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Abstract   

Glycosphingolipid metabolism relies on selective recruitment of the pleckstrin homology (PH) 

domains of FAPP proteins to the trans-Golgi network (TGN). The mechanism involved is unclear 

but requires recognition of phosphatidylinositol 4-phosphate (PI4P) within the Golgi membrane. 

We investigated the molecular basis of FAPP1-PH domain interactions with PI4P bilayers in 

liposome sedimentation and membrane partitioning assays. Our data reveals a mechanism in 

which FAPP-PH proteins preferentially target PI4P-containing liquid disordered membranes, 

while liquid ordered membranes were disfavored. Additionally, NMR spectroscopy was used to 

identify the binding determinants responsible for recognizing TGN-like bicelles including 

phosphoinositide and neighboring lipid molecules. Membrane penetration by the FAPP1-PH 

domain was mediated by an exposed, conserved hydrophobic wedge next to the PI4P 

recognition site and ringed by a network of complementary polar residues and basic charges. , 

Our data illuminates how insertion of a structured loop provides selectivity for sensing 

membrane fluidity and targeting to defined membrane zones and organelles. The determinants 

of this membrane sensing process are conserved across the CERT, OSBP and FAPP (COF) 

family. Hence lipid gradients result not only in differential membrane ordering along the secretory 

pathway, but also specifically localize diverse proteins through recognition of ensembles of lipid 

ligands in dynamic and deformable bilayers in order to promote anterograde trafficking. 

 

 

Keywords 

pleckstrin homology domain; lipid microdomains; membrane trafficking; phosphoinositide 

recognition; nuclear magnetic resonance spectroscopy 
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Abbreviations 

Brain sphingomyelin (BSM), CERT, OSBP and FAPP (COF), chemical shift perturbation (CSP), 

cholera toxin subunit B (CTx), diheptanoyl phosphatidylcholine (DH7PC), dihexanoyl 

phosphatidylcholine (DH6PC), dimyristoyl phosphatidylcholine (DMPC), dioctanoyl (C8), dioleoyl 

phosphatidylcholine (DOPC), n-dodecyl phosphocholine (DPC), dipalmitoyl phosphatidylcholine 

(DPPC), heteronuclear single quantum coherence spectroscopy (HSQC), giant unilamellar 

vesicle (GUV), phosphatidylinositol-four-phosphate adapter protein 1 (FAPP1),liposome 

sedimentation assay (LSA), membrane insertion loop (MIL), palmitoyl-oleyl phosphatidylcholine 

(POPC), pleckstrin homology (PH), paramagnetic relaxation enhancement (PRE), 

phosphatidylinositol-4-phosphate (PI4P),surface plasmon resonance (SPR), trans-Golgi network 

(TGN), Texas-Red dihexadecanoyl phosphoethanolamine (TR-DHPE) 

 

Introduction 

Diverse biological membranes within cells selectively recruit thousands of proteins using a 

phosphoinositide (PIP) recognition code [1]. Such proteins transiently associate with membrane 

surfaces by recognizing phospholipids that exhibit organelle-specific distributions [2]. Cognate 

membrane complexes are further stabilized by complementary electrostatics [3-5] and insertion 

of nearby motifs of aliphatic, aromatic [6-8] or lipidated residues [9-11] into the bilayer. However, 

whether bilayer dynamics play a determining role in membrane recognition remains poorly 

defined [12, 13], necessitating a closer examination of the structures of functional complexes.  

The largest superfamily of membrane interactive proteins is that defined by the presence of PH 

domains. Its members include COF proteins, which traffic ceramide, sterols and 

glycosphingolipids at the TGN [14-17]. Amongst them, the FAPP1 and FAPP2 proteins have 
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become the best understood paradigms for recruitment to membranes enriched in PI4P, which is 

the most abundant monophosphorylated inositol lipid in the Golgi membrane.  Hence their PH 

domains are often used as Golgi markers in cellular studies [18, 19]. The distribution of PI4P 

however is not restricted to the Golgi apparatus, as this lipid signal also has critical roles beyond 

the Golgi [20]. Moreover, although COF family PH domains recognize PI4P physiologically [21-

23], their in vitro PI specificities are not absolute [24-28]. This conundrum suggests that other 

conserved determinants also help to selectively attract these proteins to different organelle 

surfaces.  

The two FAPP proteins differ mainly by the presence of a glycolipid transfer protein domain 

which is only found in the C-terminus of FAPP2 that has a critical role in the intra-Golgi vectorial 

transfer of glucosylceramide [21, 29] and in the synthesis of the globo-series of 

glycosphingolipids [30]. Both their FAPP-PH domains possess a similar hydrophobic wedge that 

inserts into bilayers, although its contribution to ligand specificity remains unclear [27, 28, 31]. 

An analogous membrane insertion loop is found in PI-binding FYVE and PX domains [32-34], 

with FAPP-PH domains being distinguished by Golgi-specific functions including membrane 

tubule budding and vesiculation [21, 31].  

Here, the structural basis of lipid bilayer recognition by FAPP1 is resolved by analysis of protein 

partitioning into liposomal systems, mutagenesis and NMR. This yields experimental restraints 

for calculating the structure of ternary complexes of the protein with bound micelle and lipid 

ligand, thus explaining the requirement for loosely packed bilayers and pinpointing determinants 

for nonspecific and specific membrane engagement. We propose that modulation of PIs 

between micro-environments of varying membrane fluidity, as determined by the ratio of lipids 

including cholesterol and sphingomyelin (Fig. 1), provides a general switch for whether 

embedded lipid signals are accessible for protein recruitment at specific sub-organelle 

compartments. 
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Results 

Specificity of FAPP-PH for disordered bilayers  

In order to determine whether membrane order is important for FAPP-PH PI4P binding, we 

systematically explored sectors of the composition-dependent phase diagram of ternary lipid 

mixtures consisting of dioleoyl phosphatidylcholine (DOPC), cholesterol and brain sphingomyelin 

BSM [35-37] and supplemented with 2% dipalmitoyl (DP) PI4P unless stated otherwise. 

Membrane order was validated with GUVs, employing fluorescent lifetime images with 

environmentally sensitive di-4-ANEPPDHQ (di-4) membrane reporter (Fig. S1).  It was evident 

that association with PI4P-containing membranes decreased as ratios of both cholesterol and 

brain sphingomyelin (BSM) increased. In pure liquid ordered (Lo) liposomes formed of an 

equimolar ratio of BSM and cholesterol, the  FAPP1-PH domain interacted only marginally with 

the membrane (Fig. 2A).The most attractive PI4P containing membranes were those forming 

liquid disordered (Ld) membrane phases (Fig. 2A), suggesting that lipid packing and dynamics 

could play a key role in efficient PI4P recognition and binding. 

