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Neural adaptive control for uncertain nonlinear system with input
saturation: state transformation based output feedback1

Shigen Gao2a, Hairong Dong3a, Bin Ninga, Lei Chenb

aState Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
bSchool of Electronic, Electrical and Computer Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

This paper presents neural adaptive control methods for a class of nonlinear systems in the presence of actuator saturation. Back-
stepping technique is widely used for the control of nonlinear systems. By introducing alternative state variables and implementing
state transformation, the system can be reformulated as output feedback of a canonical system, which ensures that the controllers
can be developed without backstepping methodology. To reduce the influence caused by actuator saturation, an effective auxiliary
system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function (RBF) neural
networks (NNs) are used in the online learning of the unknown dynamics. High-order sliding mode (HOSM) observer is used in
the output feedback case of the achieved canonical system. Ultimate and transient tracking errors can be adjusted arbitrarily small
by choosing proper design parameters in an explicit way with input saturation in effect. Simulation results are presented to verify
the effectiveness of proposed schemes.

© 2015 Published by Elsevier Ltd.

Keywords: Neural adaptive control, Actuator saturation, Sliding-mode observer, Nonlinear system

1. Introduction

Recent decades have witnessed great advance and development of adaptive control methods for nonlinear systems
in theoretical studies and practical applications [1] [2] [3] [4] [5] [6] [7], and multifarious controllers have been
developed using advanced techniques (e.g., inversion control [ 8], sliding mode control [9], backstepping [10][11][12],
and so on). Among various control methods, adaptive backstepping control has been acknowledged as a powerful
methodology and widely used in nonlinear control field [ 13]. To eliminate the difficulty and challenge caused by
unknown nonlinear dynamics, approximation-based control methods have been used [ 14][15], where either neural
networks or fuzzy logic systems act as the function approximators. The merits of above-mentioned approximation-
based control are that the assumption of linear in unknown parameters can be removed, and the adaptive laws of

1This work is supported jointly by the National High Technology Research and Development Program (“863” Program) of China (No.
2012AA041701), Fundamental Research Funds for Central Universities (No. 2013JBZ007), National Natural Science Foundation of China (Nos.
61233001, 61322307 and 61304196), and Beijing Jiaotong University Research Program (No. RCS2012ZZ003). Part of this work was completed
while Shigen Gao was Visiting Research Student in University of Birmingham, and the financial support of China Scholarship Council is gratefully
appreciated.

2Co-corresponding authors. Email: gaoshigen@bjtu.edu.cn
3Co-corresponding authors. Email: hrdong@bjtu.edu.cn
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adjustable weights of neural networks or fuzzy logic systems can be obtained on the basic of Lyapunov theorem,
which guarantees the stability of closed-loop system.

Input saturation is encountered commonly in control systems design and exists in practical applications due to the
fact that it is usually impossible to implement unlimited control signals. This phenomenon can cause performance
degradation and even instability of the closed-loop system for practical systems if it is not explicitly considered during
design of the controller [16]. Control input saturation in particular has a significant effect on adaptive control in that
adaptation laws will act unexpectedly with saturation, which further tends to be aggressive in seeking the desired
tracking performance. Therefore, the study of the problem of controller design subject to input saturation is of great
significance, both from practical and theoretical points of view.

There are several interesting works attempting different adaptive control design methods for nonlinear systems in
the presence of actuator saturation. In [17], a concept of augmented error signal (AES) is introduced, the proposed
AES is generated by the auxiliary input, i.e., Δu = v−u, with v and u being designed control signal and actuator output,
respectively. The AES can absorb the excess control signal, therefore prevent the stability of closed-loop system from
being destroyed. The AES method has been demonstrated to be effective to deal with input saturation in adaptive flight
control [18] [19], pseudo-control hedging [20], and so on. In [16], an on-line approximation based adaptive control
is presented for preventing the presence of input saturation from destroying the learning capabilities and memory
of an on-line approximator based on AES method. As is indicated in [ 16], backstepping method is an effective
tool to deal with adaptive control of high-order nonlinear systems with input saturation based on AES method using
a regressive design procedure. Therefore, in [21], backstepping-based adaptive control is developed for unknown
nonlinear chaotic systems, where fuzzy neural networks are used to on-line approximate the unknown dynamics, an
auxiliary system with the same order of the controller plant is used to compensate the effect of the input saturation
based on core idea of AES method. However, the backstepping method in [ 21] suffers from the curse of dimensionality
problem [22] [23] caused by the repeated differentiations of certain nonlinear functions [ 24], which can be solved
using a dynamic surface control (DSC) technique [25]. In [26], robust adaptive neural networks control for a general
class of uncertain multiple-input-multiple-output nonlinear systems with input nonlinearities, including saturation
and deadzone, variable structure control in combination with backstepping and Lyapunov synthesis is proposed for
adaptive neural networks control, the problem of “curse of dimensionality” are solved using the DSC technique. The
proposed control method guarantees the stability of the closed-loop adaptive system and the tracking errors converging
to small residual sets. However, from a point of view of practical application, the methods developed in [ 26] [27] [28]
are computationally expensive because the approximators (neural networks or fuzzy systems) are used in every step
to online approximate the unknown dynamics, that is to say, there are at least

