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Abbreviations:  

Antigen presenting cells (APCs) 

Aqueous humor (AqH) 

Blood Dendritic Cell Antigen (BDCA) 

Bone marrow-derived dendritic cells (BMDCs) 

Complete Freund adjuvant (CFA) 

Conventional dendritic cells (cDCs)  

Dendritic cells (DCs) 

Experimental Autoimmune Uveitis (EAU) 

Granulocyte macrophage-colony stimulating factor (GM-CSF) 

Human immunodeficiency virus (HIV) 

Interferon (IFN) 

Interphotoreceptor retinoid-binding proteins (IRBP) 

Major histocompatibility complex (MHC) 

Mixed lymphocyte reactions (MLR) 

Myeloid dendritic cells (mDCs) 

Monocyte-derived dendritic cells (MoDCs) 

Plasmacytoid dendritic cells (pDCs) 

Regulatory T cells (Treg) 

T helper cell 1 (Th1) 

Toll-like receptor (TLR) 
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Abstract 

Dendritic cells (DCs) are a heterogeneous population. Murine DCs consist of 

conventional DCs (cDCs) and plasmacytoid DCs (pDCs). In human, the analogous 

populations are myeloid DCs (mDCs) and pDCs. Though distinct in phenotypes and 

functions, studies have shown that these DC subsets may interact or ‘crosstalk’ during 

immune responses. For example, cDCs may facilitate pDC maturation, while pDCs may 

enhance antigen presentation of cDCs in certain pathogenic conditions or even take on 

a cDC phenotype themselves. The role of DCs in non-infectious uveitis has been studied 

primarily in the experimental autoimmune uveitis mouse model and to a more limited 

extent in patients. Recent evidence shows that the number, phenotype and function of 

DC subsets are altered in this disease. We provide an overview of selected recent 

developments of pDCs and cDCs/mDCs, with special attention to their interaction and 

the dual roles of DC subsets in non-infectious uveitis.  
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1. Introduction of Dendritic Cells and Non-infectious Uveitis 

Dendritic cells (DCs) were discovered in the late 1970s by Ralph Steinman of 

Rockefeller University 58, leading to his Nobel Prize in Physiology or Medicine in 2011 42. 

DCs are professional antigen-presenting cells (APCs) that connect the innate and 

adaptive immune responses with critical roles in immune tolerance and defense against 

pathogens 59. Although DCs all share the ability to activate naïve T cells, they are a 

heterogeneous population in terms of their further phenotypic and functional 

characteristics 57. Categorizations include: conventional (also known as classical or 

myeloid) DCs vs. plasmacytoid DCs; ‘steady-state’ DCs (present at all times) vs. 

‘inflammatory’ DCs (develop in response to inflammation); anatomical location (e.g. 

lymphoid tissue ‘resident’ DCs vs. non-lymphoid tissue peripheral ‘migratory’ DCs). 

        The study of DC biology has elucidated these subsets in both mouse and human, 

identifying some degree of inter-species correspondence between subsets, but also 

important differences. Murine and human DCs are both comprised of two major subsets, 

the key distinction being between conventional (also known as classical or myeloid DCs) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 5 

and plasmacytoid DCs (pDCs). There is some variation in the terms used in the 

literature, but for the purposes of this review we will use the terms conventional DC 

(cDCs) to describe the non-plasmacytoid DCs in mice and myeloid DC (mDCs) to 

describe the equivalent group in humans 8; 18; 37. In both species pDCs are the more 

homogeneous group, being distinguished by a non-dendritic plasma cell-like morphology 

in their resting state and an ability to rapidly secrete type I interferons (IFNs) in response 

to viral infection. The cDC/mDC grouping contains a number of different subsets with a 

range of functions directed towards directing T cell responses 31. Classification of DCs 

and their discrimination from other mononuclear phagocytes (monocytes and 

macrophages) is made more challenging by plasticity especially under inflammatory 

conditions, which means that surface phenotype is not always a reliable guide to 

ontogenic relationship.  