Next, we investigated the bilayer packing density as a function of the acyl chain saturation. The 

headgroups of DPPC, palmitoyl-oleyl (PO) PC and DOPC were compared as they occupy areas 

of 64, 68 and 72 Å/nm2, respectively, with concomitant effects on bilayer thickness [38]. Binding 

of FAPP1 to the set of PI4P/PC-based liposomes revealed the highest level of binding to loosely 

packed DOPC vesicles, intermediate density POPC vesicles exhibited medium binding, while 

the most densely packed DPPC vesicles excluded the FAPP1-PH (Fig. 2A). Thus the lipid 

packing density was inversely related to protein binding. Hence the membrane specificity of 

FAPP1-PH combines both essential chemical (i.e. PI4P) and physical (i.e. membrane fluidity) 
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factors. Interestingly, this preference was also found with the full-length construct of FAPP2 (Fig. 

2A), indicating broader relevance across the COF family. 

The specific role played by membrane order in FAPP interactions with PI4P was further 

validated by fluorescent microscopy using GUVs. An equimolar ratio of cholesterol, DOPC and 

BSM was used to follow FAPP1-PH binding to PI4P in membranes exhibiting coexisting Ld and 

Lo domains. The fluorescent cholera toxin subunit (CTx) bound to the ganglioside GM1 [39] and 

Texas-Red dihexadecanoyl-phosphoethanolamine (TR-DHPE) [40] were used to mark the 

respective membrane domains, with the latter label preferentially partitioning to Ld domains (Fig. 

2B). The presence of protein was detected by visualizing FAPP1-PH labelled which Oregon 

Green to an exposed unique cysteine (Cys37) (FAPP1-PHgreen) (Fig. 2C). The FAPP1-PHgreen 

protein localized strictly to Ld domains in phase-segregated GUVs, consistent with the liposome 

sedimentation experiments (Fig 2A). Furthermore, this localization to disordered regions could 

be similarly mediated by either naturally (brain extract) or synthetically derived PI4P (dipalmitoyl 

or dioctanoyl) (Fig. 2C).  This indicates that the phosphoinositide headgroup (rather than the 

respective acyl chains which differed) was the primary determinant of PI4P recognition in liquid 

disordered membrane regions. Binding to vesicles could be initiated by injecting soluble short 

chain dioctanoyl (C8) PI4P molecules into the chamber of reaction.  In particular, an approximate 

four-fold enhancement in protein co-localization with the disordered phase was observed after 

addition of 2 M C8-PI4P. This increase can be attributed in part to the inherent preference of 

short acyl chain lipids for disordered phases [41]. Thus FAPP1-PH associates with Ld 

membranes phases potentially due to a favorable access to lipid headgroup, non-stereospecific 

contacts with PC molecules or suitable dynamics therein.  Once bound to the disordered bilayer, 

the protein can conceivably diffuse laterally until it recognizes the headgroup of its PI4P ligand, 

thus forming a stable complex. 

Bicelles mimic the bilayer for FAPP1-PH binding 
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Before characterizing the structural basis of dynamic bilayer recognition we needed to select an 

appropriate bilayer mimic for quantitative analysis of the interactions. The binding of the FAPP1-

PH domains with micelles and bicelles were compared as these both mimic biological bilayers 

but have different chain lengths and curvature properties. FAPP1-PH exhibited similar patterns 

of amide signal changes when bound to PI4P in the presence of micelles composed of n-

dodecyl phosphocholine (DPC) or bicelles composed of dimyristoyl phosphocholine (DMPC) and 

dihexanoyl phosphatidylcholine (DH6PC), indicating consistent insertion modes. Moreover their 

ligand affinities were similar, with the dispersed methyl resonance migrations yielding C8-PI4P 

dissociation constants of 5.3 ± 2.4 M and 8.8 ± 3.3 M, (Figs. S2A,B), comparable to the affinity 

of small unilamellar vesicles (Fig. 6C). Furthermore, the chemical shifts of the protein bound to 

isotropic bicelles matched those of the state saturated with DPC:CHAPS micelles. Minor spectral 

differences were observed between PI4P-micelle and PI4P-bicelle titrations. These arose largely 

from the absence of assigned crosspeaks from the bound states due to overlapped or 

broadened resonances. Thus no significant difference was evident between micelle and bicelle 

complexes, and either state suitably represents how FAPP1-PH orients on bilayers via dynamic 

membrane insertion. 

Resolving multi-step bicelle binding by NMR  

Previous studies have investigated how FAPP1-PH interacts with soluble PI4P molecules and 

associates with micelles [27], providing a basis for elucidating how the protein assembles on 

fluid bilayers which contain PI4P. In order to distinguish the determinants of transient nonspecific 

bilayer association and stable recognition of bilayer-embedded PI4P, we compared the binary 

and ternary complexes formed by FAPP1-PH, PI4P and micelles or bicelles in solution.  This 

approach allowed identification of the multiple structural states formed by the FAPP1-PH domain 

as it interacts with membrane mimics of increasing size and complexity.  First the micelle and 

bicelle-saturated forms of FAPP1-PH were contrasted to identify the respective interactions and 
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to model the PI4P-specific complexes formed. To gain maximal resolution each state was 

characterized by monitoring backbone and sidechain 1H, 13C and 15N signals upon addition of 

soluble PI4P and stable bicelle formulations. Entry of the free state from solution into the bilayer 

was examined by tracking methyl and amide peaks as bicelles were added stepwise. This 

allowed the progressive changes induced by each binding event to be mapped at atomic 

resolution (Fig. 3A,B), showing that the interaction was principally mediated by the1-2 hairpin 

which spans FAPP1-PH residues Trp8 to Gln16, as was confirmed by results from paramagnetic 

relaxation enhancement (PRE) studies (Fig. 3C) [27].  Moreover, the data indicated a second, 

distal interaction site that includes the 6-7 sheet residues Met61, Glu62, Leu63, Ile64, Glu68, 

His70 and Tyr72. Together this provides experimental evidence for two-pronged stable insertion 

via the 1-2 and 6-7 elements.  

Next the structural orientation of the FAPP1-PH protein on bilayers was characterized by adding 

C8-PI4P to the protein-micelle (Fig. 4A,D) and protein-bicelle assemblies (Fig. 4C,E). 

Intermolecular distance restraints were derived from doxylated lipid molecules (Fig. 3C, 4B) and 

soluble gadolinium agents (Fig. 5A,B). This illuminated the multiple states of free, nonspecifically 

PC-associated and PI4P-specifically bilayer bound protein, respectively. The experimental setup 

used to elucidate the structure of the micelle complex was adapted for bicelles, with the 

association being followed using PREs induced by paramagnetic gadolinium to identify solvent-

exposed groups in the free, bicelle and bicelle-PI4P complexes. This general protocol provides a 

broadly applicable basis for experimentally-based elucidation and validation of multiple bilayer-

complexed structural states. 

Structural basis of PI4P-bilayer recognition  

Having defined the conditions for elucidating the consensus solution structure in bicelles and 

micelles, the wild type FAPP1-PH domain responsible for dynamic bilayer insertion was 
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determined by triple resonance NMR methods. Its structure is largely identical to the mutant 

version solved previously (PDB: 2KCJ), with chemical shift differences being localized to the 

native Cys which had been previously replaced with a Ser to minimize opportunities for cross-

linking. The structure of the monomeric native FAPP1-PH domain was defined by 1448 distance 

derived NOE, 128 dihedral angle and 34 hydrogen bond restraints, with the structural statistics 

being summarized in Table 1.   

