozen liquid-like fluid that exists at 

the pore wall. Once the necks have become fully molten, a hemispherical meniscus will have 

consequently formed at both ends of the larger pore body. The hemispherical menisci could 

then initiate the melting process in the large pore provided the larger pore radius is smaller 

than the critical size for melting via a hemispherical meniscus at the current temperature. In 

that case the larger pore would melt at the same temperature as the smaller pore. Hence, what 

is in actuality two different pore sizes, would appear as just one from the melting curve. This 

is known as the advanced melting effect, and has been observed experimentally (Hitchcock et 

al., 2011). 

 

While, as has been seen above, both gas sorption and thermoporometry are affected by pore-

pore interaction phenomena, leading to a narrowing (relative to reality) of the measured pore 

size distribution, previous work (Shiko et al., 2013) has shown that the critical ratio of the 

sizes of neighbouring pores to permit these effects to occur is different. Hence, an integrated 

combination of the two techniques can be used to detect these effects in each other, and, 

thereby, infer information on the proximity of pores of given sizes. The data-set for the fully-

integrated method is much richer in implicit information on the connectivity of different 

pores than the data for the individual techniques alone taken together. This synergistic effect 

will be used to study the spatial distribution of coke lay-down in the upgrading catalysts. 

 

2.3 Mass transport 

When diffusion within a porous solid is accompanied by adsorption, a simple mass balance 

shows that the usual diffusion equation (here for a sphere with radial co-ordinate r) must be 

modified
 
(Crank, 1975) to allow for this: 
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where De is the (purely mass transport) effective diffusivity, and H is the constant of 

proportionality between the concentrations of the adsorbed phase and the freely diffusing 

phase (in the appropriate units). If there is a linear relationship between the concentrations of 

the surface adsorbed phase and the freely diffusing phase then solutions of the diffusion with 

adsorption problem, for given initial and boundary conditions, are the same as for the 

corresponding problem in simple diffusion except that the modified diffusion coefficient 

De/(H+1) is used. Beyond the Henry’s law region, the assumption of a linear relationship 

between the concentrations of the adsorbate in the gas phase and adsorbed phase usually only 

applies over a limited pressure range. Ideally, a plot of concentration of adsorbed phase 

against concentration in the gas phase would be acquired using very tiny pressure steps over 

which the assumption of linearity would be most accurate, but, in order to improve the signal-

to-noise ratio in the data, larger pressure steps are actually used. In this work H was derived 

from the tangent to the adsorption isotherm at the upper isotherm point for the mass-uptake 

step. 

 

A simple, and often-applied, intra-particle mass-transfer model is the so-called Linear 

Driving Force (LDF) model, where uptake data fitted to the expression: 

 

( )
( )

( )ktexp
M

tM
−−=

∞
1 .         (3) 

 

where k is a mass transfer coefficient (mtc), which is proportional to De /a
2
, where a is a 

characteristic diffusion path length. In the real constant pressure experiment it is impossible 

to obtain a perfect step-function increase in external pressure, and thus the boundary 

condition is an approximation. The approximation is generally reasonable as the time taken 

for the pressure increase is small in comparison with the time required to reach adsorption 

equilibrium. For diffusion within porous solids, the area for diffusion is reduced to the 

voidage fraction. The diffusivity is further reduced by the factor of the tortuosity, 

representing deviations from straight-line paths for the diffusive flux. The temperature 

dependence for bulk diffusion in gases is ~T
3/2

. 
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3. Method 

CAPRI, the catalytic extension of the THAI process, was investigated using a fixed bed 

microreactor and laboratory scale experimental rig for heavy crude oil upgrading in the 

presence of hydrogen donors, such as hydrogen gas, or solvents like cyclohexane and tetralin 

at two different ratios of THAI oil/Hydrogen donor solvent of 9:1 and 5:1. To simulate the 

downhole CAPRI process, partially upgraded (THAI feed 3, dentoted T3; 14 
o
API and 

viscosity 1.091 Pa.s) Kerrobert, Canada, heavy crude oil was used as feed under previously 

optimised operating temperature of 425 °C and 20 barg pressure in a nitrogen atmosphere 

using HDS/HDT CoMo/Alumina catalyst. The gas flow-rate was 500 ml min
-1

, and the gas-

to-oil volumetric ratio was 500:1. The reaction time in the reactor before discharge of the 

coked samples was 8 h. The spent catalyst samples for which the pore structure was 

characterized using the integrated adsorption-thermoporometry method include the fresh and 

four coked CoMo/γ-Al2O3 samples, as shown in Table 1.  