        Human non-infectious uveitis is a potentially blinding condition characterized by 

intraocular inflammation. There is considerable evidence that most non-infectious uveitis 

is autoimmune (or at least auto-inflammatory) in origin 32. The immune dysregulation 

observed in patients can be modeled and interrogated in animal models of uveitis, 

notably with the immunization of uveitogenic antigens supplemented with complete 

Freund adjuvant (CFA) in experimental autoimmune uveitis (EAU) 62. Such models 

provide evidence of loss of tolerance to important intra-ocular antigens, such as S-

antigen and interphotoreceptor retinoid-binding proteins (IRBP), and enable elucidation 

of the immune processes leading to the generation of autoreactive CD4+ T cells and 

their pathological function within the eye 11. Critically, EAU has also been successfully 

induced by intravenous injection of mature DC pulsed with uveitogenic antigens 61.  

        Data in humans is less complete, but still compelling. There is histological evidence 

of T cell infiltrates at sites of inflammation in eyes with uveitis 3, which is supported by 

flow cytometric studies of intraocular fluid samples from patients with active inflammation 
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10; 44. With regard to the role of auto-antigens in human disease, De Smet noted 

lymphocyte stimulation responses to peptide determinants of retinal S antigen in a range 

of uveitis conditions, being most frequent in uveitis associated with Behcet disease or 

sarcoidosis 12; 13. Our recent work has been directed towards determining the role of DCs 

in the pathogenesis of non-infectious uveitis [Ping, et al., Abstract in 2014 ARVO]. In this 

review, we discuss recent advances in the understanding of DC subsets in both mice 

and human and explore the implications of these recent findings to non-infectious 

uveitis.  

 

2. Characteristics of Murine Dendritic Cell Subsets 

As introduced earlier, murine DC subsets consist of two main populations: cDCs and 

pDCs. In terms of surface phenotype, cDCs are CD11c+ and pDCs are PDCA1+ 66 (Table 

I). Conventional DCs are found in lymphoid tissues including spleen, lymph nodes and 

bone marrow, but are also widely distributed amongst non-lymphoid tissues. The major 

cDC subsets are defined according to the presence of CD8α and CD11b. The CD8+ cDC 

subset is well-characterized lymphoid tissue based subset with important roles in cross-

presentation of exogenous antigens to CD8+ T cells 14, and IL-12 secretion. Interestingly 

transcriptome profiling identified that there is an equivalent subset in non-lymphoid 

tissues which is CD8- and is defined by the integrin CD103+ 43; the lymphoid CD8+ 

subset and the non-lymphoid CD103+ subset share a number of features including 

responsiveness to TLR3 stimulation and expression of the chemokine receptor XCR1. 

        The CD11b+ (CD8-) subset is less well characterized. They are the most abundant 

cDC in lymphoid tissue and are also found in non-lymphoid tissues. This is a highly 

heterogeneous group. Further segregation has been attempted on the basis of surface 

markers such as CD4, but this has not been supported by transcriptome profiling 26.  

CD11b+ DC differ functionally from CD8+ DC being more effective in inducing CD4+ T cell 
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responses, and capable of producing IL-6 and IL-23, whilst being poor at cross-

presentation and the production of IL-12. 

        Plasmacytoid DCs are found in the blood and periphery. The term ‘plasmacytoid’ 

refers to their appearance when resting of a non-dendritic plasma cell-like morphology. 

Their key function is the detection of virus by toll-like receptor (TLR) 7 or TLR9, with 

production of high levels of type I IFNs. They are characterized by being PDCA-1+, but 

also express DEC-205 and B220.  

        DCs may also arise from monocytes, both in vivo and in vitro. In vivo such 

monocyte-derived ‘inflammatory’ DCs (infDCs) arise secondary to infection or 

inflammation. In vitro they may be generated from bone marrow cells (bone marrow-

derived DCs; BMDCs) under the stimulation of recombinant granulocyte macrophage-

colony stimulating factor (GM-CSF) 25; 36. A key function of infDCs is to produce large 

amounts of TNF-α and iNOS (so-called TNF-iNOS producing DCs or ‘Tip DCs’). They 

have a critical role in pathogen clearance, with an important influence in the appropriate 

polarization of a T cell response. 

        A challenge to the study of DC biology in the eye is the limitation that DC numbers 

in vivo are too low to isolate enough for performing the functional and mechanical 

studies. For this reason most functional studies in mouse and human have depended on 

the use of in vitro cultures of bone marrow/monocyte-derived DCs. Although we, among 

others, have found these model systems useful, the extent to which these in vitro 

BMDCs reflect cDCs and/or infDCs is not yet fully established. Gene expression profiles 

have been shown to differ significantly between cDCs (in which development is Flt3-

ligand dependent) and BMDCs (in which development is GM-CSF dependent) 67. 