∑n
i=1 pi adaptation laws in the control of

a n order system, where pi is the numbers of neural nodes or fuzzy rules.
This paper concerns the control design for a class of unknown single-input-single-output (SISO) nonlinear system

in the presence of saturated actuator without using backstepping methodology. By selecting proper new state variables,
the SISO nonlinear system is represented in a Brunovsky form while the control target is retained by controlling the
transformed canonical system. This transformation allows a simpler control design by abandoning the backstepping
design. This idea is partially inspired by [29] where adaptive neural control is designed for strict-feedback systems
without backstepping. Following, neural adaptive control framework is presented to prevent the adaptation capabilities
from being destroyed in the presence of input saturation. First, a neural adaptive controller is proposed based on state
feedback. Auxiliary systems are constructed to attenuate the effects of input saturation inspired by AES method [ 17],
but it’s a quite nontrivial and different design procedure comparing the ones in [ 16] and [17]. Indeed, one cannot use
the method for proving the results in [16][17][21] to prove our results in this paper, as will be seen in the development
throughout this paper. After that, a neural adaptive controller is proposed using output feedback, because it is always
very difficult to measure all the system states. In this case, a HOSM observer is introduced [ 30][31]. The prominent
feature of the HOSM observer lies in that it guarantees finite-time observer error convergence and therefore is an
admirable tool for feedback control design with separation principle [ 32] trivially satisfied. RBF-NNs are used in the
online learning the unknown nonlinear dynamics by virtue of the RBF-NNs’ approximation capability. The stability of
the closed-loop system is obtained using Lyapunov theorem. The tracking error between the output and the reference
signal converges to compact sets around zero. The bounded values of ultimate and transient compact sets can be
adjusted to be small-enough by adjusting the parameters left to users in the proposed control schemes, which is a
highly-desired property in theoretical analysis and practical engineering. The features of the developed methods are
briefly summarized as follows:

2
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1. Prescribed bound sets of ultimate and transient tracking errors are obtained with adjustable design parameters
in an explicit form, which can be tuned to arbitrarily small via selecting proper design parameters.

2. Gain selection technique is given with consideration of initial tracking and estimation errors based on invariant
set theorem.

3. By choosing new state variables, the nonlinear systems considered is transformed into a canonical one, which
can decrease the calculated amount since only one neural network is needed in the online learning of uncertain
dynamics, while the methods in in [26] [33] [28] require n neural networks in the online learning of uncertain
dynamics for nth system.

4. The problem of “explosion of complexity” is avoided by designing direct neural adaptive control, which exists
in the methods in [21] caused by repeated differentiations of virtual controllers.

5. Both state and output feedback control schemes are given. In the output feedback case, HOSM observer is
utilized to extract to state estimation from noisy output information, finite-time observation error convergence
is ensured and separation principle is trivially satisfied.

The rest of the paper is organized as follows. Section 2 presents the problem formulation and some preliminaries.
Two neural adaptive controllers using state feedback and output feedback are described in Section 3. Simulation and
comparative results are given in Section 4 to demonstrate the effectiveness of proposed controllers. Section 5 presents
the conclusions.

2. Problem Formulation and Preliminaries

Consider a class of nonlinear systems subject to actuator saturation in the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

żi = hi(zi) + zi+1, 1 ≤ i ≤ n − 1

żn = hn(zn) + v

v = sat(u)

y = z1

(1)

where zi, hi(·), i = 1, 2, · · · , n, y are state variables, unknown smooth functions and measurable output, respectively,
z = [z1, z2, · · · , zn]T ∈ Rn. u is the designed input, v is the output of saturated actuator, i.e., v is the actual input to the
system. The relationship of v and u is of the following form:

v = sat(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u+, if u > u+;
u, if u− ≤ u ≤ u+;
u−, if u < u−;

(2)

where u+ and u− are the upper and lower bounded limitation caused by actuator saturation, the saturation limitation is
asymmetric, i.e., |u+| � |u−|.