 

Table 1. Coked catalyst samples studied in this work 

Sample code Sample Description 

A CoMo/alumina + H2 in feed 

B CoMo/alumina + Activated carbon guard bed + THAI 3 experimental 

oil and cyclohexane (9:1 ratio) 

C CoMo/alumina + Activated carbon guard bed + THAI 3 experimental 

oil 

D CoMo/alumina + Activated carbon guard bed + THAI 3 experimental 

oil and tetralin (9:1 ratio) 

 

The methods for the characterization studies of the fresh and coked catalyst samples were as 

follows. The samples were saturated with water using a Series 3 Climate chamber TAS 

apparatus at 25°C and Relative Humidity (RH) of 95 or 100% respectively. To obtain 

saturated accessible pore volume values for water, samples were left for 11 days to reach 

equilibrium, when no further significant mass increase occurred. Comparison of the adsorbate 

volumes for water, at 100 % RH, and nitrogen adsorption at 77 K (Hart et al., 2013, 2014) 

suggest that water fully wets the coked samples by vapour sorption.  
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For thermoporometry experiments, about 15-30 mg of the partially-, or fully-, saturated 

samples were sealed into a pre-weighed DSC aluminium hermetic pan (TA Instruments, Part 

#900793.901 for bottom and Part #900794.901 for lid). The partially saturated samples had 

been equilibrated at one of 75, 85 or 95 % RH. The DSC pans were weighed after addition 

and sealing of the saturated samples. The pan was subsequently introduced into the furnace of 

the DSC. A differential scanning calorimeter (Q10 DSC, TA Instruments) equipped with a 

cooling unit (RCS, Refrigerated Cooling System) for controlled cooling and sub-ambient 

temperature operation was used. A constant furnace atmosphere was maintained with an in-

house nitrogen purge. 

 

The DSC thermoporometry measurements were performed as follows. The sample was 

cooled to -50 °C and that temperature was maintained for 30 min to ensure that all of the 

water was frozen. After that, the sample was heated to 5 °C at a heating rate of 0.5 °C/min 

and the temperature was maintained for 10min. After completing the DSC measurements, the 

sample pans were reweighed to check that no water had escaped during the experiment. The 

DSC measurements were repeated on three samples of the same material, with the same 

conditions. It is important to use the same heating rate throughout experimental run; 

otherwise the results are influenced by the heating rate. This procedure was also repeated 

using two further heating rates of 1.0 and 1.5°C/min, respectively, to check whether findings 

were independent of heating rate. No significant effect of heating rate was observed, and thus 

the data reported is for 1.5°C/min. The data were analysed assuming a Gibbs-Thomson 

parameter of 50 K nm
-1

 (based on diameter), typical for oxide materials (Schreiber et al., 

2001). 

 

A dynamic vapor sorption analyzer (DVS-1 Surface Measurement Systems Ltd. London UK) 

equipped with a Cahn D200 microbalance was used to measure the water sorption isotherms 

of the catalyst samples. Relative Humidity (RH) calibration of the system was by means of 

the deliquescent point of saturated salt solutions. Experiments were carried out at a 

temperature of 293 K, or of 297 K, and stepped RH values ranging from 0 to 95%. The initial 

weight of the samples was in the region of 10 mg. Catalyst samples were used in the form of 

2-3 intact pieces and initially weighed on a normal laboratory balance external to the DVS 

before being placed in quartz hemispherical holders in the DVS. Samples were initially pre-

dried in the DVS by passing dry air over the pieces until equilibration. The dry samples were 

subsequently hydrated using several different RH programs involving adsorption and 
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desorption. Samples were considered equilibrated when the change in mass per unit time was 

less than 0.0005 mg/min, or the equilibration time had reached the maximum step value; in 

some cases 720 minutes. The isotherm data presented here was equilibrated. Using this 

procedure, the moisture content expressed as a percentage on a dry weight basis could be 

plotted against RH and the isotherm obtained.  

 

The coke content of the catalyst after upgrading was determined using a thermogravimetric 

analyser (TGA) NETZSCH-Geratebau GmbH, TG 209 F1 Iris®. The analysis was carried out 

using a ramp temperature increase from 25 to 900 
○
C under air flow of 50 mL.min

-1
. A 

detailed description of the method has been reported in Hart et al. (2013, 2014). 