Conversely, cDCs and BMDCs do share expression of the transcription factor Zbtb46 52. 
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3. Characteristics of Human Dendritic Cell Subsets 

As outlined earlier, there are shared features, but also important differences, between 

murine and human DC systems. Inter-species comparison based purely on surface 

phenotype of DC subsets is generally unhelpful, whereas more recent studies based on 

gene expression have been more rewarding. The key distinction of conventional DCs 

(hereafter referred to as myeloid DCs; mDCs) vs. plasmacytoid DCs is maintained with 

clear separation in both phenotype and function. Due mainly to the availability of tissue 

and other practical limitations, the study of DC subsets in humans has primarily been 

focused on peripheral blood. Indeed it was in human blood that pDCs were first 

identified. 

        As observed in the mouse, human DCs are relatively rare in the peripheral blood 

compared to other immune cells 18. In blood there are two main populations of DCs: an 

mDC population, which is CD1c/BDCA-1+CD11chiCD123- (described as mDC1) and a 

pDC population, which is CD11c-CD123+BDCA-2/CD303+ 18; 57. There is also a second 

population of mDCs (mDC2), which are CD141/BDCA-3+CD11clo. All three subsets are 

negative for lineage 1 markers (Lin1-) and express HLA-DR (i.e. Lin1-HLADR+) 18; 37; 70 

(Table I). In humans CD11c is not restricted to DCs, with 90% of human monocytes 

expressing CD11c 49. Gene expression studies and the study of rare genetic mutations 

affecting DC function in humans supported by the detailed functional characterization 

across DC subsets in both species, has helped establish the equivalence of DC subsets 

in mouse and human. Thus CD1c/BDCA-1+CD11chiCD123- mDC1 in the human are 

equivalent to CD11b+CD8- cDCs in the mouse; CD141/BDCA-3+CD11clo mDC2 are 

equivalent to CD8+ cDCs, with the chemokine receptor XCR1 being expressed by this 

subgroup in both species; and CD11c-CD123+BDCA-2/CD303+ pDCs being equivalent to 

the murine PDCA-1+ pDCs 65. 
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        In terms of function, the human subsets appear to behave similarly to their murine 

equivalents. pDCs secrete high levels of type I IFNs in response to viruses and other 

suitable stimuli; mDC1 and mDC2 are effective at presenting antigen and inducing CD4+ 

and CD8+ T cell responses, with mDC2 being particularly effective at cross-presentation 

of exogenous antigens to CD8+ T cells. These shared features support the idea that the 

study of murine DCs can support our understanding of human DC biology and related 

autoimmunity. 

        Even more than in the mouse, the concept of human ‘inflammatory’ DCs is 

controversial. In vitro it has long been established that human DCs can be derived from 

monocytes (MoDCs). These have been widely studied to inform human DC biology and 

have even been used as a tool for vaccine generation and cancer therapy 6. Typically 

CD14+ monocytes from peripheral blood are cultured with recombinant GM-CSF and IL-

4 in vitro for 5-7 days 33; 55. Further ‘maturation’ may be induced through stimulation with 

appropriate TLR ligands and/or pro-inflammatory cytokines 29. Although a number of 

‘inflammatory’ DC phenotypes in humans have been identified in vivo, it is unclear 

whether these truly represent monocyte-derived DCs or whether they are a form of 

activated monocyte. Monocytes may become activated during infection or inflammation 

with enhanced expression of CD16 and reduced level of CD14. CD16+ monocytes are 

significant producers of inflammatory cytokines (such as TNF-α) and display both DC 

and macrophage-like characteristics including antigen processing and presentation. 

When noting these parallels between the generation of MoDCs in vitro and the activation 

of monocytes in vivo, it is tempting to extrapolate the development of these monocytes 

and to assume that they become inflammatory DCs in vivo. In human studies, however, 

‘inflammatory DC’ subsets, such as the 6-sulfo LacNAc (slan)+ DC subset, have 

generally been indistinguishable from activated monocytes 9. This is clearly an area 
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requiring further study. Table 1 summarizes several studies of the phenotypic and 

functional analysis in DC subsets in mice and humans. 