The micelle complexed structure of the FAPP1-PH domain was solved using the HADDOCK 

program. The restraints included 16 intermolecular distances measured from 13C methyl and 15N 

amide-resolved PREs to the micelle, as obtained with the 5-doxyl PC spin label (Tables 1&2). A 

flexible zone of neighbouring residues was defined as those which exhibited substantial 

chemical shift changes. Solvent accessibility data was derived from titrating in the gadolinium 

agent into 15N and 13C isotopically labeled protein samples. Bicelles composed of dihexanoyl 

(DH7-) and dimyristoyl (DM-) PC (q=0.3, 0.25%) were added stepwise. The advantage of the 

new bicelle formulation over conventional bicelles composed of DH6PC and DMPC formulations 

was apparent as small increments could be added from initial concentrations as low as 0.1% 

(w/v). This enabled monitoring of the bicelle-bound state during titration experiments. This 

formulation was optimized for low concentrations [42], and adapted herein to track protein 

resonances while conserving a signal that was sufficiently strong and resolved to be useful for 

PRE analysis. The solvent-exposed and micelle-embedded protein surfaces were mapped by 

analysis of PRE data collected using water-soluble gadolinium or doxyl PC spin labels, 

respectively, thus defining their complementary areas (Figure 5A-C). Interfacial residues were 

defined as being those with resonances that were broadened by both gadolinium and doxylated 

phospholipid. Together this provided cross-validated definition of the FAPP1-PH protein groups 

that were exposed, interfacial or deeply inserted.  
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The structural model of the complex based on PRE data reveals that membrane recruitment of 

FAPP1 involved deep insertion of Tyr11 and Leu12.  Their sidechains penetrated furthest into 

the hydrophobic interior of the bilayer, while in solution they formed a solvent-exposed extremity 

at the tip of the structured 1-2 loop. Their sidechains orient beneath the surface of 

phospholipid headgroups in either the micelle or bicelle complex in the presence or absence of 

PI4P, indicating a constitutive role in insertion. Moreover, the specific PI4P recognition event 

uniquely involved insertion of the sidechain of 7 residue Lys74.  This basic residue is 

conserved across the COF protein family members, and interfaces peripherally with the bilayer 

(Fig. 4F), thus contributing to the higher affinity of the PI4P-containing membrane complex.  

The deep burial of the Leu12 and Thr13 methyl groups was confirmed by the substantial 

changes in solvent accessibility observed after gadolinium addition (Fig. 5B). These residues 

were encircled by an extensive network of interfacial contacts mediated by polar backbone and 

sidechain groups of residues in the 1-2 loop including Asn10 and Gln16, which form hydrogen 

bonds and ionic interactions with PC headgroups (Table 1). The Trp8 and Trp15 residues act as 

aromatic buttresses against the membrane surface (Fig. 6A-B), delimiting the total buried 

surface area of either 1208 Å2 or 1232 Å2 between the protein and micelle in the absence or 

presence of PI4P, respectively. This insertion element is ordered with the exception of the most 

exposed Leu12 residue based on model-free relaxation analysis (Fig. S3) [43]. Together this 

reveals that overlapping structured protein surfaces mediate transient nonspecific and PI4P-

specific binding of fluid bilayer phases, respectively. Thus we infer that initial, weak bilayer entry 

of the 1-2 loop with primarily loosely packed PC molecules leads to a PI4P-dependent 

adjustment of the orientation of the inserted complex.  

The structural organization with the ternary FAPP1-PH:PI4P:bilayer complex can be ascertained 

by NMR following C8-PI4P addition to the micelle complex. Phosphoinositide addition results in 

the unprecedented stable micelle burial of the Met73 side chain in the 7 strand. Considering the 
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absence of 5-doxyl PRE effects in the Met73 resonances, this change in exposure could be due 

to its enclosure within the stable PI4P-micelle complex (Fig. 5C). This indicates a PI4P ligand-

dependent bilayer interaction by this structured element, with the proximal Leu63 and Ile64 

residues also engaged based on their chemical shift changes. This ternary complex exhibits a 

slower off-rate and extensive zone of perturbations midway between the most deeply inserted 

1-2 extremity and the exposed termini (Fig. 4D-E). The large perturbed zone observed in the 

PI4P-specific complex involves all the -strands including 1:Val4-Tyr6, 2:Thr13, 

3:Leu27,Tyr29, 4:Gly42, 5:Glu50, 6:Met6, Leu63, Ile64, 7:Phe71-Lys74 residues (Fig. 4D-

E).  The micelle-based burial of these residues was confirmed by changes in solvent 

accessibility upon addition of the paramagnetic gadodiamide agent, with a broader interface 

being buried when PI4P was present, including His54, Thr59, Glu62, Phe71 and Lys74 (Fig. 5A). 

Together with the entire lower half of the protein exhibiting chemical shift perturbations (CSP) 

and the interfacial position of the  5-7 sheet, this indicates that specific recognition of PI4P-

containing bilayers involves stable rather than transient dipping of the hydrophobic 1-2 tip into 

the bilayer interior [27], and adjustment to a more substantially buried state.  

In addition to the hydrophobic contribution, it is well known that electrostatics also influence the 

orientation of proteins on membrane surfaces.  Indeed, this is reflected by the dipolar nature of 

the FAPP1-PH surface (Fig. 5D). Two distinct positively charged isocontours facing the micellar 

interface correspond to the PI4P binding pocket and elements of the 7 strand including the 

Lys74 side chain [23]. The resulting electrostatic complementarily could account for the two-fold 

increase in binding affinity observed when negatively charged phosphatidylserine is added the 

membrane to stabilize the specific PI4P-containing complex [27].  Indeed, analogous 

preferences for phosphatidylserine co-association is apparent in PI3P-specific FYVE and PX 

domains [44, 45], indicating a wider role for this accessory phospholipid as a co-determinant of 

intracellular membrane binding. 
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The ring of charge encircling FAPP1‟s hydrophobic membrane insertion loop (MIL) appears to 

delimit the depth of membrane insertion.  In order to estimate the depth and angle of protein 

penetration into the bilayer in nonspecific and specific membrane engagement, we compared 

how FAPP1-PH inserted into PI4P-free versus PI4P-containing micelles, taking advantage of the 

sensitivity of the NMR method to even transient interactions. The methyl and amide PRE data 

yielded average distances of 38.47 Å and 37.14 Å between protein and micelle centers, 

indicating similar depths in the specific and nonspecific membrane complexes, respectively (Fig. 

3, 4 and 6A). That is, the specific complex penetrated only an angstrom deeper and its insertion 

angle was only slightly more acute.  This can be attributed to PI4P-containing micelle contacts 

formed by Lys74, the neighboring 5-6 and 6-7 loops and the extremity of the 2 hairpin. 