The objective is to design a proper control law u such that:

1. The output y tracks a reference signal yr with the tracking error y − yr adjustable and bounded;
2. All the signals in the closed-loop system are remained uniformly bounded.

Remark 1. When these is no actuator saturation, the system given by Eq. (1) can be viewed as a simplified version of
semi-strict feedback nonlinear system [34], strict feedback nonlinear system [35] and pure feedback nonlinear system
[36]. However, in the case that actuator is constrained by saturation, the methods developed in [ 34]-[36] are not
effective any more. Further more, the methods used in above literatures are all based on backstepping technique.
Backstepping method is recognized as an effective tool to design control for nonlinear systems, but it requires com-
plicated design procedure especially for high-order system, because one has to finish n times design procedure for
n order system. Moreover, if NNs are adopted to approximate unknown nonlinear functions in every step, then, the
derivatives of the so-called “virtual control” are includes in the NNs, therefore, the input vector of NNs will be twice
dimension as usual. Based on these arguments, it can be seen that backstepping method is computationally expensive
to be implemented in practical engineering. This motivates us to develop effective control method for system in the
form of Eq. (1) without using backstepping method and by explicitly taking the actuator saturation into consideration.

3
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To facilitate the control design, we choose the new state variables as x i = z(i−1)
1 , i = 1, 2, · · · , n, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2 = z̈1 =
dh1(z1)

dz1
+ h2(z2) + z3

ẋ3 = z(3)
1 =

d2h1(z1)

dz2
1

+
dh2(z2)

dz2
+ h3(z3) + z4

· · ·

ẋi = z(i)
1 =

di−1h1(z1)

dzi−1
1

+
di−2h2(z2)

dzi−2
2

+ · · · + hi(zi) + zi+1

· · ·

ẋn = z(n)
1 =

dn−1h1(z1)

dzn−1
1

+
dn−2h2(z2)

dzn−2
2

+ · · · + dn−ihi(zi)

dzn−i
i

+ · · · + hn(zn) + v

It’s clear that Eq. (1) is reformulated as the following form by selecting new state variables x i = z(i−1)
1 , i = 1, 2, · · · , n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = xi+1, 1 ≤ i ≤ n − 1

ẋn = f (x) + v

f (x) =
dn−1h1(z1)

dzn−1
1

+
dn−2h2(z2)

dzn−2
2

+ · · · + dn−ihi(zi)

dzn−i
i

+ · · · + hn(zn)

v = sat(u)

y = x1

(3)

where xi, i = 1, 2, · · · , n are the new state variables, x = [x1, x2, · · · , xn]T, f (·) is an unknown nonlinear smooth
function. It is now clear that by selecting xi = z(i−1)

1 for i = 1, 2, · · · , n, the nonlinear system Eq. (1) is reformulated
as a Brunovsky system with output x1. Since the fact that y = z1 = x1, the control target of Eq. (1) is retained by
controlling system Eq. (3). In view of the fact that only the output information of Eq. ( 1) is included in Eq. (3),
therefore, all the designed control methods for Eq. ( 3) are essentially output feedback control for Eq. (1), and this is
clarified here to avoid the confusion caused by the following “state feedback” and “output feedback” control design,
which are terms for Eq. (3) in fact. The following assumption and lemmas are used throughout the remaining contents.

Assumption 1. The system given by Eq. (3) is input-to-state stable.

Remark 2. Assumption 1 is reasonable because there does not exist a feasible control which can stabilize an unstable
plant with saturated actuator [37], which is thus used in this work.

Lemma 1. Consider the dynamic system ρ̇(t) = −aρ(t) + b, where a and b are positive constants, then, for any given
bounded initial condition ρ0, one has lim

t→∞ρ(t)→ b/a.

Proof. The solution to the equation ρ̇(t) = −aρ(t) + b with bounded initial condition ρ 0 can be obtained as

ρ(t) = e−atρ0 + be−at
∫ t

t0

easds

=
b
a
+ e−atρ0 − b

a
e−a(t−t0),

hence, there exists a moment T such that for any t > T , lim
t→∞ρ(t) → b/a as e−atρ0 − b

a e−a(t−t0) decays to zero. This

completes the proof.

Lemma 2. Consider the dynamic system in the form of ψ̇(t) = −c|η(t)|ψ(t)+dη(t), where c and d are positive constants,
η(t) is a bounded smooth function, |η(t)| ≤ εη, then, ψ(t) is bounded by |ψ(t)| ≤ d/c in finite-time.

