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Abstract 27 

Over the last decade the effect of food formulation on digestion in healthy adults has 28 

increasingly gained interest within the scientific community. The area requires 29 

multidisciplinary skills from a wide range of fields including medical, chemical, and 30 

engineering. In this work, we aim to develop simplified in-vitro intestinal models to study the 31 

effect of mass transfer on food digestibility and nutrient bioaccessibility for a range of food 32 

hydrocolloids. The models developed aim to mimic intestinal motility and focus on describing 33 

phenomena occurring during digestion in the mm scale. Results indicate that hydrocolloids 34 

have a significant effect in retarding simulated glucose accessibility, and the effects are 35 

seemingly more pronounced (fivefold reduction in mass transfer and simulated glucose 36 

absorption) at viscosities around 0.01Pa s.  This indicates the potential to modulate glucose 37 

availability by food formulation. 38 

*corresponding author (tel. No: +44 (0) 1214145081; email to: o.gouseti@bham.ac.uk) 39 
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1. Introduction 40 

It is estimated that the food sector is currently responsible for one third (of a $15 million total 41 

market) of hydrocolloid applications worldwide [Seisun 2012]. Although primarily used as 42 

texturing agents [Dickinson 2003; 2009; Saha & Bhattacharya, 2010; Funami 2011; Ramirez, 43 

Uresti, & Velazquez, 2011], food hydrocolloids are increasingly being associated with a 44 

number of important health benefits, including glycaemic and insulinaemic control in type-2 45 

diabetes, weight management, and cardiovascular disease prevention [Jenkins, Wolever, 46 

Leeds, Gassull, Haisman, Kilawari, Goff, Metz, & Alberti, 1978; Slavin 2005; Edwards & Garcia 47 

2009; Dettmar, Strugala, Richardson, & 2011; Kendall, Esfahani, & Jenkins, 2010; Mills, 48 

Spyropoulos, Norton, & Bakalis, 2011; Norton, Cox, & Spyropoulos, 2011; Gidley 2013; 49 

Fiszman & Varela 2013; Bradbeer, Hancocks, Spyropoulos, & Norton, 2014]. These 50 

functionalities are typically linked with the thickening, gelling, water sequestering, and 51 

prebiotic properties of food hydrocolloids and their effect on food digestion [Doublier & 52 

Cuvelier 2006; Edwards & Garcia 2009; Douaire & Norton 2013]. A possible mechanism of 53 

action involves the resistance in mass transfer in the gut in the presence of hydrocolloids due 54 

to the increased viscosity of the digested food. This may result in slower gastric emptying and 55 

modulated nutrient absorption. However, the detailed mechanisms affecting nutrient 56 

bioaccessibility and in particular the impact of hydrocolloids on mass transfer and food 57 

digestion are currently not well understood [Gidley 2013; Fiszman & Varela 2013].  58 

Quantifying human digestion is a challenging research area. Although the importance of 59 

“artificial digestion” has long been appreciated [Sheridan Lea 1890], it is in the last decade 60 

that there has been a significant increase in the use of in-vitro techniques [Guerra, Etienne-61 

Mesmin, Livrelli, Denis, Blanquet-Diot, & Alric, 2012; Hur, Lim, Decker, & McClements, 2011; 62 

Woolnough, Morno, Brennan, & Bird, 2008]. In-vitro systems have been broadly classified into 63 

‘batch’ and ‘dynamic’, depending on whether the temporal profile of in-vivo digestion (e.g. 64 

fluid mixing, addition of simulated gut secretions and the removal of resulting digestion 65 

products) is taken into account [Vieira,, Kirby, Ragueneau-Majlessi, Galetin, Chien, Einolf, 66 

Fahmi, Fischer, Fretland, Grime, Hall, Higgs, Plowchalk, Ridley, Seibert, Skordos, Snoeys, 67 

Venkatakrishnan, Waterhouse, Obach, Berglund, Zhang, Zhao, Reynolds, & Huang, 2013; 68 

Guerra et al., 2012; Thomas, Herouet-Guichenev, Ladics, Bannon, Cockburn, Crevel, 69 

Fit`Patrick, Mills, Privalle, & Vieths,  2007]. The typical ‘batch’ model consists of a series of 70 

vessels, each of which simulates the digestive conditions (e.g. pH, enzymes, temperature, 71 
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biosurfactants, etc.) in different regions of the gut (e.g. mouth, stomach, small intestine, and 72 

colon). Such systems have been used by Englyst, Veenstra, & Hudson [1996] to measure the 73 

rapidly available glucose in plant foods and by Oomen, Tolls, Sips, & Van den Hoop [2003] to 74 

assess the metabolism of lead into the digestive tract. Similar systems also include the 75 

multiple-step pH-stat method that simulates a four-step digestion (oral, gastric, small, and 76 

large intestinal phases) [McClements & Li, 2010] and De Boever, Deplancke & Verstraete’s 77 

