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Abstract 

In this article we comment on the results published by Thompson et al. (Thompson, 

C. M.; Blakely, C. K.; Flacau, R.; Greedan, J. E.; Poltavets, V. V., J. Solid State 

Chem. 2014, 219, 173-178.) on the crystal structure of SrFeO2F, who claim the 

compound to crystallize in the cubic space group Pm-3m. We give a more detailed 

explanation of the determination of our previously reported structural model with 

Imma symmetry (Clemens, O.; Berry, F. J.; Wright, A. J.; Knight, K. S.; Perez-Mato, 

J. M.; Igartua, J. M.; Slater, P. R., J. Solid State Chem. 2013, 206, 158-169.), with 

addition of variable temperature XRD measurements with high counting time to 

provide unambiguous evidence for the Imma model being correct for our sample. 
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1. Introduction 

SrFeO2F is a perovskite compound which can be made by low temperature 

fluorination of SrFeO3-d using polyvinylidenedifluoride (PVDF) [1-4] or by low 

temperature fluorination of SrFeO2 using XeF2 [5, 6]. The detailed crystal structure 

has been subject to vivid discussion in literature. First reports on the compound by 

Berry et al. [2, 3] as well as Clemens et al. [1, 4] reported the material to crystallize in 

the cubic perovskite structure (space group Pm-3m). This structural arrangement was 

revised by Clemens et al. who studied the series La1-xSrxFeO3-xFx by means of 

neutron diffraction, which was shown to be in agreement with a mode analysis of the 

obtained structural data [7]. Based on those analyses, the authors concluded that 

SrFeO2F is best described with an orthorhombic perovskite structure with space 

group Imma. In a recent article, Thompson et al. [5] contradict this structural 

description based on an analysis of temperature dependent neutron powder 

diffraction data (NPD) and report the compound to crystallize in the cubic space 

group Pm-3m. They state: “On the subject of different crystal symmetries, as 

mentioned in the Introduction, it has been proposed that Imma is the true space 

group for SrFeO2F [7]. … Nonetheless, as mentioned earlier, the evidence for this 

symmetry is not strongly supported by the diffraction data as the unit cell is metrically 

cubic.” Here, we would like to comment on the results published by Thompson et al. 

[5] and will give a more detailed description of our previous evaluation of the neutron 



diffraction data recorded for SrFeO2F, showing that the compound cannot be 

appropriately described within the cubic structural model and that the Imma structural 

model is well supported by the powder diffraction data. This was in principle already 

mentioned in our previous article [7], but here we will highlight explicitly the 

differences in refinement quality of the different structural models, explaining in detail 

why the Imma structural must be considered to be correct. Additionally, we will 

present high counting time temperature dependent X-ray diffraction measurements, 

which indicate the structural transition from orthorhombic to cubic taking place at a 

temperature between 473 – 523 K. We will also comment on the structure 

refinements performed by Thompson et al. [5], which we also think to indicate that 

the use Imma model could give rise to a significant improvement of their refinement. 

2. Experimental 

The experimental details for the preparation of the compound SrFeO2F can be found 

in our previous article. For clarity, we would like to give the measurement conditions 

for the diffraction data and also give details about how the refinements have been 

performed. 

X-ray powder diffraction (XRD) patterns were recorded on a Bruker D8 diffractometer 

with Bragg-Brentano geometry and a fine focus X-ray tube with Cu anode. A primary 

beam monochromator was attached. A LYNX eye detector and fixed divergence slit 

were used. The total scan time was 16 hours for the angular range between 5 and 

140° 2�. 

Time of flight powder neutron powder diffraction (NPD) data were recorded on the 

high resolution diffractometer (HRPD) at the ISIS pulsed spallation source 

(Rutherford Appleton Laboratory, UK). 4g of powdered SrFeO2F loaded into 8mm 

diameter thin-walled, cylindrical vanadium sample cans and data collected at ambient 

temperature for 75 µAh proton beam current to the ISIS target (corresponding to ~2 

hours beamtime) for each sample. 

Structure refinements reported here were performed on both the XRD and NPD data 

using the Rietveld method with the program TOPAS Academic V5 [8]. The 

instrumental intensity distribution for the X-ray data was determined empirically from 

a sort of fundamental parameters set [9], using a reference scan of LaB6, and the 

microstructural parameters were refined to adjust the peak shapes for the XRD data. 



