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Abstract: 

    Fatigue crack initiation and propagation behaviour in subsolvus heat treated turbine disc 

alloy N18 has been assessed in air and vacuum at 650 and 725oC under three-point loading. 

Fatigue crack initiation processes have been evaluated using single edge U-notch specimens 

under a 1-1-1-1 trapezoidal loading waveform along with interrupted tests at 650
o
C to allow 

intermittent observations of the notch surface. The results show apparent grain boundary (GB) 

oxidation can occur under an oxygen partial pressure of 10-2~10-3Pa. Cracks mainly initiate 

from grain boundaries or γ/γʹ interfaces due to the formation and subsequent cracking of Cr-

rich and/or Co-rich oxides, and occasionally initiate from surface pores. Fatigue life in these 

tests appears to be dominated by this crack initiation process and is significantly reduced by 

increasing temperature and/or application of an oxidizing environment. Crack growth tests 

conducted under 1-1-1-1 and 1-20-1-1 loading waveforms indicate that oxidation 

significantly degrades the crack growth resistance of N18 and is associated with more 

intergranular fracture surface features. Additional oxidation effects on propagation caused by 

higher temperature or prolonging dwell time appear limited, whereas a prolonged dwell 

period seems to instead promote additional creep process, which further enhance crack 

growth, especially at higher temperature.   

Keywords: Ni-based superalloy; stress assisted oxidation; fatigue crack; creep; apparent 

activation energy   
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1. Introduction  

    Aeroengine turbine discs operate at elevated temperatures under dynamic loads in an 

aggressive service environment over significant periods of time, this requires disc materials 

to possess high strength at elevated temperatures, good fatigue and creep performance under 

these service conditions, along with excellent oxidation and corrosion resistance. Powder 

metallurgy (PM) Ni-based superalloys have been widely used for aeroengine turbine disc 

application due to their exceptional combined mechanical properties at elevated temperatures 

in combination with good oxidation/corrosion resistance [1-3]. However, oxidation 

accelerated fatigue failure (shorter fatigue life or faster crack growth rate) is usually observed 

when assessing the fatigue performance of disc alloys at elevated temperatures, especially 

when a dwell period is applied at the peak load [4-10]. Such a phenomenon is usually 

associated with intergranular fracture resulting from the interaction between GB 

oxidation/embrittlement effects and mechanical fatigue processes [8, 11-16]. The varying 

extent of intergranular fracture features observed is the consequence of the competitive 

effects of oxidation and cyclic fatigue processes in the advancing crack. Generally, 

intergranular features are dominant on the fracture surface when oxidation makes a 

significant contribution to the crack tip failure process, whereas transgranular fracture 

features dominate when the effect of oxidation is absent or is weak [4, 17, 18]. In some cases, 

a transition from intergranular features to transgranular features can be observed on the 

fracture surface as the stress intensity factor range (∆K) increases, indicating the point where 

the mechanically-driven crack propagation process outstrips the crack tip oxidation process 

[18].    

    Extensive studies have shown that the poorer fatigue performance of disc alloys in an 

oxidizing environment is closely related to oxidation enhanced crack initiation and/or 

propagation which are associated with stress assisted oxygen diffusion and resultant 

oxidation [6, 10, 11, 16, 19]. It is generally considered that enhanced crack initiation is 

mainly caused by GB oxide cracking due to the brittle nature of the formed oxides. The 

additional stress concentration arising from volume expansion/contraction because of the 

formation of these oxides may facilitate the cracking process [19]. In addition, the reduced 

GB sliding and migration ability caused by the absorption of oxygen or other embrittlement 

agents (released by chemical reactions because of the involvement of oxygen) may lead to the 

build-up of local stress at these regions, which further results in crack initiation [20]. The 

enhanced crack propagation associated with intergranular fracture is usually ascribed to 
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decohesion/reduction in cohesion strength of GBs ahead of the crack tip due to dynamic 

embrittlement [14, 15] or GB oxide/matrix-oxide interface cracking caused by stress assisted 

grain boundary oxidation (SAGBO) [8, 11-13].  

    The oxidation accelerated fatigue failure caused by stress assisted oxygen diffusion and 

oxidation along grain boundaries is a complex process. It is reported that this process is 

mainly dependent on oxygen partial pressure, temperature and local stress/strain level, as well 

as composition and microstructure of investigated alloys [5, 6, 18, 21-23]. For instance, a 

transitional oxygen partial pressure that is independent of loading conditions but is sensitive 

to Cr content is observed in fatigue crack growth data of disc alloy Inconel 718 [6]. Above 

this transitional pressure, a significantly accelerated crack growth occurs, which is believed to 

be caused by the formation of Ni oxide rather than the dense Cr2O3 ahead of the crack tip. 

Additionally, considerable research on disc alloys, such as U720Li [5] and LSHR alloy [18], 

has shown that higher temperature and longer dwell at the peak load (which are associated 

with higher diffusivity and longer diffusion time respectively) are inclined to promote crack 

growth due to the synergistic oxidation-fatigue effect in an oxidizing environment. This 

effect is much more significant in the fine grained variants of these disc alloys which are able 

to provide more grain boundaries acting as short-circuit diffusion paths [5, 18, 23]. It is 

relatively complex to quantitatively evaluate unambiguously the simple effect of alloy 

composition on crack growth. This is due to the varying microstructure, grain boundary 

character and mechanical properties caused by not only the varying composition, but 

differing mechanical processing and heat treatment approaches, although some efforts have 

been made [4, 22, 24].  