4
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Proof. By selecting a Lyapunov candidate V = 1
2ψ

2, one obtains the derivative of V as follows:

V̇ = −c|η(t)|ψ2(t) + dη(t)ψ(t)

≤ −|η(t)||ψ(t)|(c|ψ(t)| − d) (4)

It’s clear that V̇ ≤ 0 if |ψ(t)| > d/c. In view of Lyapunov theorem [ 32], ψ(t) is bounded by |ψ(t)| ≤ d/c in finite-
time.

Lemma 3. RBF-NNs [38] are widely used to model unknown continuous function F(·) in control engineering, which
is in the form of

F(·) = WTS (Z),

where Z ∈ ΩZ ⊂ R
q is the input to the neural network with q being the NN input dimension, W = [w 1,w2, · · · ,wl]T

is the adjustable parameters vector, l is the number of neurons; S (Z) = [s1(Z), s2(Z), · · · , sl(Z)]T, with si(Z) being
Gaussian functions, i.e., si(Z) = exp(−(Z−μi)T(Z −μi)/η2

i ), i = 1, 2, · · · , l, with μi and ηi representing the centers and
widths of the Gaussian functions. As indicated in [38], RBF NNs can approximate F(·) to arbitrary accuracy over a
compact set ΩZ ⊂ R

q:
F(·) = W∗TS (Z) + ε(Z),

where W∗ is an “optimal” bounded weight vector which minimizes ε(Z):

W∗ := arg min
W∈Rl

{
sup
Z∈ΩZ

|F(·) −WTS (Z)|
}
,

with ‖W∗‖ ≤ εN, ε(Z) is the bounded approximation error, |ε(Z)| ≤ εn.

Lemma 4. Consider a signal �(t) defined on [0,∞] composed of a bounded noise and an unknown base signal � 0(t),
with the noise being Legesgue-measurable and the n-th derivative of base signal � 0(t) having a known Lipschitz
constant L > 0. In order to estimate �̇0(t), �̈0(t), · · · , �(n)

0 (t), one can construct a HOSM observer in the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 = p1,

p1 = −λ1|x̂1 − �(t)| n
n+1 sign(x̂1 − �(t)) + x̂2,

˙̂xi = pi,

pi = −λi|x̂i − pi−1| n−i+1
n−i+2 sign(x̂i − pi−1) + x̂i+1,

i = 2, 3, · · · , n,
˙̂xn+1 = −λn+1sign(x̂n+1 − pn),

(5)

where λi, i = 1, · · · , n are positive constants selected by the designers. Based on this HOSM observer, one has the
following two conclusions:

1. There exists a time moment T , such that for any t > T (i.e., finite time), one can achieve the following equalities
in the absence of input noise by choosing proper λ i, i = 1, · · · , n:

x̂i(t) = �
(i−1)
0 (t), i = 1, 2, · · · , n + 1.

Furthermore, the solutions of Eq. (5) are finite-time stable based on [31][39].
2. Assume a bounded noise exists, satisfying |�(t) − �0(t)| ≤ ε, then the following inequalities hold in finite time:

|x̂i(t) − �(i−1)
0 | ≤ ςiε

n−i+2
n+2 , i = 1, 2, · · · , n + 1;

|pi − �(i)
0 (t)| ≤ μiε

n−i+1
n+2 , i = 1, 2, · · · , n,

where ςi and μi are positive constants depending exclusively on the parameters of Eq. ( 5).

5
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Remark 3. It is known that standard sliding modes are capable of providing finite time convergence, precise keeping of
the constraint and robustness in the case of internal and external disturbances [ 40][41]. However, this methodology
also presents disadvantages, i.e., the relative degree of the constraint must be 1, and the chattering phenomenon is
inevitable. Yet HOSM preserves the merits of standard sliding modes and overcomes above disadvantages [ 30]. At
the same time, Lemma 4 means that Eq. (5) are kept in two-sliding mode, i.e., x̂ can achieve precise estimation of x in
finite time. C2 implies that the observer error will converge to a small bounded region associated with the magnitude
of noise in finite time. Without loss of generality, it is assumed that noise exists when measures the system output y,
thus, there is a positive constant ν and a time moment T , such that for any t > T, ‖x̂ − x‖ ≤ ν.
Remark 4. It’s noticeable that Lemma 4 guarantees the trivial realizability of separation principle [32], i.e., the
controller and observer can be developed separatively. This property allows the control scheme can be developed
with a similar thinking to state feedback control. As is pointed out in [30], the constraints to implement Eq. (5) in
practice are the requirement of the boundedness of some high order derivatives of the input, and the guarantee of
non-happening of finite time escape. It’s known to all that there’s no system can operate in a infinite operation region
in the presence of physical characteristics, therefore, above constraints can be trivially fulfilled by assuming large
enough bounds.