 

4. Imbalanced Dendritic Cell Subset Proportions in the Immune System 

Conventional DCs and pDCs are fms-like tyrosine kinase 3 (Flt3) ligand-dependent. 

They are derived from a common DC precursor (CDP) that is a Lin- c-Kitlo CD115+ 

CX3CR1+ Flt3+ progenitor cell, which in turn is derived from a bipotent macrophage/DC 

precursor (MDP; Lin- c-Kithi CD115+ CX3CR1+ Flt3+) 68 1 21. Studies show that Flt3 ligand 

is essential for the regulation of homeostatic DCs (cDCs and pDCs) development in 

mice spleen, where it maintains normal DC numbers by regulating cell division in the 

periphery 66. Another study shows that repeated injections of Flt3 ligand result in an 

increase in the number of functional cDCs 38. Although GM-CSF is commonly added to 

in vitro cultures, it does not appear to be essential for the development of any DC 

subsets in vivo, although it does have important effects on DC function, notably in cross-

presentation 51. Cytokines such as Flt-3 ligand not only affect the generation of DC 

subsets, but also influence the balance between DC subset proportions, and so may in 

turn impact on the pathogenesis of autoimmune diseases.  

         Another factor that may influence the balance of proportions between DC subsets 

is the conversion from one DC subset to another. Notably pDCs have been observed to 

convert into cDCs in response to certain stimuli. For example during viral infection, pDCs 

may convert to mDCs with enhanced antigen-presenting capacity and TLR upregulation 

71. Similarly pDCs also convert into cDCs when mice are injected with double-stranded 

RNA (poly I:C) and type I interferon 63. Furthermore, a subpopulation of pDCs, CCR9- 

pDCs, differentiates into cDCs after they are adoptively transferred into peripheral 

lymphoid organs, lung, and intestine 54; 56. Similarly, CCR9- pDCs have been shown to 

convert into CD11b+CD8α+ MHC class IIhi cDC-like cells under the stimulation of GM-
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CSF or soluble factors produced by intestinal epithelial cells. This conversion is 

supported by a switch from typical pDCs to CD8+ cDCs regulators, notably a 

downregulation of the E2-2 transcription factor and upregulation of ID2, PU.1 and Batf3 

53. Therefore, the plasticity of pDCs in switching to fully functional cDCs can lead to 

alteration of the ratio between DC subsets in vivo.  

 

5. Interaction of Dendritic Cell Subsets during Immune Responses  

As explained, both murine and human DCs include two major subsets, and those 

subsets exhibit distinct functions. Interestingly, it appears that there is significant 

interrelationship between these subsets. Kuwajima et al. have shown that murine cDCs 

fail to produce IL-12 in the absence of pDCs in vivo, suggesting that normal function of 

cDCs is dependent on the presence of pDCs. Moreover, it appeared that cell-to-cell 

contact (CD40-CD40L) between cDCs and pDCs was required 30. Similarly, in human 

immunodeficiency virus (HIV) infection, pDCs promote mDC function in a bystander 

fashion, while they produce more type I interferon in response to HIV 19. This discovery 

has prompted further investigation into when and how cDCs/mDCs interact or crosstalk 

with pDCs.  Furthermore Wang et al. 35 found that antigen-specific CD8+ T cells are 

increased and antitumor responses are enhanced after mice are immunized with a 

mixture of activated pDCs and mDCs, compared to mice immunized with either mDCs or 

pDCs. The increased anti-tumor responses arise because of enhanced antigen 

presentation in mDCs, which is facilitated by pDCs. Consistent with in vivo studies, co-

culturing of pDCs and mDCs in vitro leads to pDC maturation and enhanced mDC 

antigen presentation (but not cytokine production) in response to bacterial infections 47. 

In summary, given these interactions, it is possible that the imbalance of DC subset 

proportions may significantly contribute to the immune responses seen in autoimmune 

diseases, such as uveitis. 
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6. Role of Dendritic Cell Subsets in Experimental Autoimmune Uveitis (EAU)  

The critical role of DCs in non-infectious uveitis has been investigated in the murine 

model of uveitis (EAU). The immunological characteristics observed in EAU show 

distinct similarities to human disease states in which activation of CD4+ T cells is central 

17; 40. The central role of DCs in uveitis may be argued from their key role taking up and 

presenting antigens to CD4+ T cells, thereby activating them and inducing immune 

responses. In autoimmune non-infectious uveitis, uveitogenic antigen-specific CD4+ T 

cells are crucial effector cells that drive inflammation and tissue damage after they are 

activated by DCs; however, these rare antigen-specific CD4+ T cells must need to 

encounter their uveitogenic antigens presented by APCs to successfully initiate the 

uveitis. As specialized APCs, DCs exhibit abnormal function in human non-infectious 

uveitis and EAU model, although the pathogenic mechanisms of DCs in uveitis are not 

fully understood (see Figure).  