[2000] five-step digestive model consisting of five double-jacketed vessels. Although these 78 

models provide valuable information, they do not account for actions of the mechanical forces, 79 

flow and mixing that might have an effect on the digestion kinetics.  80 

Models with dynamic elements are typically application specific, and may include oral, gastric, 81 

or intestinal digestion. Oral digestion is complex and difficult to mimic [Le Reverend, Gouseti, 82 

& Bakalis, 2013]. Many investigators simplify this step and use commercial meat mincers to 83 

simulate oral processing [Bornhorst & Singh 2013; Hoebler, Lecannu, Belleville, Deneaux, 84 

Popineau, & Barry,  2002]. Others have developed models to study the effect of chewing 85 

[Salles, Tarrega, Mielle, Paratray, Gorria, Liaboeuf, & Liodenot, 2007], tongue action 86 

[Benjamin, Silcock, Beauchamp, Buettner, & Everett, 2012; Benjamin, Silcock, Kieser, Waddell, 87 

Swain, & Everett, 2012], shearing [Lvova, Denis, Barra, Mielle, Salles, Vergoignan, Di Natale, 88 

Paolesse, Temple-Boyer, & Feron, 2012] and compression [De Loubens, Panouille, Saint-Eve, 89 

Deleris, Trelea, & Souchon, 2011; Mills et al., 2011] on oral digestion.  90 

Dynamic gastric digestion models typically consider mechanical mixing of the bolus alongside 91 

choosing the required physiological conditions (pH, mixing and flow, enzyme concentrations, 92 

etc.). In the model of Kong and Singh [2008] mixing is achieved by the motion of small plastic 93 

beads, which provide the required mechanical stresses on the food samples. In Chen, Gaikwad, 94 

Holmes, Murray, Povey, Wang, & Zhag’s [2011] model, mixing is generated using a spherical 95 

probe with controlled vertical movement, positioned in the axial centre of a jacketed vessel.  96 

The Dynamic Gastric Model (DGM), an apparatus that simulates gastric digestion using a 97 

conical flexible walled vessel and a cylinder that processes the food at representative shear 98 

rates, has recently been developed at the Institute of Food Research in Norwich UK [Lo Curto, 99 

Pitino, Mandalari, Daintry, Fauls, & Wickham, 2011; Mercuri, Lo Curto, Wickham, Craig, & 100 

Barker, 2008; Vardakou, Mercuri, Barker, Craig, Faulks, & Wickham, 2011; Wickham & Faulks 101 

2012]. The DGM replicates the physical mixing, transit and breakdown forces in the stomach, 102 

as well as the relevant physiological conditions (pH gradient and enzymes).  103 
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Intestinal models in which mixing conditions (segmentation and peristalsis) are an integral 104 

part of the process are scarce in the literature. One such model has been reported by 105 

Tharakan, Rayment, Fryer, & Norton [2007] and Tharakan, Norton, Fryer, & Bakalis [2010], 106 

where segmentation is simulated by squeezing the flexible dialysis tube used to represent the 107 

gut wall with the aid of two pneumatically controlled rubber cuffs. In this model, flow 108 

conditions have shown to significantly affect simulated absorption rates of chemicals in water 109 

as well as in guar gum solutions. The flow characteristics of a shear thinning fluid during 110 

simulated peristaltic motion (squeezing of an elastic tube) have been experimentally 111 

investigated by Nahar, Jeelani, & Windhab [2012]. 112 

In the mid-1990s, TNO in the Netherlands introduced TNO intestinal model (TIM), a 113 

computer-controlled in-vitro digestive system, which represents the different sections of the 114 

digestive tract (stomach, duodenum, jejunum, ileum, and colon) using different compartments 115 

[Blanquet, Marol-Bonnin, Beyssac, Pompon, Renead, & Alric, 2001; Marteau, Minekus, 116 

Havenaar, & Huis in’t Veld, 1997; Minekus, Marteau, Havenaar, & Huisintveld,, 1995; Minekus, 117 

Smeets-Peeters, Bernalier, Marol-Bonnin, Havenaar, Marteau, Alric, Fonty, & Huis in’t Veld,, 118 