3. Control Design

In this section, the neural adaptive control is proposed based on the available states first, following on, an output
feedback control is investigated by using a HOSM observer to deal with the situation that only output is measurable
in practical systems.

Define the tracking error vector as
e = x − ȳr − χ, (6)

where the bounded reference vector ȳ r is defined as ȳr = [yr, y
(1)
r , · · · , y(n−1)

r ]T, χ = [χ1, χ2, · · · , χn]T is a auxiliary
vector introduced to reduce the influence caused by actuator saturation and is generated by the following auxiliary
systems:

χ̇ = −Bχ + IΔu, (7)

where B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 −1
b2 −1

. . .
. . .

. . . −1
bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is adjustable by user by tuning positive constants bi, i = 1, 2, · · · , n, I =

[0 · · ·0︸︷︷︸
n−1

1]T, Δu = v − u, v is defined in Eq. (2).

Remark 5. It can be seen that the tracking error defined in Eq. (6) is quite different from the usual form, i.e., e = x− ȳr,
which is widely used in existing tracking control [42]. As a matter of fact, it is just the tracking error in the form of Eq.
(6) that guarantees the adjustability of the bounded values of compact region in which the tracking error is ultimately
confined in. Detail explanations are given below.

A filtered tracking error can be defined as follows:

es = [ΛT 1]e, (8)

whereΛ = [λ1, λ2, · · · , λn−1]T is properly chosen vector such that the polynomial s n−1 +λn−1sn−2+ · · ·+λ1 is Hurwitz.
In this way, the tracking error e is bounded with bounded e s.

6
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3.1. Neural Adaptive Control: State Feedback Case
Differentiating both sides of Eq. (8), one obtains the error dynamic equation:

ės = [ΛT 1]ė = [0 ΛT]e + f (x) − y(n)
r + u + [ΛT 1]B1χ, (9)

where B1 = [b1, b2, · · · , bn]T, with bi, i = 1, 2, · · · , n being the adjustable positive constants used in the matrix B in
Eq. (7). f (x) is an unknown function approximated by neural networks as f (x) = W ∗T

1 S (Z)+ε1(Z), ε1(Z) is a bounded
approximation error |ε1(Z)| ≤ ε1n with ε1n being small constant.

Design the following neural adaptive control law:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u = −

(
k1 +

1
2

)
es − ŴT

1 S (Z) + u0,

u0 = y(n)
r − [ΛT 1]B1χ − [0 ΛT]e,

(10)

where k1 > 0 is a design parameter, Ŵ1 is the estimated value of “optimal” weight vector W ∗
1 , then, the following

theorem holds.

Theorem 1. Consider the system described by Eq. (3), in view of any positive constant p, for initial conditions
satisfying e2

s(0) + W̃T
1 (0)Γ−1

1 W̃1(0) ≤ 2p, neural adaptive controller Eq. (10) and the neural adaptation laws ˙̂W1 =

Γ1(S (Z)es−σ1Ŵ1) guarantee the following conclusions, where Γ1 = Γ
T
1 > 0 is adaptive gain matrix, σ1 > 0 is a small

constant introduced as σ−modification [43] to prevent the estimated value Ŵ1 from drifting to be very large:

1. All the signals in the closed-loop system are uniformly ultimately bounded;
2. The ultimate tracking error between system output y and reference signal y r is adjustable by the following

inequalities: ∣∣∣[ΛT 1](x − ȳr − χ)
∣∣∣ ≤

√
2τ2

τ1
, ‖χ‖ ≤ |Δu|

Πn
k=1bk

3. The transient tracking error between system output y and reference signal y r is adjustable by the following
inequalities: ∣∣∣[ΛT 1](x − ȳr − χ)

∣∣∣ ≤
√

e2
s(0) + W̃T

1 (0)Γ−1
1 W̃1(0) +

2τ2

τ1
, ‖χ‖ ≤ |Δu|

Πn
k=1bk

es(0) and W̃1(0) are the initial values of es(t) and W̃1(t), respectively, one refers to the proof of this theorem for
the definitions of τ1 and τ2.