    N18 is a PM disc superalloy, developed for the SNECMA M88 engine used in the 

RAFALE aircraft [1]. It is designed for long-term use at 650oC and limited use at 700oC. A 

trade-off between good fatigue crack growth and oxidation resistance as well as excellent 

creep and strength retention at high temperature was made during alloy design, along with 

some modification of grain size to optimise this balance, principally adopting sub-solvus heat 

treatments due to its high γʹ solvus temperatures (~1190°C) [1, 25-28]. A great deal of 

research has illustrated that N18 has good phase stability up to 700oC and possesses high 

strength and creep resistance associated with a good damage tolerance capability up to 650oC 

[1, 25]. It is also reported that N18 has better fatigue crack growth resistance compared with 

fine grained Inconel 718 and Astroloy under the same testing conditions [1]. However, most 

of these studies have been conducted at 650
o
C or even lower temperature, where the role of 
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oxidation may be less significant in assisting fatigue failure processes. To enable a better 

understanding of the interaction between oxidation and fatigue performance (i.e. fatigue 

crack initiation and propagation) in this alloy, assessment of the fatigue performance of N18 

at temperatures close to its limit-use temperatures are necessary. Therefore, in this study, the 

fatigue crack initiation and propagation behaviour in N18 alloy has been assessed in air and 

vacuum across a temperature range of 650oC~725oC to elucidate the role of oxidation in the 

fatigue failure process. 

2. Materials and experimental procedures 

2.1 Materials 

    The N18 alloy used in this study was extracted from a hot isostatically pressed (HIP) and 

forged, heat treated “pancake” (disc precursor) provided by QinetiQ. Its composition (in 

wt.%) and heat treatment schedules are presented in Tables 1 and 2 respectively. The 

microstructures of N18 alloy are shown in Fig.1, and the measured γ grain size and the sizes 

of primary, secondary and tertiary γʹ are shown in Table 3. In addition, pores were rarely 

observed during microstructural evaluation and it is believed that this low porosity is due to 

the HIP process undergone by the alloy. The detailed experimental procedures used for this 

microstructural evaluation were reported previously in Ref. [18]. 

Table 1 Composition of N18 alloy (in wt.%) 

Cr Co Mo Ti Al C B Hf Zr Ni 

11.1 15.4 6.44 4.28 4.28 0.022 0.008 0.50 0.019 Bal. 

Table 2 Heat treatment of N18 alloy 

Subsolvus heat treatment  Aging heat treatment 

1165
o
C/4h  → Air cool →  700

o
C/24h → Air cool → 800

o
C/4h → Air cool 
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Fig.1 Microstructure of N18 alloy: (a) morphology of grain and primary γʹ and (b) 

morphology of secondary and tertiary γʹ. 

Table 3 Grain and γʹ size distributions of N18 alloy 

 Grains Primary γʹ Secondary γʹ Tertiary γʹ 
Mean size  8.7±4.7 µm 2.19±0.98 µm 188±112nm 25nm 

2.2 U-notch fatigue test 

    Fatigue tests were conducted on polished U-notch specimens under three-point bend 

loading on an Instron 8501 servo-hydraulic testing machine with an ESH Ltd. high 

temperature vacuum chamber attached. The test geometry was chosen to assess crack 

initiation processes and the fatigue performance of N18 in the presence of a stress 

concentration. As shown in Fig. 2(a), the dimension of the U-notch specimen is 

8mm×8mm×50mm, and the radius and the depth of the notch are 2mm and 1.25mm 

respectively. The notch type was chosen to provide an elastic stress concentration of around 2, 

i.e. representative of that seen in the fir tree root fixings used to secure blades to turbine discs. 

The surface of the notch was ground and then was polished using dental felts and 1µm 

diamond polishing paste. Tests were carried out in air and vacuum (1.0×10
-3 

~5.0×10
-2

 Pa) at 

650 and 725
o
C under a 1-1-1-1 loading waveform with a load ratio of 0.1. The temperature of 

the specimen was monitored and controlled to an indicated ±1
o
C using a Eurotherm 815 

thermo-controller and R-type (platinum + 13%rhodium/platinum) thermocouple which was 

spot welded to the specimen within the hot zone. The span between the two upper rollers is 

40mm. The load was applied to produce a maximum nominal elastic stress (σmax) of 

1020MPa in the uncracked ligament, defined as the net section bending stress at the plane of 

the notch root calculated using simple beam theory. The stress distribution across the notch at 

the maximum and minimum applied loads at 650oC in a quarter of the specimen, calculated in 

Abaqus by simulating the load roller with an appropriate pressure load and simulating the 

support roller with a restricted displacement in the vertical direction of the specimen 

(assuming the contacted region with rollers as elastic to avoid non-convergence in the model), 

is shown in Fig.2 (c) and (d). The corresponding strains achieved at the notch root are 1.11% 

and 0.29% respectively according to the finite element simulation. After testing, a JEOL JSM 

6500F field emission gun (FEG) scanning electron microscope (SEM) was employed to 

examine the morphology of fracture surface and the notch root surface.  



  

6 

 

       To further investigate fatigue crack initiation processes, two more interrupted tests were 

conducted at 650
o
C in air and vacuum. After each interruption, the specimen was taken out 

and observed in the SEM, and then the test resumed until apparent cracks appeared at the 

notch root. Energy dispersive X-ray spectrometry (EDS) was employed to analyse the 

chemical element distribution around the cracks.  

 

Fig. 2 Schematic diagram of set-up of (a): U-notch fatigue test and (b) long fatigue crack 

growth test (The small yellow circles on the top surface of the sample shown in (b) indicate 

the location of electrical potential wires); S11 (Pa), stress along the xx direction in a quarter of 

the U-notch specimen at (c) maximum and (d) minimum load for the 1-1-1-1 loading 

waveform at 650
o
C. 