1999]. Each compartment is equipped with a flexible membrane where simulated digestion 119 

takes place, and two outer glass jackets that allow for both temperature and pressure control. 120 

Today, two TIM models exist: TIM1 (stomach & small intestine) [Minekus et al.1995; Marteau 121 

et al. 1997] and TIM2 (large intestine) [Minekus et al. 1999; Blanquet et al. 2001]. 122 

Models with both ‘batch’ and ‘dynamic’ elements have also been described in the literature. 123 

For example, ‘batch’ gastric digestion has been combined with dialysis membranes in cell 124 

wells [Argyri, Birba, Miller, Komaitis, & Kapsokefalou, 2009; Argyri, Theophanidi, Kapna, 125 

Staikidou, Pounis, Komaitis, Georgiou, & Kapsokefalou, 2011] or dialysis bags [Bouayed, 126 

Deuber, Hoffmann, & Bohn, 2012] to simulate absorption of chemicals through the small 127 

intestinal wall. In some other systems, peristaltic pumps have been used to control flow of 128 

digested foods and related secretions for adults [Mainville, Arcand, & Farnworth, 2005; 129 

Savalle, Miranda, & Pelissier, 1989] and infants [Menard, Cattenoz, Guillemin, Souchon, 130 

Deglaire, Dupont, & Picque, 2014]. 131 

Overall, there is evidence that the dynamic nature of human digestion is important in 132 

determining digestibility of foods. In particular, flow and mixing in the gut may significantly 133 

affect digestive processes, however the link between mass transfer and food digestion is still a 134 
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largely unexplored area. In this framework, we have developed in-vitro models that simulate 135 

gut wall contractions with the aim to investigate the effect of gut motility on the accessibility 136 

of glucose from model solutions, using a range of food hydrocolloids (guar gum, CMC, pectin). 137 

We have analysed our data using engineering principles and dimensionless numbers that 138 

characterise the flow (Reynolds number) and mass transfer (Sherwood number) in the gut. 139 

We have found that irrespective of the hydrocolloid used or the segmentation patterns 140 

applied, the relationship between Reynolds and Sherwood numbers of all investigated 141 

digestive conditions and for all model chyme solutions superimposes to a single line. As 142 

Reynolds number increased and the flow became less laminar, mass transfer was enhanced. 143 

The transition of flow regime was observed at solutions with viscosities of the order of 0.1Pa 144 

s, which correlates well with results reported by Tharakan et al. [2010]. This viscosity value is 145 

within the range of luminal viscosities reported from animal studies [Ellis, Roberts, Low, & 146 

Morgan, 1995]. Systems with lower viscosities (higher Reynolds number) showed enhanced 147 

mass transfer levels. It is noted that guar gum is a commonly used, relatively inexpensive 148 

($0.83/lb; $1.83/kg [Seisun 2012]) and highly acceptable by consumers [Varela & Fiszman 149 

2013] hydrocolloid, which has been shown to reduce postprandial blood glucose levels in-vivo 150 

[Jenkins et al. 1978].  151 

 152 

2. MATERIALS AND METHODS 153 

2.1 Sample preparation 154 

Model 1% wt/vol (55mM) glucose (D-(+)-glucose by Sigma-Aldrich, UK) solutions of different 155 

viscosities were used in this study to evaluate the effect of mass transfer in simulated glucose 156 

absorption. This concentration approximates the glucose content of a cup of coffee with half a 157 

sachet of sugar added and it is 10 times higher than the homeostatic blood glucose levels. 158 

Viscosity was adjusted by addition of different hydrocolloids (guar gum, pectin, 159 

carboxymethyl cellulose (CMC)). Distilled water was used in all experiments. Guar gum 160 

(105008, ICN Biomedicals, USA for the SIM experiments and Sigma-Aldrich, UK for the DDuo 161 

experiments) and pectin (degree of esterification7680) by Fluka, UK were added slowly into 162 

stirred glucose solutions and heated to 80oC for 5min. CMC (Sigma-Aldrich, UK, C5013) was 163 

also added slowly into stirred glucose solutions but was more moderately heated (60oC for 164 

10min). Mixtures were left to fully hydrate overnight at room temperature under mixing with 165 
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an overhead stirrer and were further used within 24h. Viscosity was measured using 166 

rotational rheometer with cone/plate geometry prior to the experiments (Figure 1). 167 

2.2 In-vitro Models: SIM and DDuo 168 

2.2.1 Model description 169 

The Small Intestinal Model (SIM) used in this work has been developed at the School of 170 