PI4P-binding by the micelle-saturated complex also induced alterations in hydrophobic core 

packing of the protein based on perturbations of methyl resonances of either partially buried 

Val4 and Ile64 residues or completely buried Leu5, Ile44, Leu63, Ile65, Met73 residues.  We 

propose that this network reinforces the slowly exchanging PI4P bilayer complex, and increases 

the residency time and local concentration of protein molecules on membranes. Upon bilayer 

association, the hydrophobic wedge of the FAPP1-PH domain is not symmetrically inserted. 

Rather, it is oriented such that the backbone residues prior to the 2 strand (Thr13, Gly14, 

Trp15) deeply insert into micelles while the backbone of conserved residues following the 1 

strand binds the interfacial inositide headgroup via Trp8 and Thr9 contacts.  The local ring of 

basic charge capped by an acidic patch (Fig.  5D) provides long-range guidance for the protein‟s 

entry into the membrane. Together this allows progressive binding and tilting of the bilayer 

complex, and could have implications for interaction of downstream protein partners such as 

Arf1 with TGN vesiculation machinery [46]. 

Mutational analysis of membrane binding determinants 
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The residues identified in the structural model as membrane interacting were mutated to 

delineate their roles.  All mutants were tested for being structurally intact and functionally altered 

(Table S1). Binding of FAPP-PH proteins to membranes was measured using liposome 

sedimentation experiments. The most deeply inserted Tyr11 and Leu12 sidechains are known to 

be essential [31], but the contributions of other residues of the loop, including Trp8, Asn10, 

Thr13, Trp15 and Gln16 residues have not been determined. Each Trp residue extends its 

sidechain to pack against the micelle surface, and hence was mutated to an Ala, Glu or Tyr 

residue. The W8E and W8Y mutants of FAPP1-PH did not bind detectably (Table 3, Fig. 6C), 

indicating that Trp8 makes critical contributions in both nonspecific and specific membrane 

complexes. This is consistent with its interfacial positions in the binary and ternary structures 

with PI4P and micelle.  

Mutations of the non-conserved Thr13 residue were designed to conserve the hydrogen-bond 

acceptor (T13N) and to alter the exposed hydrophobicity (T13F). Both mutations were tolerated 

with only minor reductions in binding by a factor of two, consistent with the peripheral role of 

Thr13 in nonspecific insertion. Moreover Thr13 is not conserved across the COF family, which 

maintains basic or small hydrophilic residues at this position [27]. Conversely, the N10T mutation 

compromised bilayer affinity by a small but significant degree, as can be explained by the 

insertion of its sidechain between PC-based headgroups and its role in hydrogen bonding (Table 

2).  The substitution of Trp15 with a Tyr (but not Glu, which results in unstable protein) was 

tolerated, consistent with the critical role of its aromatic ring in insertion as well as stabilising the 

1-2 hairpin. The replacement of Gln16 with an Arg residue was originally intended to mimic 

the polybasic motif found in PH domains which recognizes 3-phosphoinositides [47]. 

Unexpectedly, this mutation reduced liposome association, independent of the PIP species 

used. The major role of Gln16, which is strictly conserved across the mammalian COF family, 
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can be explained by the hydrogen bonds it consistently forms with PC molecules when fully 

docked.  

Together this reveals that liquid disordered membrane interaction is mediated by essentially the 

entire breadth of the ordered 1-2 hairpin loop (Fig. S3) which is ordered except for the 

hydrophobic tip. In particular, the hydrophobic extremity offered by Tyr11 and Leu12 is bordered 

by non-essential Asn10 and Thr13 contacts, and the highly conserved aromatic groups 

contributed by Trp8 and Trp15 form critical struts against disordered bilayer surfaces. We 

propose that sliding of this structured loop through the leaflet allows the protein to diffuse in the 

two dimensional plane of a membrane, with electrostatic forces supporting the protein‟s 

positioning on the bilayer for PI headgroup entry. Once a PI4P molecule is bound, the mobility of 

the resulting complex would be reduced by the additional bound bulk, and the conformational 

dynamics in the protein-bilayer complex including in angle and depth of insertion and core 

packing would shift to that of the fully occupied state. The accompanying displacement of lipid 

molecules and resulting perturbation of local pressure and surface area created could contribute 

to the deformation of membranes during budding or tubulation events. 

 

Discussion 

The ability of FAPP proteins to specifically recognize PI4P-enriched Golgi membranes is 

determined by a set of unique features which are revealed here by NMR.  The mechanism 

involves proximal penetration of the structured MIL residues and PI4P acyl chains into a liquid 

disordered bilayer, introducing substantial protein volume into the leaflet. This insertion would 

naturally yield positive local curvature, and hence would be opposed by the tendency of 

cholesterol to induce negative membrane curvature. The FAPP1-PH domain inserts deeply via 

not only the longest structured MIL studied to date but also by the 7 strand, as supported in the 
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case of FAPP1 by 13C- and 15N-resolved backbone and sidechain groups for micelle- or bicelle-

embedded and soluble spin labels. The use of both heteronuclei for gathering PRE restraints 

and the use of optimized bicelles yielded the highest density of experimental protein-bilayer 

structural restraints to date to our knowledge. 

TGN bilayer binding mediated by FAPP1-PH is initiated by nonspecific phospholipid interaction 

followed by specific binding to a PI4P molecule. These events differ surprisingly little in the depth 

or angle of bilayer penetration. The most significant differences are the structuring of the PI4P 

site and conformational adjustment within the core as the ligand is bound.  This yields a slowly 

exchanging complex with a binding affinity of 5 M for the monomeric protein. The fact that the 

MIL is largely structured is unanticipated given its long and irregular nature, as is the 7 binding 

element, yet could explain their specificity for dynamic bilayers. The interfacial region involves 

functionally critical tryptophanes of the loop and cationic residues that engage the surface of the 

bilayer and support the orientation of the embedded protein. In particular, Trp8 and Trp15 form 

struts at either extremity of the MIL, while Lys74 is opposite the PI4P binding site and forms 

hydrogen bonds with the membrane surface. These aromatic and basic residues are highly 

conserved in the FAPP family, and occupy similar positions around the basic patch of the CERT 

structure [23], inferring a common mechanism.  

This general FAPP-bilayer binding mechanism is depicted in Figure 7. The process involves the 

electrostatic approach and insertion of the FAPP1 protein into disordered bilayer within a 

restricted membrane territory [48].The resulting reorientation of lipids within the leaflet includes 

displacement of dynamic lipid allowing PI4P molecules to be more readily encountered before 

being stably bound within the appropriately positioned PI4P site.  The resulting asymmetric 

insertion of protein bulk within the bilayer would induce local positive bilayer curvature. 

Interestingly, the insertion depth and angle are only slightly perturbed by the transition from 

nonspecific to specific complex, instead the original contacts become reinforced, resulting in the 
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tighter FAPP:PI4P complex becoming specifically localized and crowded within dynamic TGN 

zones. This process leaves a complementary site on the FAPP1-PH domain largely available for 

Arf1 docking [46] that is necessary but not sufficient to localize FAPPs at the TGN [21]. We note 

that while preparing this manuscript, a study addressed the mechanism of yeast Arf1 binding to 

human FAPP1-PH [49], and is largely consistent with our results. 