2.3 Long fatigue crack growth test  

    Long fatigue crack growth tests were carried out on single edge notched bend (SENB) 

specimens with a dimension of 10mm×10mm×53mm as shown in Fig. 2(b). A notch with a 

depth of 2.5mm and a width of 0.35mm produced by electrical discharge machining (EDM) 

was introduced into the middle of the SENB specimen to act as a stress concentrator and 

initiate the crack. The temperature control method and the test procedures are as described for 

the U-notch fatigue test previously, except that both 1-1-1-1 and 1-20-1-1 trapezoidal loading 

waveforms were used. Crack length was monitored and recorded by a pulsed-direct current 
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potential drop method using 4 probe wires, and crack growth rate data was obtained from a 

precracked sample at a ∆K of ~15MPa√m under constant load, thus allowing fatigue crack 

growth rate as a function of increasing ∆K to be obtained as the crack grew out. The fracture 

surfaces were observed in a JEOL JSM 6500 SEM at an accelerating voltage of 15 kV. 

3. Results 

3.1 Fatigue life of N18 alloy 

    Lifetimes of the U-notch fatigue tests are presented in Table 4. In general, it shows that 

both testing in air and increasing the temperatures tend to reduce fatigue life; such that the 

test carried out in air at 725°C has the lowest life of all the specimens tested.  

Table 4: Fatigue life of the U-notch fatigue tests tested at a maximum nominal elastic stress 

of 1020 MPa 

Test conditions 650
o
C Vacuum  650

o
C Air  725

o
C Vacuum  725

o
C Air  

Fatigue life  66006 45148 13778 5145 

3.2 Fractography of U-notch fatigue tests 

    Multiple crack initiation is observed on the fracture surfaces of all the failed specimens 

under the investigated conditions and more crack initiation sites are observed at 725
o
C than 

650
o
C either in air or vacuum. The number of crack initiation sites identified on the fracture 

surfaces at 725
o
C is approximately 2~3 times of that observed at 650

o
C [29]. Fig.3 presents 

the typical crack initiation sites observed on the fracture surfaces in air tests conducted at 650 

and 725oC. It is found that cracks mainly initiate from oxidized grain boundaries or γ/γʹ 

interfaces, and then propagate in a transgranular manner at 650
o
C. Oxide nodules can be seen 

at the region close to crack initiation sites, and the oxidized grain boundaries and γ/γʹ 

interfaces are visible at the polished notch root as shown in Fig.3 (a) and (b). Similar 

fractography can also be observed at 725oC, although the fracture surfaces were somewhat 

more contaminated. It appears that the crack initiation regions are more intergranular at 

725
o
C.  

    As shown in Fig.4 (a), it is observed that a crack initiates from a pore at 650oC in vacuum, 

which is not seen in the air tests, although similar transgranular crack propagation following 

crack initiation is seen. For the 725
o
C vacuum test, it seems that cracks initiate 

intergranularly as observed in the air tests. The oxidized grain boundaries and γ/γʹ interfaces 

are also observed in the notch root as shown in Fig.4 (b), which can be seen more clearly in 

Fig. 5(b).  
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Fig. 3 (a) Fatigue crack initiation sites observed in N18 tested in air at 650
o
C; (b) higher 

magnification of crack initiation sites shown in (a);(c) and (d) crack initiation sites at 725
o
C.  

 

Fig.4 Fatigue crack initiation sites observed in N18 tested in vacuum at (a) 650
o
C and (b) 

725
o
C. 

3.3 Oxidation during U-notch fatigue test 

    Fig.5 shows the morphology of the notch root of the tested specimens, where oxidation can 

be clearly seen. As shown in Fig.5 (a) and (b), oxidation occurred at grain boundaries, 

γ/primary γʹ interfaces and primary γʹ is evident under the vacuum testing conditions, and 

cracking at these oxidized grain boundaries and γ/γʹ interfaces can be observed. At 725o
C, the 
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γ matrix is also quite severely oxidized, indicated by the oxidized nodules. For the air tests, 

the oxidation of grain boundaries and γ/γʹ interfaces is even more severe as shown in Fig. 5(c) 

and (d). It seems that two kinds of oxides with different bulging heights form at the notch 

root, indicated by different brightness in the SEM secondary electron images. An EDS 

analysis of these two kinds of oxides indicates that the most significant difference is the Cr 

enrichment in the dark oxides (Fig. 5(e)) and the Co enrichment in the brighter oxides 

(Fig.5(f)). It however needs to be pointed out that the quantitative results concerning light 

elements (i. e. C and O) inserted in Fig. 5 (e) and (f) may be not reliable due to the inherent 

limitation of the EDS. 

 

Fig.5 Morphology of notch root after testing: (a) 650
o
C, vacuum, (b) 725

o
C, vacuum, (c) 

650oC, air and (d) 725oC, air; (e) composition of dark GB oxide detected by EDS 1 and (f) 
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composition of bright GB oxide detected by EDS 2 shown in (d). The quantitative results 

corresponding to the EDS spectrums are inserted in (e) and (f) respectively.  

   The evolution of grain boundary and γ/γʹ interface oxidation and consequent cracking in the 

interrupted vacuum test is presented in Fig.6. Occasional oxide cracking can be found in the 

early stages of fatigue life as shown in Fig. 6(a). Multiple grain boundary cracking and/or γ/γʹ 

interface cracking are clearly observed at the notch root as shown in Fig. 6 (c) and (d).The 

cracking is more likely to occur at the γ/γʹ interfaces, although GB cracking can also be 

observed (as shown in Fig.6 (b) ~ (d)). Oxides are observed at some segments along some of 

the cracked grain boundaries and γ/γʹ interfaces, but most regions of the cracked grain 

boundaries and γ/γʹ interfaces are not decorated with oxides. An EDS mapping of the cracked 

region (shown in Fig.6 (d)) is presented in Fig.6 (e), showing an enrichment of Cr and O and 

a depletion of Ni and Co along the crack path. An enrichment of O can also be observed 

within the primary γʹ which is enriched in Al and Ti, although this enrichment is not as 

significant as that along the crack path. A slight enrichment of Al and Ti at grain boundaries 

can be discerned.  