Chemical Engineering, University of Birmingham and has been described in detail elsewhere 171 

[Tharakan 2008; Jaime Fonseca 2011]. The model (schematic of Figure 2) consists of an inner 172 

dialysis tube (Spectre/Por 7®, MWCO 8kDa) that represents the intestinal lumen (diameter of 173 

32mm, characteristic of the average adult human small intestine [Schmutz, Le Pennec, Dede, & 174 

Perdriel,, 2005]), and an outer, concentric, impermeable silicone tube (Flexible Hose supplies, 175 

UK, 50mm diameter, 3mm thickness) that borders the outer (recipient) zone. Large pore size 176 

(8kDa) was selected to minimise the resistance of mass transfer incurred by the membrane. In 177 

a typical experiment, chyme enters from one end of the lumen (feed) and may recirculate with 178 

the aid of a peristaltic pump. The recipient fluid (initially distilled water) is also re-circulating 179 

and passes through a collection jar, which allows sampling as required. Gut motility is 180 

simulated by the pneumatically controlled inflating-deflating motion of two rubber cuffs. Cuff 181 

inflation causes squeezing of the tubes, which simulates gut wall contractions. Deflation 182 

releases the squeezing pressure and allows the tubes to retrieve their initial cylindrical shape. 183 

In the present work, 1% wt/vol (55mM) glucose solutions with or without the addition of 184 

hydrocolloids (guar gum, CMC, pectin) were used as model ‘chyme’ systems and the glucose 185 

collected in the recipient zone was measured (DNS method, section 2.3) over time. 186 

A second, improved in-vitro model (Dynamic Duodenum, DDuo) has recently been developed 187 

and initial results are also presented here. The new model implements a more automated and 188 

flexible design, with the aim to allow for a more systematic investigation of the effect of 189 

peristaltic and segmentation motions on digestion. The DDuo (schematic of Figure 3) uses the 190 

same twin tube concept as the SIM, where the small active chemical passes through the pores 191 

of a dialysis membrane from the chyme (lumen) to the recipient zone.  A fixed secretions port 192 

designed for injection of intestinal secretions (such as pancreatic and hepatic fluids) is located 193 

100mm away from the feeding end. This is representative of the average distance between the 194 

pylorous and the emptying of the pancreatic duct (at the major duodenal papilla) in humans 195 

[Kong, Kim, Hyun, Cho, Keum, Jeen, Lee, Chun, Um, Lee, Choi, Kim, Ryu, & Hyun, 2006]. 196 
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Segmentation and peristaltic motions are achieved by squeezing of the membrane at 8 197 

independently controlled segmenting positions. 198 

It is noted that the models have been specifically designed for studying engineering aspects 199 

(mass transfer) of human digestion, which is scarce in the open literature. So far, the effects of 200 

other physiological conditions, such as nutrient transportation through the gut membrane or 201 

feedback mechanisms, are not represented.  202 

2.2.2. Methods 203 

Unless otherwise stated, the two cuffs of the SIM operated in sequence (one after the other), 204 

in cycles of 6s (2s inflation time, 2s deflation time, 2s delay time), performing 10 cycles per 205 

minute (cpm) in total. The effect of mixing (segmentation / no segmentation) on simulated 206 

glucose absorption was studied for the systems detailed Table 1 (zero-shear viscosity also 207 

shown). The ends of the dialysis tubing were closed and no chyme recirculation occurred 208 

(closed configuration). Experiments were conducted in triplicates and the average with error 209 

bars is shown in the graphs. 210 

The effect of segmentation frequency on simulated glucose absorption was studied for the 211 

systems detailed in Table 2 using the open configuration, where chyme re-circulated at 212 

1.6x10-4 m3s-1 with the aid of a peristaltic pump. Cuffs operated at cycles of 3s, 6s, and 9s with 213 

equal inflation, deflation, delay intervals of 1s (20cpm), 2s (10cpm) and 3s (5cpm), 214 

respectively. Glucose increase in the recipient zone was determined using the DNS method, 215 

described in section 2.3. Experiments were conducted in triplicates and the average with 216 

error bars is shown in the graphs. 217 

Initial experiments with the DDuo were performed using 1% w/w glucose solutions with or 218 

without addition of 1% guar gum as model chyme systems. Unless otherwise stated, 219 

segmentation occurred at 4 positions (blue arrows in Figure 3), alternating (with the black 220 

arrows in Figure 3) every 10s. Although further work is required for conclusions to be 221 

reached, initial results are included here to indicate the potential of the new model and how it 222 

compares with the SIM. 223 

2.3 Sample analysis: DNS 224 

Samples from the recipient side were analysed using the dinitrosalicylic acid (DNS) method 225 

for reducing sugars [Jaime-Fonseca, 2011; Miller 1959]. Equal volumes (1mL) of sample (or 226 
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water as reference system) and DNS reagent (0.1% dinitrosalicylic acid; 30% w/w potassium 227 

sodium tartrate; 0.4M NaOH) were added in a test tube, mixed, and placed in boiling water for 228 