        There is clear evidence that mDCs are present in the ocular tissues under both 

resting and inflammatory conditions. Choudhury et al. found functional mDCs in the 

choroid and thus may play a significant role in the inflammatory process during posterior 

uveitis7. McMenamin et al. have shown that antigen-presenting cells residing in the iris 

and ciliary body in normal rat eyes have access to ocular antigens on both sides of the 

blood-ocular barrier and thus are capable of activating circulating antigen-specific T cells 

41. Furthermore, Butler et al. suggested that DCs may act as local APCs in the induction 

of uveitis 2. More specifically, Gregerson and his co-workers confirmed that cDCs are 

distinct from microglia. They are present in quiescent retinas, and they effectively 

respond to injured neurons. Interestingly cDCs from quiescent retinas promote 

generation of Foxp3+ T cells and inhibit T cell activation, whereas cDCs from injured 

retinas inhibit Foxp3+ T cell generation and stimulate T cell activation. Local delivery of 
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exogenous BMDCs increases the incidence and severity of EAU, which is induced by 

the adoptive transfer of activated CD4+ or CD8+ T cells. Therefore, local conditions in the 

retina determine cDC function and affect the pathogenesis of EAU by both CD4+ and 

CD8+ T cells 22. A key part of this mechanism may be a direct chemoattractant effect by 

IRBP and S-Ag. Howard et al. showed that these autoanitgens attract immature DCs 

and T cells expressing CXCR3 and CXCR5 to initiate innate and adaptive immune 

responses 24. 

        In addition, the types of immune responses largely depend on the maturation status 

of DCs. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorate 

EAU progression by inhibiting uveitogenic CD4+ T cell activation and differentiation 45.  

Suzuki et al. suggested that impaired cDC maturation may be the underlying mechanism 

for the observed anti-inflammatory effect of aminoimidazole carboxamide ribonucleotide 

(AICAR)60. Impaired murine cDC maturation prevents the generation of Ag-specific Th1 

and Th17 cells to attenuated EAU by the treatment of AICAR 60. Further indirect 

evidence of the importance of DC maturation in the pathogenesis of uveitis may be 

inferred from the role of pertussis toxin assisting the induction of uveitis in mice. 

Pertussis toxin exerts an adjuvant role on cDC to promote cDC maturation and the 

production of proinflammatory cytokines, thereby eliciting a Th1 response in EAU 23.  

        As discussed elsewhere ‘maturation’ is more complex and more plastic than a 

simple unidirectional linear progression, and thus there are a number of other DC states 

that should be considered 50. For example, IL-10-conditioning BMDCs induce an 

‘immature’ phenotype which can suppress EAU development and significantly reduce 

IRBP-specific T-cell proliferation and IFN-γ production, but increase IL-10 production64.  

       Liang et al. has also shown that a specific CD25+ splenic DC subset contributes to 

the development of EAU, with ablation of this DC subset resulting in decreased 
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activation and expansion of γδ T cells, with decreased activation of IL-17+ IRBP-specific 

T cells and attenuated inflammation in the EAU 34.  

        Taken together, data from the EAU model suggest that DCs have an important role 

in the induction or inhibition of inflammation. Now, a major challenge lies in extrapolating 

these data to human non-infectious uveitis. 

 

7. Abnormalities of Dendritic Cell Subsets in Non-infectious Uveitis Patients 

An important question that remains is whether perturbations in the number, frequency, or 

ratio of DC subsets can lead to the development of autoimmunity. Studying DCs in non-

infectious uveitis patients is a challenge owing to the low number of DCs in the 

peripheral blood and eye tissues. Despite this, DC subsets have been successfully 

quantified in patients with non-infectious uveitis secondary to Sarcoidosis, Behcet 

diseases, Vogt-Koyanagi-Harada (VKH) syndrome, or birdshot chorioretinopathy. 