 

Fig.6 Evolution of cracks from the oxidized grain boundaries and γ/γʹ interfaces at the notch 

root in the interrupted vacuum test at 650
o
C: (a) 9000 cycles, (b) 15000 cycles, (c) 31000 

cycles and (d) 36000 cycles; (e) EDS mapping of the region highlighted by the rectangle 

shown in (d). 
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    A similar EDS mapping conducted on the cracked grain boundaries in the interrupted air 

test, is presented in Fig. 7. As shown, an enrichment of Co and O along with depletion in 

other elements is found along the grain boundaries decorated with cracked oxides. However, 

no apparent enrichment of Co and O can be found along the cracked grain boundaries. For 

other grain boundaries, a slight enrichment of Cr can be seen.   

 

Fig.7 (a) Cracks at the notch root of the interrupted air test at 650
o
C after 35000 cycles and (b) 

EDS mapping of the cracked region highlighted by rectangle shown in (a). 

3.4 Long fatigue crack growth behaviour 

    Fig.8 compares the long fatigue crack growth rates of N18 alloy. The data of the tests with 

a 20s dwell (1-20-1-1) at the peak load was presented to allow a comparison with the data 

from tests with a 1s dwell (1-1-1-1) [4]. It is found that the oxidizing environment 

significantly accelerates fatigue crack growth under the investigated conditions. The 

influence of temperature on fatigue crack growth is dependent on the loading waveform 

(dwell at maximum load). As shown in Fig.8 (a), only a slight increase in fatigue crack 

growth rate can be observed either in air or vacuum when temperature is increased from 

650oC to 725oC for the 1-1-1-1 tests, whereas the fatigue crack growth rate increases by a 

factor of 6~7 as temperature increases in the tests with a 20s dwell as shown in Fig.8 (b). 

    In order to compare the influence of the dwell time on fatigue crack growth rate, a re-plot 

of Fig.8 is presented in Fig.9, where a significant acceleration in crack growth rate can be 

seen when a 20s dwell is applied at 725
o
C either in air or vacuum, but no apparent increase in 

crack growth rate can be found when the dwell is applied at 650
o
C.       

    As shown in Fig.10, the fractography of the air tests at ∆K=30MPa√m, failure becomes 

increasingly intergranular with the increased temperatures and/or longer dwell period at the 

peak load. In the 650
o
C test under 1-1-1-1 waveform, the fracture surface is predominantly 

transgranular (Fig.10 (a)). When the temperature is increased to 725
o
C under the 1-1-1-1 
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waveform or an introduction of 20s dwell at 650oC, the fracture surface is characterized by 

the mixed-trans-intergranular features (Fig. 10 (b) and (c)). In the 725
o
C test with a 20s dwell, 

the fracture surface is mainly intergranular and oxide nodules can be clearly seen on the 

fracture surface (Fig. 10 (d)). 

 

Fig.8 Effect of environment and temperature on fatigue crack growth under (a) 1-1-1-1 and (b) 

1-20-1-1 loading waveforms.  

 

Fig.9 Effect of environment and dwell time at the peak load on fatigue crack growth at (a) 

650
o
C and (b) 725

o
C. 

     Fig.11 presents the fractography of the vacuum tests at ∆K=30MPa√m. As temperature 

increases or with the introduction of a longer dwell time at the peak load, a similar variation 

in intergranular/transgranular fracture surface features can be found as observed in the air 

tests, although the fracture surfaces are more transgranular generally. As shown in Fig.11 (a) 

and (b), the fracture surfaces of the tests under 1-1-1-1 waveform are predominantly 

transgranular, even though slightly more intergranular features can be discerned at 725oC. 

Apparent nodules can be found on the fracture surfaces in the tests with a 20s dwell either at 
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650oC or 725oC. For the 725oC test with a 20s dwell, the fracture surface is predominantly 

intergranular as shown in Fig. 11 (d).    

 

Fig.10 Fractography of air tests at a ∆K=30MPa√m: (a) 650
o
C, 1-1-1-1 waveform, (b) 725

o
C, 

1-1-1-1 waveform, (c) 650oC, 1-20-1-1 waveform and (d) 725oC, 1-20-1-1 waveform.     
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Fig.11 Fractography of vacuum tests at a ∆K=30MPa√m: (a) 650oC, 1-1-1-1 waveform, (b) 

725
o
C, 1-1-1-1 waveform, (c) 650

o
C, 1-20-1-1 waveform and (d) 725

o
C, 1-20-1-1 waveform. 

4. Discussion 

4.1 Effect of oxidation on fatigue life  

    It is can be seen in this study that there is a strong dependence of the fatigue performance 

on the oxidation processes that have occurred in N18. The reduction in fatigue life in 

oxidizing environment or at higher temperatures (shown in Table 4) is apparently linked to 

the formation of Co-rich and/or Cr-rich oxide at grain boundaries and γ/γʹ interfaces and 

subsequent oxide cracking. By comparing fatigue lives of the U-notch specimens and long 

crack growth rates obtained in the tests under a 1-1-1-1 loading waveform, it can be seen that 

the temperature effect is quite minimal on fatigue crack growth rates in either vacuum or air, 

and it can be seen that it is the effect of an oxidation environment that significantly 

accelerates crack growth rates, rather than temperature alone. The U-notch fatigue life (under 

a 1-1-1-1 waveform) is also significantly reduced at both 650
o
C and 725

o
C in air compared to 

in vacuum, but the lifetime in air or vacuum is also noticeably lower at 725
o
C cf 650

o
C. 