 

 

4. Results and Discussion 

The results from the reactor studies are summarised in Table 2. Note the feed oil API gravity 

and viscosity are 14 
o
API and 1.091 Pa.s. From Table 2, it is clear that the produced oil API 

gravity after upgrading under hydrogen atmosphere gave the highest increment compared to 

hydrogen-donor solvent. This is because during the upgrading the cleavage of a 

macromolecule and the addition of hydrogen from dehydrogenation of tetralin and 

cyclohexane to form a stable molecule leads to the formation of naphthalene and benzene. 

The polymerised form of these aromatic molecules produced as a result of the release of 

hydrogen from the solvent induces high density (inverse of API gravity) to the upgraded oil. 

However, the dissociation of hydrogen produces the lightest radicals to help suppress macro-

radicals polymerisation and promote hydrogenation reactions to stable and smaller molecules. 

Correspondingly, the level of viscosity reduction is approximately the same within an error 

margin. The level of improvement in API gravity and viscosity after upgrading is an 

indication of coke deposition on the catalyst. The catalyst coke content after upgrading was 

determined by thermogravimetric analyser. The high coke content after upgrading with 

tetralin and cyclohexane compared to hydrogen could be attributed to the formation  of 

aromatics due to dehydrogenation to release hydrogen. These aromatics are known coke 

precursors during reaction.  
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Table 2. Coke content of deactivated catalyst pellets and oil upgrading parameters obtained from  

reaction studies  

Reactants Coke 

content 

(wt.%) 

Average 

API 

gravity 

rise 

(deg.) 

Viscosity 

reduction 

(%) 

CoMo + AC + Feed oil/Cyclo (9:1) + N2 28.21 2.8 ± 0.7 87.0 

CoMo + AC + Feed oil/Cyclo (5:1) + N2 26.55 2.6 ± 0.7 86.0 

CoMo + AC + Feed oil/Tetr (9:1) + N2 26.31 3.0 ± 0.8 89.0 

CoMo + AC + Feed oil/Tetr (5:1) + N2 27.74 2.9 ± 0.7 86.7 

CoMo + AC + Feed oil + H2 26.58 3.3 ± 0.9 86.5 

Notes: cyclo = cyclohexane, Tetr = Tetralin and THAI 3 = Feed oil, AC = Activated carbon guard bed and 

CoMo/Al2O3 

 

The nitrogen adsorption isotherms for fresh and representative coked catalysts have been 

reported in the supplementary materials. Figure 3 shows the water adsorption isotherms for 

some examples of the coked catalysts, and also the fresh catalyst. The isotherms were 

obtained at 297 K except for sample C which was obtained at a slightly lower temperature of 

293 K to increase uptake and thus improve signal-to-noise. It can be seen that the water 

adsorption isotherms for the fresh catalyst and coked catalyst C are Type II in form according 

to the IUPAC classification scheme (Rouquerol et al., 1999), while that for coked catalyst A 

is Type III. A Type III shaped isotherm is associated with weaker adsorbate-adsorbent 

interaction strength than Type II. This finding suggests that either the coke chemistry for 

sample A is more hydrophobic than that for sample C, and/or the coverage of still accessible 

surface, by a coke more hydrophobic in nature than fresh catalyst surface, is more pervasive 

for sample C. The isotherms for samples B and D were Type III. 
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(a) 
 

 
(b) 
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Figure 3. Water adsorption isotherms for (a) fresh catalyst at 297 K (�, left-hand axis), sample A at 
297 K (�, right-hand axis); and (b) sample C at 293 K. The lines shown are to guide the eye. 

 

 
 

Table 3 shows the accessible void volume for water (determined from water saturation at 

100% RH), and the water mass transfer coefficients (MTCs), corrected for adsorption, 

obtained for the fresh and coked catalysts at low (sub-monolayer) surface coverage during the 

water adsorption experiment. It can be seen that the MTCs increase in the order A to D, and 

all are at least an order of magnitude less than for the fresh sample. There is no correlation 

between accessible void volume and size of MTC. Even though sample A had a Type III 

water adsorption isotherm, it still has a relatively high overall pore volume accessible to 

water. This suggests that water-wetting effects (eg exclusion from open but completely 

hydrophobic pores) are not important at high saturation levels in coked catalysts. 