Proof. Integrating the control law Eq. (10) and open-loop error dynamic equation Eq. ( 9), one obtains the following
closed-loop error dynamic equation:

ės = −
(
k1 +

1
2

)
es + W̃T

1 S (Z) + ε1(Z), (11)

choosing a Lyapunov candidate

V1 =
1
2

e2
s +

1
2

W̃T
1 Γ
−1
1 W̃1, (12)

the derivative of V1 along Eq. (11) can be calculated as:

V̇1 = esės + W̃T
1 Γ
−1
1

˙̃W1

= −
(
k1 +

1
2

)
e2

s + esW̃
T
1 S (Z) + esε1(Z) + W̃T

1 Γ
−1
1

˙̃W1 (13)

By virtue of adaptation law and Young’s Inequality [ 44], Eq. (13) becomes

V̇1 ≤ −
(
k1 +

1
2

)
e2

s + |es|ε1n + σ1W̃T
1 Ŵ1

≤ −k1e2
s +

1
2
ε2

1n +
1
2
σ1‖W∗1‖2 −

1
2
σ1W̃T

1 W̃1

≤ −τ1V1 + τ2 (14)
7
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where τ1 := min{k1,
σ1
2 }/max{ 12 ,

‖Γ−1
1 ‖
2 }, τ2 := 1

2ε
2
1n +

1
2σ1‖W∗1‖2, are all constants. Select proper design parameters

such that τ1 > τ2/p; as a result, V̇1 ≤ 0 on V1 = p, which implies that V1 ≤ p is an invariant set and guarantees
V1(t) ≤ p for V1(0) ≤ p and t ≥ 0. In view of Lemma 1 and the definition of V1, it is clear that V1 will be ultimately
confined in the closed region 0 ≤ V1 ≤ τ2

τ1
, which further guarantees the boundedness of e s and e. x is also bounded

because the input is bounded based on Assumption 1. Subsequently, the signals χ, Ŵ1 and u are guaranteed bounded
based on Eq. (6), Eq. (12) and Eq. (10), respectively. From Eq. (14), it can be drawn a conclusion that V1(t) is
transiently bounded by V1(0) + τ2/τ1 from the following inequality:

V1(t) ≤
(
V1(0) − τ2

τ1

)
exp(−τ1t) +

τ2

τ1

In view of the definition of V1, one has that es is ultimately confined in the closed region |e s| ≤
√

2τ2
τ1

, that

is, |[ΛT 1]e| ≤
√

2τ2
τ1

, and is transiently confined in the closed region |[ΛT 1]e| ≤
√

2V1(0) + 2τ2
τ1

with V1(0) =

(1/2)(e2
s(0) + W̃T

1 (0)Γ−1
1 W̃1(0)). Actually, we can set χ(0) = 0 and choose proper initial states such that e s(0) = 0,

therefore, V1(0) is a decreasing function of Γ1, that is to say, the effect caused by initial neural estimation errors can
be attenuated by choosing proper matrix Γ 1. Applying Lemma 1 again, one obtains ‖χ‖ ≤ ‖IΔu‖

‖B‖ =
|Δu|
Πn

k=1bk
.

The proof is completed.

Remark 6. The control scheme given by Theorem 1 is based on the assumption that the state vector x is available,
which is a rigorous condition for many practical plants. At the same time, one cannot simply obtain x i for i = 2, · · · , n
by differentiating xi−1 because the measurement noise of output x1 will be potentially amplified for i − 1 times when
calculating ẋi using discretization by choosing a small-enough sampling time. This motivates us to develop a output
feedback control scheme, which is the topic of the following subsection.

3.2. Neural Adaptive Control: Output Feedback Case

In this subsection, output feedback neural adaptive control is developed where x is not available any more, instead,
only measured output y is available.

To proceed the control design now, define the error between observed states vector and reference vector as

ê = x̂ − ȳr − χ, (15)

and its corresponding filtered error as
ês = [ΛT 1]ê, (16)

where x̂ is obtained by virtue of observer given by Eq. ( 3). Then, one obtains the observer error x̃ and ẽ s as

x̃ = e − ê = x − x̂, ẽs = es − ês = [ΛT 1]x̃. (17)

In view of Eq. (3) and Eq. (8), the error dynamic equation is obtained as

ės = [ΛT 1]ė = [0 ΛT]e + f (x) − y(n)
r + u + [ΛT 1]B1χ, (18)

where B1 = [b1, b2, · · · , bn]T, with bi, i = 1, 2, · · · , n being the adjustable positive constants used in the matrix B in
Eq. (7). Based on Eq. (17), Eq. (18) becomes

ės = [0 ΛT]ê + f (x) − y(n)
r + u + [ΛT 1]B1χ + [0 ΛT]x̃, (19)

where f (x) is an unknown function approximated by neural networks as f (x) = W ∗T
2 S (Z)+ε2(Z), and ε2(Z) is bounded

by small constant ε2n.