These differences in oxidation effects with temperature indicate that the fatigue life of the U-

notch N18 specimens under the investigated conditions is not simply due to crack 

propagation differences but may be more determined by the crack initiation process, but 

perhaps also the expected strain ranges achieved in the notch root at the same nominal stress 

level. In order to further assess the possible effects of crack initiation and propagation 

processes on fatigue life under this loading waveform of 1-1-1-1, a simple crack propagation 

life assessment has been considered for the different test conditions.  Numerical iterations of 

crack growth based on the differing long crack Paris laws for the different conditions have 

been compared for a single assumed initial crack of 10µm (which is approximately equivalent 

to a grain size, thus assuming intergranular crack initiation). The details of the numerical 

iteration are shown in the Appendix, and the calculated crack propagation life to reach a 

nominal ∆K of 52 MPa√m is shown in Table 5 and compared to the total observed life and 

the apparent initiation life. This ranking of nominal propagation life allows a better 

quantification of the simple effect of crack growth rate on lifetimes.  

    By making a comparison with the measured total fatigue life, it is found that the nominal 

crack initiation life could account for a major part of the fatigue life either in air or in vacuum, 

indicating the cycles to produce crack initiation contribute more to the total observed life. As 

shown in Table 5, more cycles are required for crack initiation at 650
o
C than 725

o
C either in 
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air or vacuum, this may be because the oxides are expected to form and subsequently crack 

after shorter times at 725
o
C due to the higher expected diffusivity of oxygen and oxide-

forming elements [21, 30]. Similarly, more cycles are required for crack initiation in vacuum 

than in air either at 650
o
C or 725

o
C, but this difference is much less significant compared 

with the difference of crack initiation cycle between 650
o
C and 725

o
C, which indicates that 

the temperature (rather than availability of oxygen) is the rate-determining factor for 

oxidation during the crack initiation stage in this study in light of the relatively low vacuum 

used. Although it is expected that it may take more cycles for crack initiation at lower oxygen 

partial pressure, the apparent contribution of crack initiation to fatigue life is less significant 

in vacuum than that in air (65% vs. 93.2% at 650
o
C and 52.7% vs. 73.3% at 725

o
C 

respectively), which may be associated with the slower crack propagation in vacuum due to 

the less severe oxidation ahead of crack tip.  

Table 5 Comparison of nominal fatigue crack propagation life, Ng, initiation life, Ni, and total 

life, Ntot 

Test conditions 650oC Vacuum  650oC Air  725oC Vacuum  725oC Air  

Nominal crack propagation 
life, Ng 

23087 2858 6511 1376 

Nominal crack initiation life, 
Ni 

42919 42290 7267 3769 

Total life, Ntot 66006 45148 13778 5145 

Ni./Ntot (%). 65 93.2 52.7 73.3 

     Of course in such an approach several assumptions are made that do not reflect the real 

physics of the situation: long crack growth behaviour will not represent the crack growth 

behaviour for such small cracks in the elasto-plastic notch stress field (in fact previous work 

in IN718 notch fatigue samples has indicated a constant crack growth rate may occur under 

such conditions [19]); this approach also only considers the growth of a single crack and 

ignores any coalescence effects. Coalescence events are evident in these fatigue tests due to 

the multiplicity of crack initiation events and may play a more critical role in controlling the 

crack propagation lifetime and thereby the overall lifetime. The effect of the positioning of 

neighbouring cracks on the propagation of individual short cracks and subsequent 

coalescence events has not been considered in detail in this simple lifing assessment. This 

approach does however allow for an element of quantification of the likely contribution of 

differences in crack growth rates in explaining the observed lifetimes. The short crack growth 

behaviour has not been quantified (due to the difficulties in conducting a replica analysis with 

associated, pump-down, reheating and cooling cycles which may in themselves significantly 
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affect short crack growth behaviour), but our study on fine grained LSHR alloy (which has a 

similar microstructure to N18) with interrupted fatigue tests along with a replication 

procedure shows that the initiation of GB cracks accounts for the majority of the fatigue life, 

and fracture occurs within a short period by a rapid coalescence of these GB cracks [31].  

Similar effects of oxidation on fatigue life have also been observed in other disc alloys such 

as ME3 [10]. Low cycle fatigue tests conducted on ME3 that was pre-exposed at different 

elevated temperatures for varying periods showed that the reduction in fatigue life is 

determined by the net oxidation effect, i.e. depth of oxide layer and the oxidation affected 

zone (which is used to refer to the GB carbide dissolution region), rather than simply by 

temperature or exposure time. By removing the oxide layer and oxidation affected zone in the 

pre-exposed ME3, the fatigue life was significantly improved, to become close to the fatigue 

life of un-exposed specimens, due to the suppression of intergranular crack initiation and the 

reduction in crack initiation sites, although the same intergranular crack propagation 

immediately sets in after transgranular crack initiation, indicating the predominant 

contribution of the crack initiation process to fatigue life [10].  

    Previous work in other systems (e.g. in austempered ductile irons at room temperature) has 

shown that short crack growth behaviour can be dramatically different where significant 

micro-crack fields are formed. Where initiation processes were very easy (e.g. cracking of 

multiple carbides [32]]) subsequent crack growth was observed to be extremely slow, as the 

closely neighbouring cracks robbed surrounding crack tips of the required strain fields to 

propagate and lifetime was effectively controlled by coalescence events. In some cases a 

microcracking field can occur ahead of the crack tip, contributing significantly to crack 

propagation resistance [33]. Hence, to fully understand the relative contributions of crack 

initiation processes and subsequent growth to overall lifetime requires a probabilistic 

assessment of coalescence behaviour rather than just simple Paris lifing approaches.  