  

The crucial role of the various COF proteins in lipid trafficking [16, 29, 30, 50] suggests that they 

share recognition determinants. The commonalities are most obvious for CERT [17, 51] and 

OSBP1 [52], localization of which has also been linked to Golgi membrane composition. The key 

residues are shared across the COF family, inferring similar assembly and membrane 

deformation processes. In phase segregated GUVs, the preference seen for Ld domains is such 

that these proteins could all be essentially completely directed only to disordered phases (Fig. 

7). In vitro, such proteins would become crowded until reaching a critical concentration where 

buds form and tubules can then emanate. Biological membrane tubule formation by FAPPs has 

yet to be confirmed under physiological conditions. Nonetheless, tubules have been observed in 

vitro [31] and in cell-based assays [18, 21], and specific roles of contributing residues can now 

be tested in cellular TGN systems. Broader applicability of the general mechanism to other 

systems can be envisaged. Lipid enzymes may be similarly regulated by bilayer order. For 

example, phosphatidylinositol-4-phosphate kinase type II, which produces half of the PI4P at 

the Golgi, is active once bound there within rigid microdomains [53]. 

In summary, we propose that membrane malleability represents a fundamental means of 

controlling protein recruitment to specific regions of organelles such as Golgi subcompartments. 

In endomembranes, lipid concentration gradients across the secretory pathway are found in 

opposing directions (Fig. 1), with the ratio of glycerophospholipids decreasing and sphingolipids 

and cholesterol increasing [54, 55]. Moreover, the saturation of the acyl chains for different lipid 
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species increase along the anterograde pathway [56]. As a result, the membrane rigidity and 

thickness are both enhanced as one travels from the endoplasmic reticulum towards the plasma 

membrane, with the TGN having an intermediate lipid composition prone to phase separations 

[57]. Hence, a membrane order dependent PI4P binding model would account for the absence 

of FAPPs at the plasma membrane despite pools of PI4P having been identified there [18]. 

Furthermore, changes of membrane rigidity could efficiently control the recruitment of CERT, 

OSBP and FAPP proteins to the TGN to maintain local lipid homeostasis. Thus, as sphingolipids 

and cholesterol are recruited at the TGN by leaving vesicles, reduced membrane packing 

densities would lead to an enhanced lipid transfer rate of FAPP2 (glucosylceramide), CERT 

(ceramide), OSBP (sterol) which would progressively re-establish the rigidity, acting as a 

negative feedback loop on the lipid transfer proteins. In other words, PI4P molecules in 

membranes with opposing membrane fluidities molecules could simplistically represent „on‟ and 

„off‟ signaling states for recruiting FAPP proteins to regions in the TGN membrane gradients. 

Although PI4P is present in other subcellular membranes where it critically contributes to other 

biological processes [20], it may not be visible there to these proteins due to its ordered 

microenvironment. An analogous phenomenon has been invoked for recognition of the 

sphingolipid GM1 by cholera toxin B subunit [58, 59]. The presence of cholesterol in the 

membranes forced GM1 headgroups to bend, in which conformation the toxin no longer 

recognizes them. Thus we propose that this principle of binary lipid order recognition states also 

applies to other phosphoinositides and lipids, which may be similarly visible or invisible to 

binding partners depending on the local conformational dynamics of the membrane[60].  

 

Materials and Methods 

Protein expression 
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FAPP1-PH was expressed in a pGEX-6P-1 vector (G.E. Healthcare, Little Chalfont, UK) as a 

glutathione S-transferase (GST) fusion protein and purified as previously described [27]. Uniform 

isotopic labelling with 15N or 13C/15N was carried out in M9 media. The cell lysate was passed 

through a GST Trap column and the protein was cleaved overnight using Prescission protease 

(G.E. Healthcare). The FAPP1-PH protein was separated by anion exchange using a linear 

gradient of NaCl from 0 to 0.5 M (Tris pH 8, 20 mM), and exchanged into 20 mM Tris pH 7, 100 

mM NaCl, 1 mM DTT and 1mM NaN3 (TB). The mutants were generated with a Quik Change 

Lightening kit (Stratagene, Santa Clara, USA) and verified by DNA sequencing. The proteins 

were expressed and purified as previously described [27] using optimized salt gradients to 

separate FAPP and GST proteins during the final purification step.  

Protein fluorescent tagging  

Conjugation of FAPP1-PH protein to the Oregon Green maleimide fluorescent probe (Life 

Technologies) was performed according to the manufacturer‟s protocols. Briefly, complete 

reduction of disulfide bonds was achieved in TB with 10 mM DTT for 1 hour. Subsequently, the 

sample of 100 M protein was buffer exchanged with TB and incubated for 4h at room 

temperature with maleimide fluorescent probe in a 10 times excess and purified on PD-10 

columns.  

Lipid binding assays 

Lipids, detergents and natural extract of PI4P (brain extract) were purchased from Avanti Polar 

Lipids (Alabaster, USA) and synthetic PIPs including C8-PI4P from Echelon Biosciences (Salt 

Lake City, USA). Micelle and bicelle titration experiments were carried out by stepwise additions 

of buffer-matched stock solutions into NMR samples. Bicelles were generated using DMPC and 

DH6PC mixed in chloroform, dried under a flux of nitrogen and left under high vacuum overnight. 

A stock solution at 25% was prepared and diluted with the protein immediately before each 
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experiment. Bicelles with a ratio q=0.25 were used at a 5% (w/v) to prevent excessive line 

broadening and alignment of the bicelles with the magnetic field. Bicelles containing DH7PC and 

DMPC (q=0.3, 0.25%) were prepared for acquisition of 15N-edited HSQC experiments. 

Lipids were mixed in chloroform, the organic solvent was successively dried under a nitrogen 

stream, and samples were placed under high vacuum overnight. The lipids were resuspended in 

TB to a lipid concentration of 2 mM, and suspension was submitted to ten cycles of freezing in 

liquid N2 and thawing at 52˚C. For the assays, 75 L of the lipid suspension was mixed with 25 

L of protein at 8 M and incubated at room temperature for 10 min. The pellet collected after 

centrifugation (55 000 rpm, 4˚C, 10 min) with a TLA-55 rotor (Beckman Coulter, High Wycombe, 

UK) was washed three times with TB and resuspended in 100 L. The supernatant and the 

pellet of each assay were loaded on precast 26 wells Criterion gel (Biorad, Hemel Hempstead, 

UK). After electrophoresis, the proteins were stained by blue Coomassie and quantified by gel 

imaging (Syngene, Cambridge, UK). Values represent the mean and standard deviations from 

triplicate experiments.  

Surface Plasmon Resonance  

The surface plasmon resonance (SPR) experiments were carried out in TB on a Biacore 3000 

instrument using sensor Chip L1 (G.E. Healthcare). A suspension of 1 g/L lipids DOPC:PI4P 

(98:2) or DOPC were submitted to ten FAT cycles and extruded through a 100nm membrane 

(Avestin). A total of 150 L of this lipid suspensions were coated on the lanes at 5 L/min, 

washed with 10 mM NaOH and coated with 25 L BSA and cleaned again with 10mM NaOH.  