 

Table 3. Water adsorption mass transfer coefficients, corrected for adsorption, for fresh and coked 

catalysts. The coefficients are all those measured/calculated for a temperature of 297 K.   

Sample code Accessible void 

volume to water 

/(ml g-1) 

Mass transfer coefficient/min-1 

Fresh catalyst 0.47 1440 

A 0.28 17.0 

B 0.11 37.4 

C 0.22 115 

D 0.05 119 

 

Figure 4 shows the DSC curves for the water in fresh catalyst equilibrated at different relative 

humidities. At 75% RH the size distribution is very broad, with the modal peak at ~2.5 nm 

and a pronounced shoulder at ~4 nm. As the RH is increased to 85% and more water is 

adsorbed, then the DSC modal peak shifts to a larger size of ~5 nm, but remains relatively 

narrow. As the RH is increased further to 95%, the modal peak becomes substantially 

broadened towards larger pore sizes. In the final dataset where the RH has been increased to 

100%, the modal peak of the DSC curve shifted back to lower size of ~3.5 nm. The shift in 

the modal peak position suggests that, as RH is increased from 75% to 95% steadily larger 

pore sizes are filled with water. Once the final empty pores are filled by increasing the RH to 
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100%, the change in the direction of the movement of the modal peak shift with increased 

RH signified the onset of substantial percolation of the melting front due to the pervasiveness 

of advanced melting. Pores of size ~3.5 nm (based upon a Gibbs-Thomson parameter of 50 K 

nm
-1

) are facilitating the advanced melting of a large fraction of larger pores, and thus must 

be in immediate proximity to these pores. When the potential for significant advanced 

melting exists (as the highest RH results suggest occurs for the CoMo/alumina catalyst 

studied here), when the melting curve peak broadens , as it does at intermediate RH values, 

this suggests the water is adsorbing at these RH values is doing so in relatively segregated 

regions of the pellet, as no advanced melting occurs to obscure the presence of larger pores. 

Hence, the results from the hybrid adsorption- thermoporometry method implicitly contain 

information on the spatial juxtaposition of pores of different sizes. 

 

 

Figure 4. DSC thermoporometry melting curve pore size distributions (histograms) for fresh CoMo 
catalyst for water saturation equilibrated at four different relative humidities. Pore volumes for each 
sample are not on the same absolute scale. 

 

Figure 5 shows the DSC curves for fully saturated samples of fresh catalyst and the various 

catalysts discharged following upgrading reactions under different conditions. It can be seen 

that the general finding is that the modal peak of all of the used catalyst samples has shifted 

to ~5-6 nm, away from ~3.5 nm for the fresh catalyst. However the width of the DSC curve 
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peak declines in the order C to D to B to A. Since, generally, coking can be expected to lead 

to larger pores being made smaller or rendered inaccessible (Mann et al., 1996), the shift in 

the modal peak to larger size suggests, rather, that the coking has reduced the incidence of 

advanced melting present in the fresh catalyst. This could occur if the smaller pores 

facilitating melting for the larger pores were either blocked entirely, or reduced in size such 

that they fall below the critical size to permit advanced melting. The differences in the 

apparent width of the size distributions for different spent catalysts suggest that more smaller 

pores are preserved under some reaction conditions than others. A larger volume of smaller 

pores are increasingly preserved in the order A, B, D, to C. It is noted that the level of 

preservation of the smaller pores for coked samples in Figure 5 correlates well with 

increasing MTC in Table 3. However, the similarity in the position of the modal peak for all 

spent catalysts suggests that the particular small pores (that facilitate advanced melting at low 

temperature) in close proximity to the larger pores are rendered inaccessible in all conditions.  

 

 

Figure 5. Pore size distribution obtained from DSC thermoporometry melting curve for fully saturated 
fresh and spent CoMo catalyst samples. The curve represents a histogram of incremental volume 
(reduced by maximum incremental volume) against pore size. 

 

Figure 6 shows the DSC curves for fresh and spent catalyst samples after partial saturation 

with water by equilibration at 95 % RH. It can be seen that the position of the modal peak is 
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similar for all samples, including the fresh catalyst. This contrasts with the corresponding 

data obtained at 100 % RH, where the modal peak for the spent catalyst samples was 

significantly displaced relative to that of the fresh catalyst. The position of the modal peak for 

the spent catalysts has declined very slightly from around 5-6 nm to around 4-5 nm. The 

modal peak for the fresh catalyst is at about 5 nm, and is the narrowest of the samples 

studied. The similarity of the position of the modal peak for fresh catalyst equilibrated with 

water vapour at 95 % RH to the position of the modal peaks for spent catalysts at both 95 % 

and 100 % RH suggests that those pores rendered inaccessible by coking are likely to be the 

same pores in the fresh sample that facilitated advanced melting of the pores that fill with 

condensed water at the highest vapour pressures corresponding to RH between 95 % and 100 

%.  