4.2 Role of oxidation in crack initiation  

    Unlike at room temperature where cracks mainly initiate from slip bands at low strain 

levels and may initiate from GB boundaries at high strain levels, cracks mainly initiate from 

grain boundaries under these investigated conditions (along with occasional pore-initiation in 

vacuum at 650
o
C). Intergranular crack initiation can be seen more clearly from the notch root 

observations in the interrupted tests. With increased temperature (associated with enhanced 

oxidation effects), pore-initiation is suppressed. Intergranular crack initiation at elevated 
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temperatures usually results from GB oxide cracking or the embrittlement effect due to the 

absorption of oxygen and other embrittling elements leading to the decrease in cohesion 

strength of grain boundaries [10, 16, 19, 20]. In this study, it appears that GB oxide cracking 

makes the main contribution to crack initiation as shown clearly in Figs. 6 and 7. With the 

formation and build-up of GB oxides, stress will develop within the oxide due to volume 

expansion caused by the difference in density between Cr-rich or Co-rich oxides and the 

matrix. Additionally, the notch root stress concentration will introduce additional stress to the 

oxides [34]. Furthermore, these GB oxides can act as stress concentration sites during fatigue 

loading, and thereby more easily fracture and result in crack initiation. The reason some grain 

boundaries oxidise and form cracks preferentially needs further elucidation, but may be due 

to differences in plastic strain accumulation and hence stress assisted oxidation processes. 

4.3 Role of oxidation in crack growth 

    Crack growth in disc alloys at elevated temperatures under cyclic load usually arises from 

damage via fatigue, creep and oxidation processes, as well as their combined effects [4, 6, 10, 

17, 18, 30]. As shown in Figs. 8 and 9, the crack growth rate is higher in air than in vacuum 

when other test conditions are identical, indicating the significant influence of oxygen partial 

pressure. The effect of oxidation (brought by the variation of oxygen partial pressure) on 

crack growth can be further verified by the mixed inter-transgranular features on fracture 

surface in air cf. completely transgranular features on the fracture surface in vacuum under 

the 1-1-1-1 loading waveform, as shown in Figs. 10 and 11. This observation is consistent 

with Molins’ study [6] and is believed to be associated with the oxidation process ahead of 

the crack tip. Although no direct observation of the crack tip has been made in this study, a 

recent study on oxidation ahead of a crack tip in RR1000 shows that layered oxides (which 

consist of a thermodynamically unstable central layer of NiO/CoO and a thermodynamically 

stable marginal layer of Cr/Al/Ti oxides) form ahead of the crack tip [13]. This suggests that 

the dense oxides such as Cr2O3 and Al2O3 form under the low oxygen partial pressure, 

whereas the less dense or porous oxides such as NiO and CoO form under the relatively high 

oxygen partial pressure. The oxide intrusion ahead of the crack tip formed under dynamic 

load is much shorter than that formed under static load, indicating that the crack grows by 

oxide cracking/spallation [13]. Unlike environment/oxygen partial pressure, the influences of 

dwell time and temperature on crack growth rate appear to depend on each other, i.e. the 

apparent accelerated effect of dwell time on crack growth rate can only be observed at 725
o
C. 

The effect on crack growth brought about by increased dwell period or temperature can be 
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linked to oxidation as well as creep [18, 35], but it is difficult to quantitatively separate or 

identify the contribution of oxidation and creep to crack growth respectively as these two 

processes may occur simultaneously, even in the nominal “vacuum” conditions in this study.  

    In order to further assess the contribution of creep and/or oxidation processes to crack 

growth, an apparent activation energy analysis has been carried out (as creep and oxidation 

are thermally activated processes). The details of this analysis method can be found in Ref. 

[35]. In brief it assumes that the rate of the thermally activated process is proportional to an 

Arrhenius term, and the apparent activation energy of crack growth can be obtained from two 

fatigue crack propagation tests, carried out at T2 and T1: 

� = ���
���	��	�	 ln	(��

�� (��)/ ��
�� (��))                                          

Where Q is the apparent activation energy, and Rg is the gas constant (8.31 J/mol K).  

    The calculated apparent activation energies for crack growth in N18 under the investigated 

conditions are shown in Fig. 12, and the activation energies of the related thermally activated 

processes reported in the literature are shown in Table 6 [8, 35, 36]. It seems that any 

additional oxidation brought about by increased dwell time and/or temperature makes little 

contribution to crack growth rates under the investigated conditions, this differs from our 

findings for LSHR alloy, a more creep-resistant but more oxidation-sensitive disc alloy [4]. 

For N18, it appears that the GB creep process is promoting crack growth when a dwell of 20s 

at the peak load is introduced during the tests, indicated by the calculated activation energy 

which is quite close to the reported activation energy of GB creep processes. For the tests 

conducted under a 1-1-1-1 loading waveform, the obtained apparent activation energy is 

much lower than that of GB creep processes, indicating limited creep is activated. In this case, 

the slight increase in crack growth rate with temperature may arise from the very slight 

decrease in yield strength with the increasing temperature (i.e. σ0.2% 1031MPa at 650
o
C, and 

1016MPa at 725
o
C [29]). As mentioned previously, the effect of oxidation has been discerned 

by the increasing intergranular features observed on the fracture surfaces when changing the 

test environment from vacuum to air, but this may not have significantly affected the crack 

growth rate (on the basis of the apparent activation energy analysis comparison). Furthermore, 

it should be noted that increased intergranular features on the fracture surfaces when 

introducing a 20s dwell may also indicate the activation of creep processes, and this change 

in fracture surface feature is most significant at 725
o
C in vacuum (where oxidation may be 

expected to be suppressed).  
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Fig.12 Apparent activation energies for fatigue crack growth in N18 tested at 650 and 725
o
C 

in air and vacuum under a 1-20-1-1/1-1-1-1 loading waveform. 

Table 6 Activation energies for processes contributing to high temperature fatigue crack 

growth [8, 35, 36]  

Processes contributing to high temperature fatigue 

crack growth 
Activation energy (kJ/mol) 

Oxidation of Carbides ~ 250 

Dynamic embrittlement ~ 250 

Grain boundary creep ~ 150 

Change in static properties ~ 0-60 

Grain boundary creep failure + non-thermally 

activated failure 
~ 0-150 

5. Conclusion  

    The fatigue performance of N18 has been assessed at 2 temperatures in air and vacuum 

under 1-1-1-1 and/or 1-20-1-1 trapezoidal loading waveforms, to elucidate the influence of 

oxidation along with (possible) creep processes on crack initiation and propagation behaviour. 