Remark 7. Although ε2(Z) is defined as the approximation error of neural networks, it can be seen as one or mixture
of external disturbance, modeling uncertainties and approximation error.

8
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For the system described by Eq. (3) with observer given by Eq. (3), the following neural adaptive control is
designed: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u = −
(
k2 +

1
2

)
ês − ŴT

2 S (Z) + u0,

u0 = y(n)
r − [ΛT 1]B1χ − [0 ΛT]ê,

(20)

where k2 > 0 is a positive constant chosen by designer, Ŵ2 is the estimation of the optimal weight vector W ∗
2 , S (Z)

is the basis functions vector of neural networks with the input Z = [x, ê], S (Z) is bounded by ‖S (Z)‖ ≤ ε b, other
notations hold the same definition as above. The neural networks weights are updated by:

˙̂W2 = Γ2(êsS
T(Z) − σ2|ês|Ŵ2). (21)

The estimated value Ŵ2 in Eq. (21) is bounded by ‖Ŵ2‖ ≤ εb/σ1. This proposition can be proved by virtue of Lemma
2. Therefore, the estimated error W̃2 is bounded by ‖W̃2‖ ≤ εN + εb/σ2.

The following theorem holds.

Theorem 2. Consider the system described by Eq. (3) with observer given in Eq. (3), in view of any positive constant
q, for initial conditions satisfying e2

s(0) ≤ 2q, neural adaptive controller Eq. (20) and adaptation laws Eq. (21)
guarantee the following conclusions:

1. All the signals in the closed-loop system are uniformly ultimately bounded;
2. The ultimate tracking error between system output y and reference signal y r is adjustable by the following

inequalities: ∣∣∣[ΛT 1](x − ȳr − χ)
∣∣∣ ≤

√
θ

k2
, ‖χ‖ ≤ |Δu|

Πn
k=1bk

.

3. The transient tracking error between system output y and reference signal y r is adjustable by the following
inequalities: ∣∣∣[ΛT 1](x − ȳr − χ)

∣∣∣ ≤
√

e2
s(0) +

θ

k2
, ‖χ‖ ≤ |Δu|

Πn
k=1bk

one refers to the proof of this theorem for the definitions of θ.

Proof. By integrating Eq. (19) and Eq. (20), the closed-loop error system is obtained as:

ės = −
(
k2 +

1
2

)
ês + W̃T

2 S (Z) + ε2(Z) + [0 ΛT]x̃. (22)

Consider the Lyapunov candidate V2 =
1
2 e2

s , its derivative along Eq. (22) can be calculated as:

V̇2 = −
(
k2 +

1
2

)
esês + es

{
W̃T

2 S (Z) + ε2(Z) + [0 ΛT]x̃
}

= −
(
k2 +

1
2

)
e2

s + es

{(
k2 +

1
2

)
[ΛT 1]x̃ + W̃T

2 S (Z) + ε2(Z) + [0 ΛT]x̃

}

≤ −
(
k2 +

1
2

)
e2

s + |es|
[(

k2 +
1
2

)
ν1 + εN +

εb

σ2
+ ε2n + ν2

]
(23)

where ν1 := max{λ1, · · · , λi−1, 1}ν ≥
∣∣∣[ΛT 1]x̃

∣∣∣, ν2 := max{λ1, · · · , λi−1}ν ≥
∣∣∣[0 ΛT]x̃

∣∣∣. In view of Young’s Inequality
[44], one has

V̇2 ≤ −2k2V2 + θ (24)

where θ := 1
2

[(
k2 +

1
2

)
ν1 + εN +

εb
σ1
+ εn + ν2

]2
is an unknown constant. By selecting proper design parameters sat-

isfying k2 ≥ θ/(2q), we guarantee that V2 ≤ q is an invariant set. The remain of the proof is similar to the proof of
Theorem 1, the conclusions in Theorem 2 can be easily obtained, which is not discussed in detail here.

The proof is completed.
9
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Remark 8. Since the approximation property of RBF NNs in Lemma 3 is only guaranteed in a compact set, and the
initial value of tracking error should be located in the domain of attraction to satisfy Assumption 1, the stability results
in this work, therefore, is semi-global.

Remark 9. In Theorem 1 and Theorem 2, initial conditions are all imposed. Since p and q can be selected large
enough and practical states in applications are always finite, the initial conditions are not restrictive in this sense. We
can use the technique in [22] to choose initial conditions properly, which is not discussed in detail here.