For the neutron diffraction data, a corresponding TOF shape model was used. Lattice 

parameters were allowed to be slightly different for neutron- and XRD- data 

(� ~ 0.01-0.02 %); this difference can be reasonably explained by a slightly different 

temperature during measurement at the ISIS facilities. The same positional 

parameters were used and refined for both data sets. Independent thermal 

displacement parameters were refined for each type of atom, but those for O and F 

were constrained to the same value. While these parameters were also constrained 

to be the same both for X-ray- and neutron- powder diffraction data, an additional B 

overall value was refined for the XRD data accounting for further effects such as 

absorption or surface roughness.  

Refinements of the magnetic structures of SrFeO2F was performed by introducing a 

second phase, with magnetic symmetry Pm’ma’, for which scaling parameter, lattice 

parameters as well as the position of the Fe atom were restrained to the same values 

as used for the nuclear phase and for which only the magnetic scattering was refined. 

This strategy allows for easier depiction of the magnetic scattering compared to the 

nuclear scattering. Since the cell lengths are pseudocubic, and the determination of 

the direction of the magnetic moment within a (pseudo)cubic is not possible [10], only 

the z-axis component of the magnetic moment was refined and Mx / My were set to 

zero. 

Variable temperature X-ray powder diffraction (VT-XRD) patterns of SrFeO2F were 

recorded on a Bruker D8 diffractometer with Bragg-Brentano geometry and a fine 

focus X-ray tube with Cu anode using an Anton Paar HTK 1200N High-Temperature 

Oven-Chamber. No primary beam monochromator was attached. A VANTEC 

detector, a step size of 0.00785 °, and a fixed divergence slit (0.1 °) were used. The 

patterns were recorded at variant temperatures in the order 291, 473, 373, 573, 673, 

523, 423 and 323 K to highlight reversibility of the phase transition. At each 

temperature two patterns have been recorded: one in the angular range between 

36.5 and 40.5 ° 2� using a total scan time of 2 hours, and one in the angular range 

between 30 and 60 ° 2� using a total scan time of 4 minutes. 

Analysis of the VT-XRD diffraction patterns was performed using the method of 

Pawley. For this analysis, a coupled refinement of the two scans was performed. 

Again, the instrumental intensity distribution for the X-ray data was determined 

empirically from a sort of fundamental parameters set [9], using a reference scan of 



LaB6. Lattice parameters of the orthorhombic phase were constrained to be 

pseudocubic (i. e. aortho = bortho / 2
0.5 = cortho = 20.5 acub).  Microstructural parameters 

were refined to adjust the peak shapes for the XRD data, but same parameters were 

used for both partial scans. The short time scan between 30 and 60 ° 2� served to 

determine the pseudocubic lattice parameter as well as the sample height 

displacement, allowing for calculation of the correct peak position of the (2 1 1)ortho. 

superstructure reflection. The long-time scan of the angular range between 36.5 and 

40.5 ° 2� was used to determine the intensity ratio of the (2 1 1)ortho. to the (2 2 0)ortho. 

(resp. (2 1 1)ortho. to (1 1 1)cubic) reflection. 

3. Discussion 

Validation of the structural model of SrFeO2F with space group Imma on 

our own data [7] 

The possible incorrectness of the cubic model for SrFeO2F was first proposed by 

Perez-Mato  from a mode analysis of the structural data (from XRD experiments only) 

reported by Clemens et al. [4] on the system La1-xSrxFeO3-xFx in the form of a private 

communication (provided as Electronic Supplementary Material). This analysis 

motivated us to perform neutron diffraction measurements on selected compounds of 

the system which then resulted in the revised structural descriptions reported in [7]. 

Those reported structures then agree well with a subsequent mode analysis. 

However, the Imma structure for SrFeO2F has by no means been derived from a 

mere comparison to the other compounds of the La1-xSrxFeO3-xFx system (x < 1), but 

is accurately reflected in the room temperature NPD data recorded on SrFeO2F. In 

addition, we will show that the reduced symmetry is even reflected in the XRD data 

(see later in this section). 