The following conclusions can be made based on the aforementioned results: 

(1) Oxidation occurs even though the oxygen partial pressure is as low as 10
-2

~10
-3

Pa. 

Cr-rich oxide forms uniformly along the grain boundaries and at the γ/γʹ interface at 

the notch surface in both air and vacuum. A selective formation of Co-rich oxide is 

observed on some grain boundaries and γ/γʹ interfaces. 
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(2) Cracks mainly initiate from grain boundaries and γ/γʹ interfaces due to oxide cracking 

at these regions in both air and vacuum, and occasionally initiate from 

surface/subsurface pores in vacuum. The crack initiation process and subsequent 

coalescence events appear to have a significant effect on the fatigue life of notched 

N18 samples. With an increased test temperature and/or application of an oxidizing 

environment, fatigue life is reduced markedly, which is associated with the 

accelerated oxide formation and crack initiation processes, although nominal crack 

propagation lives also decrease.  

(3) Oxygen partial pressure (test environment) has a significant influence on crack 

growth. Much higher crack growth rates associated with more intergranular fracture 

surfaces are observed in air compared with in vacuum under the same loading and 

temperature conditions. An apparent activation energy analysis approach reveals that 

additional oxidation effects brought about by increasing temperature or prolonging the 

dwell period on crack growth appear limited. The prolonged dwell period instead 

apparently promotes creep processes, which further enhance crack growth, especially 

at higher temperature. 
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7. Appendix 

     This appendix provides details of the Numerical integration of the Paris equations. An 

assumption of long crack growth behaviour is made after intergranular crack initiation. The 

Paris equation is shown as follows:   

��
�� = �∆��                                                                                                                    (A1) 

where C and m are materials-specific constants, and they are derived from the crack growth 

rate between ∆K of 20~50MPa√m shown in Fig.8(a). For 725o
C vacuum test, two fitting 
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processes were conducted to get the C and m values as there is an interruption in the fatigue 

crack growth curve. The obtained C and m values are shown in Table A1. 

Table A1 Fitted C and m values for the Paris equation for fatigue crack growth under a 1-1-1-

1 loading waveform 

Tests 
650

o
C 

Vacuum 
650oC Air 

725
o
C 

Vacuum 

725
o
C 

Vacuum 725
o
C Air 

∆K range 20~50 20~50 20~25 26~50 20~50 

C 1E-12 1E-10 4E-11 4E-13 7E-10 

m 3.645 2.665 2.649 4.051 2.249 

 

   ∆K calculation is based on the empirical formula developed by Scott and Thorpe [37] 

∆� = �� ∙ ��(��)  1 − 1.36&�
�' &�

('
).�* �

+(,) ∆-√/0                                                   (A2) 

where ∆σ is stress range applied to notch root, which is calculated to be 1500MPa at 650
o
C as 

shown in Fig. 2(c) and (d). The stress and strain distribution at 725oC is quite similar to that 

at 650oC based on the finite element modelling for the employed test conditions as the yield 

strengths of N18 at 650 and 725
o
C are quite close to each other [29]. Thus, ∆σ=1500Mpa is 

also used for ∆K calculation at 725
o
C. a is crack depth at the notch root, c is half crack length 

at notch root surface, w is sample thickness. In this study, all K calculations assume a crack 

depth to half surface crack length ratio (a/c) of 1. Bw is a correction factor for the finite 

dimension of the investigated samples, and it is dependent on crack and sample dimensions 

[38]. 

�� = 1 + 2(34)5(46)7(3
8)

().�9:;)�                                                                                                    (A3) 

where  

< &�
(' = 0.38 − 0.141&�

(' − 0.366&�
('

� + 0.569&�
('

B − 0.248(�():                         (A4) 

D &(
E' = −0.0239 + 1.434&(

E' − 2.984&(
E'

� + 7.822((E)B                                         (A5) 

G &�
�' = −0.0113 + 0.323&�

�' + 0.749&�
�'� − 0.535(�

�)B                                       (A6) 

where b is the width of samples. 
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��(��) is front face correction factor for crack shape and E(K) is the elliptic integral of the 

second kind.  

��(��) = 1.13 − 0.07&�
('

).;
                                                                                            (A7) 

H(�) = [1 + 1.47&�
('

�.J:]).;                                                                                         (A8) 

    If 	
L = ����(��)[1 − 1.36&�

�' &�
('

).�] �
+(,)                                                                         (A9) 

    Then  

��
�� = M[L∆-N/0]�                                                                                                       (A10) 

O PQ�R
) = �

S(∆T)U O ��
(VNW�)U

�R
�X                                                                                         (A11) 

    For a small enough crack increment (∆a) of 10 µm, Yj can be considered as constant. Thus 

for a crack growth from length aj to aj +∆a, 

∆QY = �
S(∆T)U O ��

(VZNW�)U
�Z[∆�
�Z

= �
S(∆T)U 	 �

(VZNW)U ( �
���)[\0Y + ∆0]��U

� − 0Y��U
� ]        (A12) 

    Hence,  

Q� = ∑ ∆QY
Y_`
Y_� = �

���
�

S(∆TNW)U
∑ (�Z[∆�)	�U

� ��Z	�U
�

(VZ)U
Y_`
Y_�                                         (A13) 

where n=220, corresponding to a final crack length of 2.2mm in depth direction at notch root 

(which is consistent with main crack propagation depth on fracture surface) and a ∆K of 

~52MPa√m. 