5min. The resultant products were immediately cooled to room temperature and measured 229 

spectrophotomercially at 540nm. 230 

2.4. Data analysis 231 

2.4.1 Mass Transfer Coefficients 232 

Mass transfer coefficients were determined as described previously [Tharakan et al., 2007; 233 

Tharakan et al., 2010; Jaime-Fonseca, 2011]. A typical graph of glucose absorption in the 234 

recipient zone over time is shown in Figure 4 and is used to estimate mass transfer in the 235 

model gut. The molar flux across the membrane is calculated using equations 1 and 2. The 236 

overall mass transfer coefficient (Koverall) is then obtained from equation 3. 237 

 238 

� = 2 ∙ � ∙ � ∙ �           (1) 239 

�	 =

��
������

�∙�
           (2) 240 

�������� =
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           (3) 241 

 242 

where r is the membrane radius (m), L is the length (m), A is the total absorbing surface area 243 

(m2), molglucose is the glucose in the recipient side (mol) , MT the total molar flux (mol m-2s-1), 244 

ΔC is the concentration difference (mol m-3) between the two sides of the membrane (taken as 245 

the initial concentration difference of 0.055M, assumed to change insignificantly within the 246 

experimental time), and Koverall is the overall mass transfer coefficient (m s-1).  247 

Detection of a glucose molecule requires transportation from the lumen to the dialysis 248 

membrane, passing through the membrane, and transfer to the recipient fluid. This three-249 

stage process is characterised by the luminal mass transfer coefficient, (Klumen, m s-1), diffusion 250 

(described by coefficient Dmembrane, m2 s-1) through the membrane of thickness Zmembrane (m), 251 

and the recipient side’s mass transfer coefficient (Krec, m s-1). Equation 4 gives the relationship 252 

between the local and overall transfer coefficients (Ksystem is the combined mass transfer 253 

through the membrane and the recipient zone, m s-1). 254 

 255 
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 257 

To determine Klumen of the investigated chyme samples, it is first necessary to estimate Ksystem, 258 

which is assumed constant for all the experiments. This was achieved from experiments that 259 

minimise resistance to mass transfer at the lumen side (maximise Klumen), so that 1/Klumen 260 

would be much smaller than 1/KSystem. To minimise resistance in the luminal side, an 261 

increasing flow rate was applied in the inner tube, which was filled with 1% glucose in water 262 

until no significant increase in Koverall was observed. This value (estimated at 5.3x10-7 m s-1, 263 

Tharakan, 2008) was taken as Ksystem. 264 

2.4.2 Reynolds and Sherwood numbers 265 

The dimensionless Reynolds (Re) and Sherwood (Sh) numbers were estimated from 266 

equations 5 and 6, to further characterise mass transfer and study the relative importance of 267 

convective and diffusive processes in the model gut.  268 

 269 

+, =
-.(0�)

2
            (5) 270 

3ℎ =
���#�$�

(
������
            (6) 271 

 272 

where ρ is the density of the fluid (kg m-3), u is the velocity of the fluid (m s-1), r is the radius of 273 

the membrane (m), μ is the viscosity of the solution (Pa s), Dglucose is the diffusion coefficient of 274 

glucose (6.9x10-10 m2 s-1). The velocity value used for u was estimated as follows. Each cuff 275 

contraction was assumed to displace fluid of volume equal to the volume of a cylinder with 276 

diameter 2r (the diameter of the membrane) and length Lcuff, the length of each rubber cuff. 277 

This was divided by the inflation time to calculate the volumetric flow rate, which was then 278 

divided with the cross sectional area of the membrane to obtain the velocity value. 279 

3. RESULTS 280 

3.1 Mass transfer in the SIM 281 

Simulated glucose absorption from 1% glucose in aqueous, guar gum (0.1%), and CMC (0.1% 282 

and 0.5%) solutions with and without segmentation showed linear curves of the shape of 283 

figure 4 without any plateaus (no lag time or converge limit, data not shown). The relevant 284 

overall mass transfer coefficients were calculated from equation 3, and results are shown in 285 