Equilibrium measurements were carried out at 2-3L/min, and the sensograms were obtained 

for an analyte range 0.1 to 20 M and corrected by subtracting the reference signals from the 

DOPC lanes. The apparent dissociation constant was deduced from the fitting B = 

Bmax.Pfree/(Kd+Pfree) where B is the binding, Bmax is the maximum signal under saturation and Pfree 
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is the concentration of protein present in the solution injected. In all experiments, the response of 

FAPP1-PHWT at 20 M was chosen as standard to normalize the response of the mutants.  

GUV formation 

A volume of 25L of the lipid mixtures at 1 g/L in chloroform were spread on ITO-coated slides 

(Sigma) and dried under vacuum for at least two hours. GUVs were grown at 52˚C in 150 mM 

sucrose. A sinusoidal current (1.1 Vpp, 12Hz) was applied for 2 to 3 hours followed by a squared 

current (1.5 Vpp, 5Hz). The GUVs were collected and re-suspended in a Tris buffer (10mM, pH 

7, NaCl 50mM, DTT 1mM). Chambers were built using double sided tapes and the passivation 

of the surface was achieved with a solution containing 1 mg/mL of casein. After washing with 

resuspending buffer, the GUVs were injected into the observation cell. Alternatively, glass 

bottom dishes (MatTek, Ashland, US) were used for microscopic observations to allow uniform 

injections across the sample.  To visualize different phases, GM1 at 1% (mol/mol) was included 

in the lipid mixtures. The fluorescent probes Cholera Toxin subunit B tagged with AlexaFluor 488 

(CTx) (Life Technologies, Carlsbad, CA) and Texas Red 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (TR-DHPE) (Life Technologies) were used to mark ordered and 

disordered phases, respectively. The image processing and were performed within ImageJ 

software [61]. Green emitting dyes were excited at 488 nm and red emitting dyes at 543 nm. 

Fluorescence lifetime imaging microscopy   

GUVs were prepared according to established methods [62] and stained with 2 μM di-4-

ANEPPDHQ (di-4) dye (Invitrogen). Fluorescence lifetime imaging microscopy (FLIM) was 

performed at 23 °C with a LSM 510 microscope (Carl Zeiss) equipped with a dedicated 

PicoQuant FLIM system. The probe was excited with a 473nm pulsed laser diode (50 MHz) and 

observed with a 63x oil immersion objective and fluorescence was collected through a 495nm 

long wave pass filter. Laser power was adjusted to give an average photon rate of 104–105 
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photons to avoid pile-up effects. The acquisition time was of the order of 200 s to achieve at 

least 103 photons per pixel.  

Thermal shift assay 

In order to determine the stabilities of mutant proteins, fluorescent signals were measured using 

excitation at 492 and emission at 568 from solutions containing 4 μM protein and SYPRO 

Orange (Life Technologies) in 50mM HEPES buffer pH 7, 100mM NaCl. Signals were followed 

along a linear temperature gradient between 25°C and 95°C. The experiments were carried out 

on an MxPro3005P qPCR detection system and processed with MxPro software (Stratagene). 

The unfolding transition temperature, Tm, of each protein corresponded to the point of inflexion of 

the curves [63].  

Nuclear magnetic resonance spectroscopy    

NMR experiments were acquired at 298K on an 800 MHz Varian INOVA spectrometer or a 

Bruker AVANCE III spectrometer equipped with 5mm cryogenic probes, using samples 

containing 100 to 700 M FAPP1-PH protein. Slowly exchanging amide protons were identified 

from 15N HSQC spectra acquired following dissolution in 99.96% D2O. Backbone and side-chain 

resonances were assigned in part by referring to those of the C94S mutant protein. NMR 

experiments were run using Varian BioPack pulse sequences, including BEST HNCO, HNCA, 

HN(CO)CA and 13C-edited NOESY-HSQC (100ms mixing time), acquired from 13C/15N-labelled 

protein samples containing 10% D2O. The 15N relaxation experiments were acquired using pulse 

sequences available in the Bruker standard library and with 15N-labelled protein. 

Backbone generalised order parameters squared, S2, were determined with the model-free 

formalism [64, 65] from 15N relaxation data using the diffusion tensor obtained for an axially 

symmetric motional model. The 15N R1 and R2 relaxation rates and {1H}-15N heteronuclear NOE 

values for FAPP1-PH were measured at a 1H frequency of 600 MHz at 298K using established 
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methods [66, 67].  To estimate the R1 and R2 values, monoexponential two-parameter decay 

functions were fit to peak intensity versus measured relaxation delay profiles using the Analysis 

program from the CcpNmr software suite. NOE values were determined from the ratio of peak 

intensity in the proton saturated spectrum versus peak intensity in the unsaturated spectrum for 

a given resonance. Errors were calculated from repeat measurements (R1, R2), or from an 

analysis of background noise in the spectrum when repeat spectra were not available.  For 

model-free analysis, an initial estimate of the rotational diffusion tensor was obtained from the 

R2/R1 ratios of individual so-called “rigid” residues and the PDB coordinates of the FAPP1-PH 

solution structure using the programs pdbinertia, r2r1_diffusion and quadric_diffusion (A.G. 

Palmer, Columbia). Residues were considered rigid if they satisfied the following criteria: 1) NOE 

> 0.65, and 2) of the remaining residues, <R2> - R2,n < 1 S.D. (where S.D. is standard deviation 

from the mean, <R2>).  Fitting of the R2/R1 ratios from 51 rigid residues in total was performed 

using different rotational diffusion tensors: isotropic, axial and fully anisotropic with established 

model selection criteria [68]. Amide proton-nitrogen bond lengths of 1.02 Å and 15N chemical 

shift anisotropy of -160 ppm were assumed for all residues.  Order parameters were 

subsequently determined following the flowchart of Mandel et al, using their software ModelFree 

v. 4.2 [68] and FAST ModelFree [69]. Uncertainties in the model-free order parameters were 

estimated from 500 Monte Carlo simulations. 

PRE experiments were performed as described elsewhere [27]. DPPC was substituted for 5 

doxyl-PC in reference experiments to ensure that only 5-doxyl-dependent NMR intensity 

differences were measured. The gadodiamide agent (Selleckchem, Newmarket, UK) was added 

to protein:lipid assemblies in NMR samples from a concentrated stock solution in NMR buffer. 

The chemical shifts perturbations were calculated as =(
2

HN+
2

HX)
1/2

 where  is the ratio of the 

magnetic ratios of nuclei (0.1 for X=15N and 0.25 for X=13C). The dissociation constant Kd was 

calculated from =max(LT+PT+Kd-[(LT+PT+Kd)
2
-4LTPT]

1/2
)/2PT where LT and PT are the ligand and protein 
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concentrations and  represents the chemical shift change. The chemical shift perturbations 

were calculated with 2mM DPC:CHAPS as a reference to account for possible nonspecific 

interactions of unimolecular PC molecules in solution. The perturbations were calculated relative 

to micellar concentrations while bicelle-dependent changes were measured in reference to a 

protein NMR sample free of any lipid. The NMR spectra were processed using NMRPipe [70], 

the resonance assignments and the structure calculations were carried out in CcpNmr analysis 

suite [71] and Aria2 [72], respectively. The structures were generated by restrained torsion angle 

dynamics in eight iterations using Aria2. After a final water refinement, the 20 lowest energy 

structures out of 100 calculated were selected to represent the ensemble of FAPP1-PH 

structures (see details in Supplementary Information). The coordinates and resonance 

assignment were deposited at the PDB and BMRB [73] databases under the identifiers 2MDX 

and 19508, respectively.  