4. Numerical examples

In this section, simulation results are presented to illustrate the validity of Theorem 1 and Theorem 2. First, the
results are applied to a nonlinear system in the form of Eq. ( 3), then, the controllers are directly applied to a nonlinear
system in the form of Eq. (1) without adjusting any design parameters, which demonstrates the effectiveness of the
developed control methods.

4.1. Example 1

The nonlinear system considered is described by the following equations:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 0.2(x2
1 + x2

2) + v

y = x1

the upper and lower bounded values of actuator are u + = 1, u− = −1.5, respectively. The reference signal is yr = sin(t).
The parameters used in simulations are given below. Adjustable parameters are chosen as: k 1 = k2 = 15, λ1 = 2,

b1 = 1, b2 = 2, σ1 = σ2 = 0.001, Γ1 = Γ2 = diag{1}. Initial values are chosen as: x1(0) = 0.5, x2(0) = 0.5, χ1(0) = 0,
χ2(0) = 0, Ŵ1 = Ŵ2 = 0. The neural networks contain 41 nodes, with centers evenly spaced in [−20, 20] and widths
are all 2. The NN input vector Z = [x1, x2]T. The observer used in Theorem 2 is constructed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 = p1

p1 = −12|x̂1 − x1| 23 sign(x̂1 − x1) + x̂2

˙̂x2 = p2

p2 = −15|x̂2 − p1| 12 sign(x̂2 − p1) + x̂3

˙̂x3 = −20sign(x̂3 − p2)

Note that the parameters used in the simulations of Theorem 1 and Theorem 2 are exactly the same for justice and
equity, except for some new introduced parameters in HOSM observer.

Figure 1 illustrates the simulation results of example 1. It can be seen from Figure 1 (a) that the tracking perfor-
mance of Theorem 1 and Theorem 2 is satisfactory. Figure 1 (b) presents the trajectories of x2 in two controllers. The
trajectories of control inputs are shown in Figure 1 (c), it is observed the designed control laws u do exceed the output
capacity of actuator. Even in this situation, the developed methods guarantee satisfactory systematic performance
by virtue of properly designed auxiliary system, trajectories of auxiliary signals χ 1 and χ2 are given in Figure 1 (d).
Figure 1 (e) shows the trajectories of norms of neural networks weights. Estimation performance can be observed in
Figure 1 (f).

4.2. Example 2

Consider the following nonlinear system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = −0.5 sin(0.5x1) + x2

ẋ2 = cos(0.5x1x2) + 0.2 sin(0.5x1x2) + v

y = x1
10
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Figure 1. Simulation results of example 1.
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The upper and lower bounded values of actuator are set to be u + = 2, u− = −2, respectively. To verify the generality
of the developed controllers, all the parameters used here are the same as the ones in example 1. It’s notable that the
controllers used in the example 1 are directly applied to this example.

Figure 2 demonstrates the simulation results of example 2. It can be seen from Figure 2 (a) that the tracking
performance of Theorem 1 and Theorem 2 is satisfactory. Figure 2 (b) presents the trajectories of x2 in two controllers.
The trajectories of control inputs are given in Figure 2 (c), it is observed the designed control laws u exceed the output
capacity of actuator. Trajectories of auxiliary signals χ1 and χ2 are given in Figure 2 (d). Figure 2 (e) shows the
trajectories of norms of neural networks weights. Estimation performance can be observed in Figure 2 (f).

Adaptive (observer) control methods are used to provide comparative results by setting χ = 0, Figure 3 (a) presents
the tracking error es in example 1 under saturation value 11, it is observed that the proposed controllers guarantee better
performance than adaptive method. While Figure 3 (b) demonstrates an apparent comparative results in example 2
using Theorem 2 and adaptive observer method.

Until here, the effectiveness of Theorem 1 and Theorem 2 is well demonstrated.

5. Concluding Remarks

This paper proposes two neural adaptive control methods for a class of nonlinear system by state feedback and
output feedback. The input to the controlled plant is constrained by actuator saturation, which is generally encountered
in practical engineering, because it’s impossible to implement unlimited control signal caused by the limited output
capacity of physical actuators. The neural networks don’t require an off-line training phase. Although asymptotical
stability is not achieved, the overall system is proved to be uniformly ultimately bounded and the tacking error can
be adjusted to closed regions which is dependent to parameters left to users. This is of high significance in practice.
The theoretical analysis and simulation results prove the effectiveness of the proposed schemes. The methodological
design in this paper can be extended to the time-delay systems if proper Lyapunov-Krasovskii function is developed
and utilized, which is open problem and will be studied and reported in our future works.
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