Figure 5 as a function of zero-shear viscosities. Figure 5 demonstrates increased glucose 286 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10

absorption with application of segmentation movements, which can be attributed to enhanced 287 

mass transfer to the membrane wall due to the squeezing motions of the cuffs. The effect was 288 

more profound for the aqueous solution, where application of segmentation resulted in 30% 289 

increase in mass transfer coefficient. More viscous solutions of 0.1% guar gum and 0.1% CMC 290 

solutions  showed maximum 20% increase in Koverall on application of squeezing movements. 291 

This is in good agreement with Tharakan et al. [2007; 2010], who reported reduced effect of 292 

squeezing on mass transfer as viscosity increased. Figure 5 also indicates maximum overall 293 

mass transfer coefficient for the lowest viscosity fluid on application of segmentation 294 

movements, suggesting that at low viscosities there is minimal resistance to mass transfer. 295 

Increasing chyme viscosity (above 2mPa s) resulted in reduction of mass transfer (by 15% 296 

and 90% as viscosity increased from 1 to 20 and 200Pa s, respectively). Interestingly, at 0.5% 297 

CMC (200mPa s zero viscosity), glucose transport to the recipient zone was practically 298 

inhibited without segmentation within the timescale of the experiments.  299 

These results correlate well with estimated Koverall from in-vivo data of human volunteers who 300 

consumed an oral glucose dose (250mL of 10% by weight glucose drink) with or without 301 

3.6% wt/vol guar gum [Blackburn, Redfem, Jarjis, Holgate, Hanning, Scarpello, Johnson, & 302 

Read, 1984]. Although glucose and guar gum concentrations were different to those used in 303 

the present work, it is encouraging to notice that both the present and the in-vivo data 304 

resulted in Koverall of the same order of magnitude (for aqueous solutions 5.35x10-7 and 305 

5.47x10-7 m/s, respectively) and that addition of the hydrocolloid prompted reduction of 306 

Koverall (from 5.47x10-7 to 2.91x10-7 m/s). The effect of guar gum in reducing postprandial 307 

glucose levels was attributed to the inhibiting action on fluid convection by the intestinal 308 

motility due to increased chyme viscosity. 309 

Figure 6 shows the effect of segmentation frequency on mass transfer for guar gum and pectin 310 

solutions. For all investigated conditions, increasing the viscosity resulted in a decrease in 311 

mass transfer. Guar gum and pectin systems showed similar trends: an approximately 312 

threefold reduction in Koverall was observed as zero shear viscosity increased from 0.02 Pa s to 313 

1.2 Pa s in systems containing guar gum (0.25% and 0.63%, respectively) and from 0.05Pa s to 314 

1.9Pa s in pectin systems (10% and 30%, respectively). For the same systems, the effect of 315 

segmentation frequency was found marginal and similar overall mass transfer coefficients 316 

were estimated for all investigated protocols. Further increase in guar gum concentration (to 317 
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0.75%) had an insignificant effect on mass transfer, in agreement with previous work 318 

reported by Tharakan et al. [2007; 2010]. 319 

Interestingly, increased frequency of segmentation contractions (i.e. faster squeezing of the 320 

membrane) is expected to result in increased mixing and therefore higher mass transfer 321 

coefficients. It may also further enhance mass transfer by decreasing the “unstirred water” 322 

layer adjacent to the gut wall, which further obstructs molecular diffusion and nutrient 323 

absorption [Doublier & Couvelier 2006]. Similar conclusions would be made according to the 324 

‘surface-renewal’ theory [Cussler 2000]. However, frequency of contractions did not have a 325 

significant effect on the estimated Koverall for both guar gum and pectin solutions in all 326 

investigated concentrations. It is possible that the time scale of the perturbations induced by 327 

the squeezing motions of the cuffs is smaller than the relaxation time of the system under 328 

investigation. Any changes in the squeezing frequency would then be expected to have 329 

marginal effect on mass transfer. This has been identified as a possible limitation of the SIM 330 

and it has been addressed in the next generation (DDuo). 331 

Overall figures 5 and 6 demonstrate the potential of both food formulation and segmentation 332 

in controlling digestion processes. From those results one could conclude that the effect of 333 

formulation on food digestibility is complex and rheological variables other than viscosity 334 

may play an important role in determining nutrient bioaccessibility. In addition, food 335 

formulation is believed to further impact in-vivo segmentation patterns (e.g. liquid foods are 336 

said to stimulate deep contractions while highly viscous foods are generally associated with 337 

shallow muscle movements) [Jaime-Fonseca, 2011]. 338 

Figure 7 shows the Reynolds and Sherwood numbers, calculated from equations (5) and (6). 339 