Through multicolor flow cytometry analysis, we have determined that non-infectious 

uveitis patients have an increased frequency and absolute number of CD1c+ mDC1 

when compared to the levels in the peripheral blood of healthy controls (Ping et al., 

manuscript under review).  

        In addition to the alteration in DC numbers, DCs exhibit a more ‘mature’ phenotype 

in non-infectious uveitis patients. Studies show that the deficiencies of mDCs correlate 

with the clinical severity observed in sarcoidosis, but mDCs still exhibit the upregulated 

co-stimulatory and maturation markers (e.g., CD86, HLA-DR) 39. Another study revealed 

that increased CD86 and HLA-DR expression on mDCs in uveitis patients are strongly 

correlated with inflammatory activity. Interestingly, the expression of these surface 

molecules is not completely downregulated to the baseline levels measured in healthy 

controls, even during uveitis remission 28. We have observed that only HLA-DR, not co-

stimulatory molecules such as CD80, on CD1c+ mDC1 is increased in the patient 
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peripheral blood when compared with healthy controls (Ping et al., manuscript under 

review).  

        Looking within the eye, Chang et al. used cadaveric tissue to identify DC, based on 

noting dendritiform stromal cells, which were HLA-DR positive and CD68 negative (a 

macrophage marker). This study was of interest because it showed that these cells 

expressed TLR4 and the associated LPS receptor complex and were localized to the 

uvea, but not to other ocular tissues 4. This may be particularly relevant to those forms of 

uveitis that have a proposed association with gram negative bacteria such as HLA-B27 

associated anterior uveitis 5. Denniston et al. reported that mDCs isolated from human 

uveitic aqueous humor (AqH) were characterized by elevated MHC I and II, but reduced 

CD86 compared with matched peripheral blood mDCs 16.  

        Unlike mDCs, there exists no consistent trend among different studies when 

comparing pDC frequency and function in non-infectious uveitis. Pay et al. reported a 

higher frequency of IFNα+ pDCs in Behcet disease patients with higher sensitivity of 

these cells to CpG D ODN stimulus, which they inferred contributed to high serum IFN-α 

levels found in these patients promoting a Th1 type immune response 46. Plskova et al. 

studied a series of patients with severe, refractory sight-threatening uveitis pre- and 

post-treatment with IFN-α. They noted no significant difference between patients and 

control subjects in the number of pDCs, but there was a significant decrease in the 

capability of patients' pDCs to produce IFN-α in response to CpG and an alteration in the 

T cell phenotype with lower activation markers and increased intracellular T-cell IL-10 

levels 48. Data from our laboratory show that pDC frequency is significantly decreased in 

all types of non-infectious uveitis patients regardless of disease status when comparing 

to that in healthy controls and that this decreased pDC frequency is highly correlated 

with decreased regulatory T (Treg) cells (unpublished data). This observation supports 

the suggestion of Plskova that pDC may help the generation of Treg cells 48. This 
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hypothesis is also supported by observations in rheumatoid arthritis, where Kavousanaki 

et al. noted that pDC from inactive RA (but not active RA) expressed high levels of 

indoleamine 2,3-dioxygenase and promoted the differentiation of allogeneic naive 

CD4+CD25- T cells into IL-10-secreting Treg cells that showed poor proliferation in vitro 

27. While for active disease they noted reduced pDC levels (similar to our observations in 

uveitis), in treatment-induced remission they found elevated pDC levels (in contrast to 

our observations). The role of pDCs in human autoimmune disease requires further 

elucidation.  

       From practical limitations relating to the numbers of mDCs and pDCs available, the 

limited numbers of functional or mechanistic studies conducted in human uveitis have 

depended on in vitro generation of MoDCs. Frassanito et al. observed that when MoDCs 

are generated from the peripheral blood of patients with non-infectious uveitis, these 

cells display an enhanced ability to stimulate cell proliferation of allogeneic T cells in 

mixed lymphocyte reactions (MLR) and higher levels of IL-12 production compared to 

healthy controls or compared to uveitis patients who had received systemic treatment 20. 