 

In addition to the aforementioned primary effect of coking on pore-scale properties, implicit 

in the position of the modal DSC peak, consideration of the width of the DSC curve reveals 

secondary level changes to the pore structure on coking. It is noted that, the DSC curve for 

coked sample D saturated to 95% RH is broader than for the fresh catalyst, as was the 

corresponding curve for the fully saturated sample. However, in contrast, the DSC curve for 

sample A in Figure 6 is, instead, shifted as a whole towards smaller pores, relative to the 

fresh catalyst data. The wider curve for sample D may indicate that the large and small pore 

sizes in the curve are well segregated by either connections blocked by coke or that no longer 

fill with condensate because of coking. This finding suggests some differences in the pattern 

of coke lay-down between the sets of conditions giving rise to coked samples A and D.  

 



19 

 

 

Figure 6. Pore size distribution obtained from DSC thermoporometry melting curve for partially 
saturated fresh and spent CoMo catalyst samples equilibrated at 95% RH. The curve represents a 
histogram of incremental volume (reduced by maximum incremental volume) against pore size. 

 

From a comparison of the data in Figures 5 and 6 it can be seen that the modal peak for the 

DSC curves for coked catalysts shifts from ~4 nm, to a slightly larger pore size of ~5 nm, on 

increasing RH from 95% to 100%. If a higher relative pressure were required to condense 

water in smaller, but hydrophobic, coked pores, compared to remaining larger fresh pores, 

then it would be expected that this increase in modal pore size in the DSC data would not 

occur. Further, if a coked surface was relatively non-wetting for water, compared with the 

fresh catalyst surface, then the Gibbs-Thomson equation predicts, ignoring any advanced 

melting effects, that the melting point depression would be larger in magnitude for water 

imbibed in a coked pore. Hence, the modal peak for coked samples in Figure 5 might be 

expected to have shifted to smaller pore sizes, compared to the fresh sample. However, this is 

not what was observed in Figure 5. Although there is a shift to lower pore sizes for the modal 

melting peak for partially-saturated coked samples in Figure 6, since a similar effect was not 

seen in Figure 5, then this suggests that the effect in Figure 6 must be due to structural change 

from coke deposits, not due to changes in wetting properties of the surface.  
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The most pronounced pattern in the findings given above, namely the shifts in the relative 

positions of the modal peaks, can be understood in terms of a simple corrugated pore model, 

as shown in Figure 7(a). The thermodynamic aspect of the model assumes that the critical 

pore size ratio for permitting advanced phenomena is smaller for gas adsorption than for 

melting in thermoporometry, such that advanced melting occurs for some pores when 

advanced adsorption does not. The structural aspect of the model consists of a series of 

cylindrical pore elements of different diameters arrayed in series. The entrance to the pore 

from outside the pellet enters a medium sized pore segment, followed by large and small 

segments in that order when penetrating deeper into the solid. During adsorption of water 

vapour, if the ratio of sizes of neighbouring pores exceeds the critical value for advanced 

adsorption, then the three different pores will fill independently in order of increasing size 

from 1 to 3. However, if the ratios of the sizes of the large and medium pores to that of the 

small one does not exceed the critical ratio for advanced melting of the condensate, then the 

modal melting peak will first shift from low to higher temperature as the, initially segregated, 

small and medium segments fill up, but then shift back to low temperature when the 

intermediate large pore fills, since then a pervasive pathway would allow the melting front to 

advance from the small pore throughout the pore system at a lower temperature. If (as in 

Figure 7(b)) the interior small pore segment is completely blocked by coking in the spent 

catalyst, then the medium and large pore segments would still remain accessible to the 

outside and the condensing vapour. Hence, the modal melting peak for a fully water-saturated 

pore space will correspond to the size of the medium-sized pore segment, as melting would 

be then initiated at the medium pore segment, also leading to advanced melting of ice within 

the large segment. At the water saturation level equilibrated with 95 % RH, the large pore 

segment would not be filled, and the melting modal peak will be dominated by the medium 

pore segment size for fresh and coked catalysts, as advanced melting cannot arise in either 

case.  
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(a)       (b) 

 

Figure 7. Schematic diagram of pore model for fresh (a) and coked (b) catalyst, as described in the 
main text. The numerals in (a) denote the order in which the pores would fill with condensate.  