Molecular docking 

Flexible docking of FAPP1-PH and micelle structures was carried out using an established 

protocol [74].  Developments incorporated here include the detection of buried 1H,13C-group 

PREs from doxyl-PC and solvent-exposed groups from the gadolinium agent. Briefly, the active 

residues were defined based on micelle and bicelle-induced chemical shift changes and the 

solvent accessibility was estimated with NACCESS. Ambiguous distance restraints between the 

micelle centre and protein groups were set for atoms significantly broadened by 5-doxyl 

micelles. The docking protocol began with 400 randomly oriented and spatially separated protein 

and micelle structures taken from the representative ensembles. 

Database linking 

Structure of wild-type human FAPP1-PH domain sequence PDB ID 2MDX and the 

corresponding BMRB entry 19508. 
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Figures 

 

Figure 1: The gradients of lipids are shown for the anterograde pathway from the endoplasmic 

reticulum (ER) where many are synthesized, through the Golgi where they and proteins are 

modified, to the plasma membrane (PM), and would influence the degree of lipid disorder in 

each compartment. The relative amount of PI4P within the compartments is illustrated by red 

dots.  

 

Figure 2: FAPP-PH binds specifically to liquid disordered (Ld) phases. (A) Liposomes 

composed of BSM, cholesterol and DOPC ratios were selected from different regions of the 

ternary lipid phase diagram, as shown on the right, and the amount of bound protein was 

quantified by gel imaging. Unless stated otherwise, all liposomes contained 2% (mol/mol) PI4P. 

Data from liposomes composed of DPPC, POPC, DOPC or a mixture of DPPC, DOPC and 

cholesterol (5:3:2) are plotted on the left. The percentage of liposome-bound FAPP1-PH is 

indicated for each lipid composition. The phase diagram of DOPC, BSM and cholesterol 

mixtures is shown on the right. The regions of liquid ordered and disordered phases are 

indicated as Lo and Ld, respectively. These two phases coexist in vesicles formed by the lipid 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

mixtures situated within the grey zone. The zone of transition between ordered and disordered 

vesicles is indicated in blue. (B) Disordered phases were monitored by the fluorescence signals 

of TR-DHPE and overlapped with FAPP1-PHgreen. The bars in the confocal images represent 10 

m. (C) The PI4P ligand was included as either natural (brain extract) or synthetic (C8 or C16) 

forms in the vesicles formed by a 1:1:1 mixture of BSM:Chol:DOPC, and resulted in similar 

FAPP1-PH protein localization to the segregated disordered phase as revealed by the specific 

dyes TR-DHPE (Ld) and Oregon Green CTx (Lo) as seen by confocal microscopy. 

 

Figure 3:  NMR signal changes induced in FAPP1-PH by PI4P independent bilayer 

binding. A transient interaction is evident from significant CSPs consistently induced by 

interactions with bicellar (A) and micellar (B) systems as measured from 15N-HSQC experiments 

in the absence of PI4P.  This defined the active residues in HADDOCK calculations of the 

protein nonspecifically bound to the micelle. Backbone and side chain resonance changes are 

indicated by black and red bars, respectively. (C) Distance restraints used to calculate the 

structural model were taken from PREs using doxyl-broadened FAPP1-PH resonances. Those 

restraints from 15N and 13C HSQC spectra are shown above and below the x-axes. Residues 

with significantly perturbed resonances (mean + standard deviation) are indicated. The inset 

cartoons show the relevant complex of protein, 5-doxyl-PC, and micelle in black, purple and 

grey, respectively, for each panel. 

 

Figure 4: Interaction of FAPP1-PH with PI4P assemblies. (A) The structural characterization 

of the specific complex was based on perturbations of FAPP1-PH resonances after addition of 

C8-PI4P to samples containing 15N/13C-labelled protein and either micelles or (C) bicelles. 

Chemical shift changes of 15NH (top) and 13CH3 (bottom) groups after addition of C8-PI4P to 
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samples containing 4mM DPC:CHAPS (3:1) micelles or 5% DH6PC/DMPC bicelles are shown 

(B) as are PREs following addition of 5-doxyl PC-bound micelle versus PC-micelle controls, with 

the spin label shown as a red molecule in the cartoon. Black and red bars indicate backbone and 

sidechain perturbations, respectively. The dissociation constants of FAPP1-PH for C8-PI4P 

containing micelles and bicelles are 5.3 ± 2.4 M and 8.8 ± 3.3 M respectively. Groups involved 

in micelle (D) and (E) bicelle binding based on CSPs and PREs upon PI4P addition are indicated 

as blue, green and red spheres in the structure for those groups with perturbed 15N backbone, 

15N sidechain and 13C methyl signals, respectively. Significant PREs are represented by large 

spheres. The 13C-HSQC spectra of FAPP1-PH from ligand titrations are superimposed with 

peaks of key residues labeled (F). The trace for the micelle bound (red) and micelle/PI4P bound 

state (blue) are shown in the left panel for Lys74 sidechain resonance. Peak intensities for the 

diamagnetic and paramagnetic samples (red and yellow for micelle bound; blue and cyan for 

micelle/PI4P) are shown in the left panel.  

 

Figure 5: The solvent-exposed surface of bilayer-bound FAPP1-PH mapped by PREs.  (A) 

The gadodiamide (Gd3+)-induced PREs are expressed as a percentage of reduction of the signal 

intensity observed in paramagnetic vs diamagnetic samples.  The intensity reduction of 

backbone amide signals of each residue of the free state of FAPP1-PH (top) and the bicelle-

bound (middle) and bicelle:PI4P-complexed (bottom) forms are shown. The residues indicated in 

the lower panel and colored in blue exhibit a significant change in solvent accessibility upon 

formation of the bicelle:PI4P:FAPP1-PH complex. (B) The protection factors for 13C methyl 

groups of FAPP1-PH bound to PI4P-containing micelle are plotted. The color gradient indicates 

the degree of solvent protection. The y axis corresponds to the solvent accessibility calculated 

with Naccess for the free state of FAPP1-PH. Protected methyl groups are indicated with vertical 

lines. (C) The 1D traces were extracted from 2D 13C HSQC spectra (red: diamagnetic, blue: 
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paramagnetic) show the Met73C resonance of the free state, FAPP1-PH:micelle and FAPP1-

PH:micelle:PI4P complexes. (D) Electrostatic maps of the FAPP1-PH structure calculated with 

APBS [75] showing the isocontours and superimposed with the surface accessible area 

(between -1 and 1 kT/e). FAPP1-PH is oriented as in Figure 4D.  