More recently, Yang et al. demonstrated the immunosuppressive effects of the plant 

extract Berberine on MoDCs from patients with active VKH 69. Similarly, Denniston et al. 

used human MoDCs as a model to test the effects of non-inflammatory and inflammatory 

AqH supernatant, noting that exposure of MoDCs from healthy controls to uveitic AqH 

from patients with active inflammation induced upregulation of MHC I and II and reduced 

CD86. Interestingly these changes were characteristic of the mDCs that had been 

directly isolated from these uveitis patients, providing evidence for the potential role of 

the ocular microenvironment in DC regulation, maturation and function 15; 16.  

        In light of our increased understanding of DC biology, and our own observations of 

alterations in DC subsets in human uveitis (notably an increase in mDCs and a reduction 

in pDCs), we hypothesize that these DC alterations are at least partially responsible for 
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the biased CD4+ T cell immune responses observed in human non-infectious uveitis 

(increased Th1 and decreased Treg cells).  

 

8. Conclusions  

The investigation of DCs is complicated by the fact that they account for a relatively 

small proportion in the immune system. An even bigger challenge persists is the 

translation and application of the findings from animal models such as EAU into more 

complex human non-infectious uveitis. There is, however, accumulating evidence that 

indicates that DCs may have either a protective or pathogenic role in the uveitis, 

depending on their maturation status and local microenvironment.  

        We hypothesize that, while most studies of DCs in uveitis emphasize the impact of 

abnormalities in an individual DC subset, important pathogenic effects may arise from 

imbalances in DC subset proportions and their mutual interaction. Even as DC-based 

therapies for cancer and vaccines continue to progress, we need to address these more 

fundamental questions regarding the role of DCs in the pathogenesis of uveitis. 

Therefore, we argue that an equivalent depth of understanding on the function of 

individual DC subsets as well as their interaction in autoimmunity will be a necessary 

and potentially powerful tool for preventing, controlling, and effectively treating human 

non-infectious uveitis. 

 

Method of Literature Search 

The literature for this review was searched from PubMed, using the key words of uveitis, 

dendritic cells, plasmacytoid dendritic cells, classical dendritic cells and myeloid dendritic 

cells. The date range was from 1947 and 2014. Non-English manuscripts were included 

where a screen of the abstract identified it as being relevant.  
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Figure. Role of DCs in Non-infectious Uveitis 

a) Precursors of DCs from bone marrow migrate into peripheral blood and become 

immature DCs in response to microenvironment challenge. b) Immature DCs circulate in 

the peripheral blood and eye under the attraction of chemokine or cytokines. c) 

Immature DCs sense and take up the antigens in the eye. d) Immature DCs become 

mature after antigen uptake, which express high MHC and co-stimulatory molecules. 

Mature DCs migrate into draining lymph nodes where they educate naïve T cells to be 

Th1, Th2, T regulatory cells and Th17 cells depending on signals. e) Educated T cells 

migrate into eyes to secrete cytokines, which cause non-infectious uveitis.   
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Table 1. Comparison of Human and Murine DC Subsets 

 Subsets Phenotypes Function References 

Human pDCs BDCA2 (CD303) 

BDCA4 (CD304) 

CD123 

TLR7, 9 

Type I interferon production 

in response to viral or self 

nucleic acids (via TLR7, 9) 

5; 6; 7; 48 

mDC1 BDCA1 (CD1c) 

CD11c  

TLR1-8 

Stimulate CD4+ T cells;  

Wide-range of TLR and 

lectins;  

Secrete IL-12, IL-8, IL-10, 

IL-23 and TNFα 

5; 6 

mDC2 BDCA3 (CD141) 

XCR1 

Antigen cross presentation 

to CD8+ T cells 

5; 6 

    

Mouse pDCs PDCA1 Type I interferon production 

in response to viral or self 

nucleic acids (via TLR7, 9) 

 

15 

CD8+/CD103+ 

cDCs 

CD11c 

CD8α (lymphoid)  

or CD103 (tissue) 

XCR1 

 

Antigen cross presentation 

to CD8+ T cells 

15 

CD8- cDCs CD11c 

CD11b 

Stimulate CD4+ T cells;  

Wide-range of TLR and 
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 lectins;  

Secrete IL-12, IL-8, IL-10, 

IL-23 and TNFα  

*  CD8+ cDCs in the lymphoid tissues and CD103+ in non-lymphoid tissues share XCR1, 

and the ability to cross-present antigen to CD8+ T cells. They are therefore grouped as 

the same subset here. 
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