 

The MTCs for coked catalysts were much reduced compared to the fresh catalyst but varied 

significantly between different reaction conditions. It is noted, in Table 2, that the total coke 

content for all discharged catalysts was very similar for all reaction conditions. However, the 

differences in MTC and accessible pore volume suggest that it was the spatial disposition of 

the coke that changed with reaction conditions, rather than amount. Reductions in MTC are 

associated with a decrease in voidage fraction, and/or an increase in void space tortuosity, 

and/or an increase in diffusion path length. Coking is unlikely to lead to an increase in 

diffusion path length in the mechanically-stable pellets, but could reduce the voidage fraction, 

or increase the tortuosity, of the remaining accessible void volume. A concentration of 

impervious coke towards the centre of a pellet, or as an annular shell barrier at some distance 

from the centre, leading to a loss of accessible pore volume, would cause a decrease in 

diffusion path-length and an increase in MTC. The low MTC but high accessible pore 

volume for coked sample A is consistent with the spatial arrangement of coke being more 

dispersed (like currants in a currant-bun) such that water can still penetrate to the centre but 

through a tortuous path winding around pores blocked by coke deposits. In contrast, the 

relatively higher value of the MTC, and much lower accessible pore volume, for coked 

sample D is consistent with the coke substantially reducing the diffusion path length as well 

as increasing tortuosity overall. Sample B has both a low accessible pore volume and a low 

MTC suggesting that the coke occludes access to a lot of pores producing a highly tortuous 
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path but that still penetrates relatively deep into the pellet compared to sample D. Sample C 

has both a relatively high accessible pore volume and a relatively high MTC compared to the 

other coked catalysts, suggesting that the spatial distribution of coke is highly probably 

heterogeneous but not completely blocking access to a central zone. The relatively low 

accessible pore volume for the spent catalysts discharged following addition of small 

hydrocarbon molecules as a hydrogen source suggests that the coking reaction occurs closer 

to the pellet surface than in conditions A and C. Hence, the coking reaction is more rapid. 

The gross similarity of the DSC data, for the different coked samples, to each other, 

combined with the difference in accessible volumes and MTCs, suggests that the mechanism 

of coking at pore-scale is similar but penetrates to different zones of the catalyst depending 

on reaction components.  

 

5. Conclusions 

In this work, the particular individual pathways for the structural evolution of the same 

catalyst, but coked under different reaction conditions, has been revealed by the pattern of 

similarities and differences amongst the results of various structural characterization methods 

for discharged coked samples. The combined adsorption and thermoporometry method has 

been used to probe the impact of coking on the overall pore size distribution and the pore-

scale connectivity of pores of different sizes, while the water accessible pore volume and 

MTC have been used to probe the macro-scale spatial distribution of coke. It has been found 

that coking under otherwise similar reaction conditions, but with different hydrogen donors, 

affects the larger-scale spatial distribution of coke within a catalyst pellet, but not the overall 

amount deposited. Variations in accessible network tortuosity do not necessarily correlate 

with remaining penetrable depth into the pellet. Further, changes in the apparent modal size 

and connectivity of the remaining pore size distribution are generally independent of the 

depth of penetration of the coking front within the pellet. However, some differences are 

revealed in the more second-order features of the shape of the remaining pore-size 

distributions for coked catalysts obtained under different conditions. Overall, the same pore-

scale coking mechanism seems repeated at different coking penetration depths for different 

hydrogen sources. It has also been shown how the advanced melting effect is critical to 

interpretation of thermoporometry data for porous catalysts.  
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HIGHLIGHTS: Re. Manuscript entitled: “Characterization of Coking in Catalyst for Thermal 

Down-hole Upgrading of Heavy Oil” 

 
 

- Novel experimental technique for studying coking 

- Method to understand spatial juxtaposition of coking pores 

- Assess impact of different process conditions on pore structure 

- Aid to design of deactivation-resistant catalysts 
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Schematic depiction of the advanced melting process in a cylindrical, through ink-bottle pore 
system. 