As reported in our previous article [7] and also stated by Thompson et al. [5], the cell 

metric of SrFeO2F is basically cubic. The lattice parameters reported by Clemens et 

al.  [7] for the Imma type structure correspond to a pseudocubic cell arrangement 

with  

aImma / 20.5 = bImma / 2 = cImma / 20.5 = aPm-3m 

Therefore, the reduced symmetry cannot be deduced from a splitting or asymmetry of 

the reflections, even though the high resolution neutron powder diffractometer HRPD 



at ISIS, UK, had been used. However, a reduced symmetry will not only be reflected 

in splitting of reflections but also in the appearance of superstructure reflections due 

to the loss of translational symmetry. Those superstructure reflections will coincide 

with the reflections from a magnetic cell, which implies that a detailed analysis of the 

reflection intensities down to low d-spaces will be required to prove the correctness of 

the Imma model. This is explained by the strong decrease of the magnetic form factor 

for lower d-spaces, and so the relative contribution to these reflections from the 

magnetic superstructure will rapidly fall off at these d-spacings, thus illuminating the 

nuclear contribution. The backscattering detector bank at HRPD allowed us to use 

reflections with d-spacings down to 0.67 Å for the structural analysis, whereas the 

measurement conditions for neutron diffraction used by Thompson et al. [5] 

(Canadian Neutron Beam Centre, Ontario, � = 1.33025 Å, 2� from 12 ° to 92 °) are 

limited to a lower d-spacing range between 6.36 and 0.92 Å. The Rietveld analysis 

on bank 1 data show that the reflections at low d-spacings cannot be described by 

the common magnetic form factor of Fe3+ as included in GSAS [11] or TOPAS V5 [8] 

using the nuclear structural model of Pm-3m with G-type antiferromagnetic ordering 

(see Figure 1a/c/e). This can also not be significantly improved by allowing for an 

independent refinement of the thermal parameter B for the Fe atom of the magnetic 

phase, which then gives a physically non sensible value of ~ -3 Å². This inability to 

accurately describe these low d-spacing reflections is despite the fact that from our 

experience, the magnetic form factor provided by the above programs has served 

well to describe the magnetic scattering of several Fe3+ containing phases [12-15]. 

This validity of the magnetic form factor of Fe3+ provided by the two programs can 

also easily be verified by comparison to the fits obtained for the other compounds of 

the system La1-xSrxFeO3-xFx (x < 1), for which deviation from cubic symmetry can 

additionally be verified from the splitting of the reflections (see Figure 2). Again, for 

those compounds effectively no intensity contribution from magnetic scattering can 

be observed for reflections with d-spacings below 1 Å. 

 



 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 1. Rietveld analysis of HRPD bank 1 data recorded at ambient temperature on SrFeO2F using the 
structural models with space group Pm-3m (a,c,e) and Imma (b,d,f) together with a G-type arrangement of 
the magnetic moments. (a) and (b) show the full range of the detector banks, and (c) – (f) show blow-ups 

of the low d-spacing regions. 

 



(a)  (b)  

Figure 2. Rietveld analysis of HRPD bank 1 data recorded at ambient temperature on La0.2Sr0.8FeO2.2F0.8 
using the structural models with space group Imma together with a G-type arrangement of the magnetic 

moments. 

For SrFeO2F, the Imma model together with G-type antiferromagnetic ordering gives 

a superior description of the reflection intensities even down to very low d-spacings 

(see Figure 1b/d/f), strongly indicating the validity of the Imma model. The Rwp for the 

fit of the bank 1 NPD data decreases substantially from 3.50 % to 2.22 % for 

changing to the Imma structural model, and according to Hamilton’s significance test 

[16], the Pm-3m model can therefore be rejected at the 0.5 % significance level.  

To further facilitate the verification of the correctness of the Imma model to the 

reader, our raw neutron diffraction data are provided in the Electronic Supplementary 

Material, and we encourage scientists who mistrust this structural model to verify our 

analysis using the provided data.  

A further strong proof of the validity of the correctness of a symmetry lower than 

cubic is given by the observation the weak (2 1 1)Imma superstructure reflection 

(appearing at the same position than the (1 1 2)Imma as well as the (0 3 1)Imma 

reflections, with all three carrying intensity) in the XRD data, even without the use of 

synchrotron radiation (see Figure 3). This reflection (group) is predicted to be the 

most intense superstructure reflection for XRD from the structure with Imma 

symmetry reported in [7]. Additionally, we performed VT-XRD measurements (see 

Figure 4a) in the temperature range between 291 and 673 K. The (2 1 1)Imma 

superstructure reflection appears exactly at the position where it would be expected 

from the lattice parameter and sample height displacement. The reflection disappears 

on heating above 473 K and reappears when cooling down to temperatures below 

473 K. From this fact the assignment to a possible impurity phase can be basically 

ruled out. From the intensity ratio of the (2 1 1)Imma superstructure reflection to the 



(2 2 0)Imma (= (1 1 1)Pm-3m) reflection (see Figure 4b), the phase transition from 

orthorhombic to cubic is between 473 and 523 K. 