As a general trend, convection becomes increasingly more important than diffusion (i.e. Sh 340 

number increases) as Re number increases above 100. This indicates that higher Re enhances 341 

convective mass transfer. Interestingly, a notable “step” towards convective processes 342 

appears in Re numbers in the region of 1000 (low viscosity fluids, of about 20mPa s) for the 343 

guar gum solutions. This could be the result of a change of the flow regime from laminar to 344 

transitional-turbulent, resulting in increased mixing and mass transfer. At Re numbers below 345 

100, the flow becomes fully laminar and an increase of Re does not result in a significant 346 

increase of Sh (i.e. convection is not enhanced). The different segmentation patterns appeared 347 

to influence the relationship between Sh and Re only marginally. 348 
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3.2 Mass transfer in DDuo 349 

Having established that both formulation and mixing conditions are significant in determining 350 

mass transfer and nutrient bioaccessibility in the gut, a new model was built with improved 351 

functionality and automation, as discussed in section 2.2.1. The new model aims at addressing 352 

the limitations observed in the SIM and offers flexibility in reproducing gut motility: there are 353 

8 segmentation positions (i.e. squeezing of the porous membrane), each of which is only 1cm 354 

long (with respect to the 12cm long cuffs of SIM). The segmentation points can be controlled 355 

separately, so that each moves at the required time and rate.  356 

Initial data obtained with the DDuo are shown in Figures 8-10. Figure 8 shows the effect of 357 

mixing conditions on glucose absorption from 1% glucose in aqueous and 1% guar gum 358 

solutions. Mixing was induced by squeezing at alternating positions at either 4 locations 359 

(gray/black arrows in Figure 3) or 1 location (positions 2 and 6 in Figure 3). The results are 360 

comparable to those obtained from the SIM model. When mixing was reduced to one 361 

segmenting point, a delay of 10min was observed for both water and guar gum solutions, 362 

before determining glucose in the recipient zone. These results indicate that the way 363 

intestinal motility is reproduced in the in-vitro models could affect the observed mass transfer 364 

coefficient. The results from DDuo indicate that increasing the number of segmentation points 365 

can result in a change of accessible glucose indicating an increase of mixing. 366 

In Figure 9 the estimated overall mass transfer coefficients are shown for different 367 

segmentation points. Results indicate that at 1 segmentation point (i.e. lower mixing) mass 368 

transfer was reduced by 25% and 45% for aqueous and guar gum systems, respectively. In 369 

addition, the effect of the number of segmentation points was more profound at higher 370 

viscosity mixing (40% reduction of Koverall for the 1% guar gum) when compared to low 371 

viscosity (only 15% reduction on water).  372 

Figure 10 shows the effect of mixing frequency (at 4 segmentation points) on Koverall from1% 373 

glucose in aqueous and 1% guar gum systems. Results indicate that under investigated 374 

conditions, increased segmentation frequency appears to enhance mass transfer. On all 375 

occasions, the lower viscosity fluid resulted in higher (up to 30%) mass transfer. However, at 376 

12cpm it appears that the difference between the aqueous and viscous systems was marginal 377 

(<10%), indicating a nearly homogeneous mixing. Overall, Figures 8 - 10 demonstrate the 378 

flexibility of DDuo and its potential as a more adaptable tool to understand the effect of 379 
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intestinal motility on glucose bioaccessibility. Further work is required to obtain an 380 

understanding of the detailed effect of gut motility on mass transfer and food digestibility. 381 

4. CONCLUSIONS 382 

There is a growing interest in controlling the nutritional values of foods using hydrocolloids. A 383 

mechanism of slowing glucose bioaccessibility has been attributed to reduction in mass 384 

transfer through the gastrointestinal tract. This work presents in-vitro digestion studies using 385 

novel models with the ability to simulate intestinal motility, and illustrates the importance of 386 

mass transfer on simulated glucose absorption by using a range of food hydrocolloids. The 387 

models simulate flow and mixing in the gut. Addition of guar gum, CMC, and pectin showed 388 

reduction of glucose bioaccessibility by up to 30% compared with aqueous solutions in-vitro. 389 

Further work is required to understand if this reduction of mass transfer could result 390 

in/explain the significant delay of in-vivo post-prandial blood glucose observed by the 391 

addition of hydrocolloids. Overall, obtained results indicate that the effects of hydrocolloids 392 

on simulated digestibility are complex and for investigated hydrocolloid systems/conditions, 393 

increasing viscosity appeared to reduce mass transfer coefficients. This implies the potential 394 

of designing healthier foods by engineering the viscosity of the digested food. 395 
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    589 