 

Figure 6: FAPP1-PH membrane binding: (A) Comparison of pure and PI4P-containing micelle 

docked structural orientations. Back calculated distances (micelle center to protein backbone 

HNs) for the 20 best models of micelle bound (grey) and PI4P bound (black) models are 

represented. Micelle and protein centers are indicated by purple dotted lines, the radial 

distribution (g(r)) of phosphorus (yellow) and nitrogen (blue) atoms of the choline headgroups 

are indicated by small spheres. The radial distributions were calculated from a 200 ps free 

molecular dynamic calculations in explicit water within Xplor. The structure closest to the mean 

is shown with the distance between the protein and micelle centers labeled, as well as the 

change in insertion angle upon PI4P binding by the micelle complex. The 1 and 2 strands are 

indicated. (B) A detailed model of FAPP1-PH showing the side chains (balls and sticks) is 

shown. The micelle surface (orange) and  strands are indicated as are the key interfacial 

residues. The hydrophobic wedge is delimited by Trp8 and Gln16, and is oriented such that 2 is 

fully inserted into micelles while 1 is interfacial. Residues with significant PREs are shown. (C) 

Mutations of membrane inserting residues reduce affinities for PI4P-containing membranes 

based on liposome sedimentation assays and surface plasmon resonance. The co-sedimented 

fraction and relative response is plotted for different FAPP1-PH concentrations.  

 

Figure 7: Membrane binding model. The proposed states of FAPP proteins at the TGN involve 

nonspecific insertion into the loosely packed bilayer regions (green), diffusing laterally until a 

PI4P molecule (red) is encountered and bound, thus increasing the residency time such that 
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protein accumulates, and boosting lateral pressure in the bilayer. The proposed membrane 

recognition by the PH domain and Arf1 interaction could be extended to other COF family 

proteins to drive specific organelle targeting.  Lipids transferred by COF proteins to the 

membrane increase the membrane rigidity and result in a progressive release of the PH domain 

of the COF proteins, thus halting the activity of COF proteins.  
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Table 1  NMR and refinement statistics for solution structures and micelle docked structures 

Solution structure of FAPP1-PH 
NMR distance and dihedral constraints 

Distance constraints   

    Total NOE 1448  

     Unambiguous 1223  

        Long range (|i − j| > 5) 235  

        Medium (4 ≤ |i − j| ≤ 5) 41  

        Short (2 ≤ |i − j|≤   3 ) 83  

        Sequential / intra 864  

     Ambiguous 225  

     Hydrogen bonds 34  

Total dihedral angle restraints 128  

    , 64, 64  

Structure statistics   

Violations    

    Distance constraints (Å) (>0.5 Å) 0  

    Dihedral angle constraints (º) 0  

Deviations from idealized geometry   

    Bond lengths (Å)     0.006573 ±0.000167  

    Bond angles (º) 0.791 ±0.016  

    Impropers (º) 1.777 ±0.089  

Average pairwise r.m.s. deviation*(Å)       

    Heavy , backbone     0.86, 0.32  

Energies (Kcal.mol-1)   

   Enoe 442.77 ±10.85  

   Ecdih 6.25 ±1.63  

   Ebond 74.39 ±3.73  

   Eimproper 109.62 ±8.94  

   Eangle 295.85 ±12.06  

   Evdw -185.74 ±26.89  

   Edihe 582.8 ±7.53  

Ramachandran statistics**   
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Residues in core regions 73.86%  

Residues in allowed regions 22.33%  

Residues in generous regions 2.5%  

Residues in disallowed regions 1.4%  

Docked structures Micelle Micelle:PI4P 

Intermolecular energies   

Buried surface (Å2) 1208.22 ±125.87 1232.09 ±117.94 

Evdw (Kcal.mol-1) -58.50 ±5.26  -59.29 ±6.05 

Eelec (Kcal.mol-1) -80.48 ±39.22  -122.72 ±33.94 

Insertion     

       (deg.) 16.80 ±4.50  14.23 ±4.32 

      (deg.) 166.52 ±16.29  153.52 ±30.39 

      r (mass centers) (Å) 38.47 ±1.00  37.14 ±1.13 

Interactions*** 8,10, 
11,12,13,15
,16  

 8,10,11,12,13,15,16,74 

 
* RMSD is calculated for secondary structural elements including residues 1-7,16-22,26-30,43-

44,50-53,61-64,69-73 and 78-94 calculated for ten representative structures.  
** non-glycine residues 
*** more than 7 of the  20 models. Bold residues are hydrogen bonded between the headgroup 

of DPC and W8, N10, T13, W15, Q16 and K74. 
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Table 2:  Experimental data used for deriving structural restraints to model the FAPP1-PH 

interaction with PI4P membrane mimicking micelles in the HADDOCK calculations based on an 

established approach [74]. 

Lipid model NMR data  Nuclei Resonance 

Micelle 

(PI4P+DPC) 

5-doxyl PC 

PRE 

15N 
Trp8, Gly14, Q16

Asn10, Asn10, Leu12, Thr13,Trp15, Trp15  

13C Leu12, Thr13, Lys74 

CSP 

15N 
Leu5, Lys7-Gln16,Ile 44,Ile 63-Ile65, Glu68, 

His70, Phe72, Met73, Trp8 

13C Val4, Leu5, Leu12,Ile 44,Ile63-Ile65, Met73 

Bicelles  

Gd3+ spin label 

15N 
Thr9, Asn10 ,Thr13, Gly14, Ser53, Thr59, 

Glu62, Ile71,Lys74 

13C Leu12, Thr13 

CSP 

15N 

Tyr6, Trp8, Trp8, N10, N10, Thr13, Lys27, 

Tyr29, Gly42, Glu50, Met61, Leu63, Ile64, Ile64, 

Ile71, Tyr72, Lys74 

13C L12, T13, Ile63, Ile64 

Loss of function by mutation 

Lys7A, Trp8E, Trp8Y, Asn10T, Tyr11G, Leu12G, Gln16R, Arg18L 

HADDOCK restraints 

Deeply  inserted Trp8, Asn10(N,), Leu12(N,), Thr13(N,), Gly14N, Trp15(N,), Gln16 

Interfacial Lys74 
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Table 3: Dissociation constants measured for FAPP1-PH membrane interactions 

*not determined due to the instability of the mutant 

 

 

 

 

 

 

 

  

Protein 
Dissociation constant estimated from 

liposome sedimentation assays (M) SPR (M)  

WT 2.05 ±0.90 2.68 ±0.71  

W8E >1000 >1000  

W8Y >1000 >1000  

N10T 5.12 ±1.07 17.32 ±5.74  

T13F 5.1 n.d.*  

T13N 5.86 ±0.83 5.15 ±0.54  

W15Y 2.67 ±0.09 2.48 ±0.61  

W15E n.d.* n.d.*  

Q16R >1000 >1000  

R18L >1000 >1000  
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Highlights  
 
 

 FAPP-PH domains selectively recognize PI4P within disordered membrane domains  

 Two-pronged multistep binding mode mediates protein insertion into fluid bilayer  

 Protein targeting to Golgi driven by disorder gradient created by lipid composition  