8. Reference 

[1] J. Guedou, J. Lautridou, Y. Honnorat, Journal of Materials Engineering and Performance, 2 (1993) 

551-556. 

[2] R.C. Reed, Cambridge University Press, (2006). 

[3] D. Furrer, H. Fecht, Journal of the Minerals, Metals and Materials Society, 51 (1999) 14-17. 

[4] S. Everitt, R. Jiang, N. Gao, M. J. Starink, J. W. Brooks and P. A. S. Reed, Materials Science and 

Technology, 29 (2013) 781~787. 

[5] H.T. Pang, P.A.S. Reed, Materials Science and Engineering: A, 448 (2007) 67-79. 

[6] R. Molins, G. Hochstetter, J.C. Chassaigne, E. Andrieu, Acta Materialia, 45 (1997) 663-674. 

[7] J. Tong, J. Byrne, Fatigue & Fracture of Engineering Materials & Structures, 22 (1999) 185-193. 

[8] L. Ma, K.-M. Chang, Scripta Materialia, 48 (2003) 1271-1276. 

[9] T.P. Gabb, J. Gayda, J. Telesman, L.J. Ghosn, A. Garg, International Journal of Fatigue, 48 (2013) 

55-67. 



  

23 

 

[10] C.K. Sudbrack, S.L. Draper, T.T. Gorman, J. Telesman, T.P. Gabb, D.R. Hull, Oxidation and the 

Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy 

Disk Superalloy, in:  Superalloys 2012, John Wiley & Sons, Inc., 2012, pp. 863-872. 

[11] E. Andrieu, R. Molins, H. Ghonem, A. Pineau, Materials Science and Engineering: A, 154 (1992) 

21-28. 

[12] C.F. Miller, G.W. Simmons, R.P. Wei, Scripta Materialia, 48 (2003) 103-108. 

[13] H.S. Kitaguchi, H.Y. Li, H.E. Evans, R.G. Ding, I.P. Jones, G. Baxter, P. Bowen, Acta Materialia, 

61 (2013) 1968-1981. 

[14] J.A. Pfaendtner, C.J. McMahon Jr, Acta Materialia, 49 (2001) 3369-3377. 

[15] U. Krupp, W.M. Kane, C. Laird, C.J. McMahon, Materials Science and Engineering: A, 387–389 

(2004) 409-413. 

[16] A. Pineau, S.D. Antolovich, Engineering Failure Analysis, 16 (2009) 2668-2697. 

[17] P.A.S. Reed, Materials Science and Technology, 25 (2009) 258-270. 

[18] R. Jiang, S. Everitt, M. Lewandowski, N. Gao; P. A. S. Reed, International Journal of Fatigue, 62 

(2013) 217-227. 

[19] T. Connolley, P.A.S. Reed, M.J. Starink, Materials Science and Engineering: A, 340 (2003) 139-

154. 

[20] D.A. Woodford, Energy Materials: Materials Science and Engineering for Energy Systems, 1 

(2006) 59-79. 

[21] A. Karabela, L.G. Zhao, J. Tong, N.J. Simms, J.R. Nicholls, M.C. Hardy, Materials Science and 

Engineering: A, 528 (2011) 6194-6202. 

[22] J. Gayda, R.V. Miner, International Journal of Fatigue, 5 (1983) 135-143. 

[23] J. Gayda, R. Miner, Metallurgical and Materials Transactions A, 14 (1983) 2301-2308. 

[24] S. Everitt, M. J. Starink, H. T. Pang, I. M. Wilcock, M. B. Henderson and P. A. S. Reed, 

Materials Science and Technology, 23 (2007) 1419-1423. 

[25] E. Andrieu, A. Pineau, Journal De Physique Iv, 9 (1999) 3-11. 

[26] F. Sansoz, B. Brethes, A. Pineau, Fatigue & Fracture of Engineering Materials & Structures, 25 

(2002) 41-53. 

[27] B. Flageolet, M. Jouiad, P. Villechaise, J. Mendez, Materials Science and Engineering: A, 399 

(2005) 199-205. 

[28] J.A. Ruiz-Sabariego, S. Pommier, International Journal of Fatigue, 31 (2009) 1724-1732. 

[29] S. Everitt, PhD Dissertation, Developments in advanced high temperature disc and blade 

materials for aero-engine gas turbine applications, University of Southampton, (2012). 

[30] L.G. Zhao, J. Tong, M.C. Hardy, Engineering Fracture Mechanics, 77 (2010) 925-938. 

[31] R. Jiang, N. Gao, P. A.S. Reed, Depenence of small crack initiation and proapgation on grain 

orientation in LSHR alloy at elevated temperatures, Under preparation, (2014). 

[32] B. Stokes, N. Gao, P.A.S. Reed, K.K. Lee, Metallurgical and Materials Transactions A, 36 (2005) 

977-988. 

[33] B. Stokes, N. Gao, P.A.S. Reed, Materials Science and Engineering: A, 445–446 (2007) 374-385. 

[34] H.E. Evans, International Materials Reviews, 40 (1995) 1-40. 

[35] M.J. Starink, P.A.S. Reed, Materials Science and Engineering: A, 491 (2008) 279-289. 

[36] M.O. Alniak, F. Bedir, Materials Science and Engineering: A, 429 (2006) 295-303. 

[37] P.M. Scott, T.W. Thorpe, Fatigue & Fracture of Engineering Materials & Structures, 4 (1981) 

291-309. 

[38] S.J. Holdbrook, W.D. Dover, Engineering Fracture Mechanics, 12 (1979) 347-364. 

 

 

  



  

24 

 

1. Crack initiation is related to Cr and Co oxide formation and cracking in N18 

2. Fatigue life appears to be dominated by oxidation-induced crack initiation process 

3. Oxidation accelerates crack growth associated with intergranular fracture 

4. Long dwell loading cycle causes a superimposed creep damage 

 