Figure 1: Shear viscosity of solutions (with concentrations) used in the experiments: (a) guar 590 

gum; (b) pectin. 591 

 592 

 593 
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 602 

 603 

Figure 2: Schematic drawing of Small Intestinal Model (SIM). The investigated (red colour) 604 

and recipient (blue colour, initially water) fluids recirculate in the luminal and recipient sides 605 

of the model respectively, using peristaltic pumps P1 and P2. Segmentation is mimicked by 606 

squeezing the tubes radially, using two pneumatically controlled rubber cuffs (cuff 1 and cuff 607 

2). The active compound passes through the porous inner membrane from the luminal to the 608 

recipient side, where it is quantified spectrophotometrically. 609 
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 611 

 612 

Figure 3: Schematic of Dynamic Duodenal Model (DDuo). The investigated fluid (orange 613 

coloured here for clarity) enters the luminal side of a porous membrane used to simulate 614 

intestinal wall. The recipient side is bordered by a non-permeable silicone tube. Enzymes and 615 

other secretions are injected through the secretions port, located at 100mm distance from the 616 

chyme entrance to represent physiological conditions. Segmentation and peristaltic 617 

movements are simulated by applying pressure at the membrane at 8 possible positions. 618 

Motion can be controlled independently. 619 

 620 
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 622 

 623 

Figure 4: Typical plot of absorbed glucose in the recipient zone versus time (from 1% aqueous 624 

glucose solution). 625 
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 627 

Figure 5: Overall Mass Transfer Coefficient with and without segmentation for systems of 628 

different zero-shear viscosities. 629 
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(a) 

 

(b) 

 

Figure 6: Effect of segmentation frequency on overall mass transfer rate from 1% glucose in 631 

(a) guar gum;  (b) pectin solutions of different zero-shear viscosities. 632 
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 634 

  635 

 636 

 637 

Figure 7: Correlation between Sherwood (Sh) and Reynolds (Re) numbers for guar gum 638 

(white symbols) and pectin (black symbols) solutions at high (1s, rhombus), medium (2s, 639 

squares), and low (3s, triangles) mixing.  640 
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 642 

 643 

 644 

Figure 8: Simulated glucose absorption at high (4 segmenting positions) and low (1 645 

segmenting position) mixing for 1% glucose in aqueous or 1% guar gum solutions, using 646 

Dynamic Duodenal model (DDuo). 647 
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 649 

  650 

 651 
 652 

Figure 9: Overall mass transfer rates associated with the conditions of Figure 9 (initial lag 653 
time not considered in the calculations) 654 
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 656 

  657 

 658 

Figure 10: Overall mass transfer coefficient in Dynamic Duodenal model (DDuo) for 1% 659 

glucose in aqueous and 1% guar gum solutions at different segmentation frequencies (0, 6, 660 

and 12cpm) 661 
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 665 
 666 

Table 1: Hydrocolloid systems and zero-shear viscosities studied with and without 667 

segmentation movements in the Simulated Intestinal Model (SIM) and their respective 668 

viscosities.  669 

System η0 (mPa s) 

aqueous 1.0 ± 0.2 

Guar gum 0.1% 2.0 ± 0.4 

CMC 0.1% 20.0 ± 0.2 

CMC 0.5% 200.0 ± 0.1 

 670 

 671 

 672 
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 681 

Table 2: Hydrocolloid systems and zero-shear viscosities studied under different 682 

segmentation patterns in the Simulated Intestinal Model (SIM) (as described in section 2.2.2). 683 

System Concentration (g/L) η0 (Pa s) 

Guar gum 2.50 0.0222 ± 0.0018 

5.00 0.4108 ± 0.0296 

6.25 1.2090 ± 0.0961 

7.50 3.192 ± 0.1982 

Pectin 10 0.0498 ± 0.0217 

20 0.2530 ± 0.0770 

25 0.7133 ± 0.0607 

30 1.9265 ± 0.1039 
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Please find below 5 brief bullet points to convey the core findings of the work. 

 

• Food formulation impacts mass transfer in simulated in-vitro model gut 

• Flow regime affects mass transfer independently of formulation  

• As flow becomes less laminar mass transfer increases in the model gut 

• At increased mass transfer simulated glucose absorption is increased 

• Preliminary data with improved in-vitro model agree with previous 

observations 

 

 