 

Figure 3. XRD part of the coupled structural analysis of XRD and NPD data recorded at ambient 
temperature on SrFeO2F. Fits are shown comparing the structural models with space group Pm-3m and 

Imma. The (1 1 2)Imma superstructure reflection is indicated with an arrow. 

(a) (b)  

Figure 4. Results of VT-XRD measurements recorded on SrFeO2F. (a) VT-XRD patterns of the angular 
range between 36.5 and 40.5 ° 2� recorded with high counting time. (b) Intensity ratio of the (2 1 1)Imma to 

(2 2 0)Imma reflection vs. temperature, indicating a phase transition temperature from orthorhombic to 
cubic between 473 and 523 K. 

Also from an a posteriori point of view the validity of the Imma structural model is 

highly supported. On comparing the magnitude of shifts for the compounds with x < 1 

by mode analysis (as we’ve done in detail in our previous article, to which we would 

like the interested reader to refer to [7]), it is indicated that deviation from cubic 

symmetry would have to be expected for SrFeO2F. 

We therefore conclude that our structural model for SrFeO2F, prepared by PVDF 

based fluorination of SrFeO3, is indeed correct.  



Comments on the analysis of diffraction data and structural reports as 

reported by Thompson et al. [5] 

We would also like to comment on the structure refinements on a differently prepared 

SrFeO2F compound (made by XeF2 based oxidative fluorination of SrFeO2) of 

Thompson et al. [5]. Albeit there might be a chemical difference for compounds 

prepared by different routes, in particular with regards to local O/F distributions, we 

think that a misinterpretation of their neutron diffraction data is more likely. 

Firstly, it is worth comparing the performances of the two different neutron 

diffractometers used in our study (HRPD at ISIS, UK) [7]) with the diffractometer used 

by Thompson et al. (C2, Chalk River, Canadian Neutron Beam Centre, Canada) [5]. 

The resolution of the C2 neutron diffractometer has already been shown to be lower 

by a factor of ~ 10 (at d ~ 2.5 Å) compared to the HRPD time-of-flight neutron 

diffractometer (see [17] and Figure 5). If having the same noise to integral intensity 

ratio, weak reflections can therefore be poorly evaluated. Therefore, this low 

resolution of course makes the detection and evaluation of reflections with low 

intensities at low d-spacings very difficult, indeed nearly impossible. Therefore, 

evaluation of such small structural features at low d-spacings using the C2 

diffractometer can be at best called “challenging”. 
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NPD data of SrFeO2F performed by Thompson et al. [5]. Recorded data red, 
, difference curve blue, nuclear Bragg markers green (top), magnetic Bragg markers 

(bottom). The figure has been reprinted from their article, and d-spacings have been assigned to the 
magnetic reflections. The strong intensity misfit of the magnetic reflections with d-spacings

can be seen from the difference curve. (a) ambient temperature, (b) 4 K. 
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previous section indicate a phase transition temperature between 473 and 523 K. 

Thus, the high temperature (720 K) study performed by Thompson et al. [5] is above 

the transition temperature so only suited to conclude that the compound is indeed 

cubic at this elevated temperature. 

Finally, we also must comment on the conclusions made by Thompson et al. on the 

magnetic properties of SrFeO2F. Thompson et al. [5] correctly note that the Pm-3m 

symmetry would be prohibitive for magnetic canting. Since the Imma symmetry 

cannot be ruled out for SrFeO2F prepared by fluorination of SrFeO2 using XeF2, and 

is furthermore valid for SrFeO2F prepared by polymer-based low-temperature 

fluorination, the spin canting model proposed by Berry et al. [2] still should be 

considered as a possible explanation for the small magnetic moment observed for 

SrFeO2F at temperatures below 150 K. 

4. Supplementary Material 

Supplementary Material associated with this article can be found in the online version 

at http://dx.doi.org/10.1016/j.jssc. 
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Highlights 

SrFeO2F was synthesized by polymer based fluorination of SrFeO3. 

Evaluation of the diffraction data shows a pseudocubic cell metric. 

Superstructure reflections at low d-spacings indicate deviation from cubic symmetry. 

The phase transition temperature from orthorhombic to cubic was determined using 

variable temperature X-ray diffraction. 

Results published by Thompson et al. are critically discussed with respect to those 

observations. 
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The crystal structure of SrFeO2F is discussed with regards to previous reports. 
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