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Abbreviations

1,25-D5 1,25-dihydroxyvitamin [, 25-Ds, 25-hydroxyvitamin [; CK-7, cytokeratin
7; CVS, chorionic villous sampling; CYP24A1, 24-hydroxylas€YP27B1, &-
hydroxylase; EVT, extravillous trophoblast; FGRtalegrowth restriction; HLA-G,
human leukocyte antigen G; MMP, matrix metallopimdse; PBS, phosphate
buffered saline; RT-PCR, reverse transcriptase rpelgse chain reaction; uNK,

uterine natural killer cells; VDR, vitamin D recept
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Abstract

Introduction: Incomplete human extravillous trophoblast (EVT) aswn of the
decidua and maternal spiral arteries is charatters pre-eclampsia, a condition
linked to low maternal vitamin D status. It is hyipesized that dysregulated vitamin
D action in uteroplacental tissues disrupts EVTasign leading to malplacentation.
Methods: This study assessed the effects of the activenuitdD metabolite, 1,25-
dihydroxyvitamin 3 (1,25-0;), and its precursor, 25-hydroxyvitamiry [25-D;3), on
primary human EVT isolated from first trimester gmancies. Expression of EVT
markers (cytokeratin-7, HLA-G), the vitamin D-a@ting enzyme (CYP27B1) and
1,25-D; receptor (VDR) was assessed by immunocytochemi€iiT responses
following in vitro treatment with 1,25-p(0-10nM) or 25-3 (0-100nM) for 48-60h
were assessed using quantitatR€-PCR (gRT-PCR) analysis of key target genes
Effects on EVT invasion through Matrigel® were qtiteed alongside zymographic
analysis of secreted matrix metalloproteinases (MMEffects on cell viability were
assessed by measurement of MTT.

Results: EVT co-expressed mRNA and protein for CYP27B1 arfidR, and
demonstrated induction of mRNA encoding vitamin d3gonsive genes, 24-
hydroxylase (CYP24A1l) and cathelicidin following2%;D; treatment. EVT could
respond to 1,25-Pand 25-B, both of whichsignificantly increased EVT invasion,
with maximal effect at 1nM 1,254X1.9-fold; p<0.01) and 100nM 25;0042.2-fold;
p<0.05) respectively compared with untreated cdsitrohis was accompanied by
increased pro-MMP2 and pro-MMP9 secretion. The siiawas independent of cell

viability, which remained unchanged.
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Discussion: These data support a role for vitamin D in EVTasn during human
placentation and suggest that vitamin D-deficien@y contribute to impaired EVT

invasion and pre-eclampsia.

Key words

Vitamin D; pre-eclampsia; placenta; extravillougptnoblast; cell invasion
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Introduction

Vitamin D-deficiency, defined as a serum concerrabdf 25-hydroxyvitamin D (25-
Ds. the main circulating form of vitamin D) less tha®n®4, and vitamin D-
insufficiency (25-R<75nM) are especially prevalent in pregnancy. Thesaplicate
at least 67% of pregnancies, particularly in womath darker skin pigmentation, in
various geographical locations around the world][1A recent meta-analysis of
observational studies noted associations betwdamwi D-deficiency in pregnancy
with increased risk of pre-eclampsia, gestationabetes, preterm birth and small for
gestational age infants; with pre-eclampsia showigstrongest association with an

odds ratio of 2.09 (95%CI 1.50-2.90) [5].

Pre-eclampsia, a syndrome of maternal hypertengpooteinuria and endothelial
dysfunction, affects up to 8% of pregnancies amdaias a leading cause of maternal
and perinatal morbidity and mortality [6]. In oneudy, maternal serum
concentrations of 25-Din prospectively collected samples in early pregyawere
found to be significantly lower in women who subsestly developed pre-eclampsia
[7]. However, the pathogenic mechanisms linking lewamin D levels with pre-
eclampsia are not understood and a causative letkvden the two remains
controversial. The prevalence of vitamin D insufficy and incidence of pre-
eclampsia are both increased in Black and SouthrAsiomen, which may implicate

potential confounding variables associated witmieity.

The human hemochorial placenta is an extra-reasili¢i with high expression of the
vitamin D-activating enzymeothydroxylase (CYP27B1), which converts 25-»
active 1,25-dihydroxyvitamin £(1,25-0;). Both CYP27B1 and the receptor for 1,25-

D; (VDR) are expressed in human decidua and theugllplacenta, with higher
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expression during the first and second trimesténgregnancy. This suggests a role

for vitamin D in decidualisation and uteroplacemtahodelling [8].

Cytotrophoblast within the villous placenta diffeti@tes into extravillous trophoblast
(EVT), which has an invasive phenotype. EVT invatles decidua and maternal
spiral arteries from the first trimester until 24&eks of gestation. This invasion is
critical to maternal spiral artery remodelling apgbmotion of maternal placental
blood flow to establish effective maternal-fetatkange. Impairment of this process
predisposes a pregnancy to uteroplacental inseifftgi and a significantly increased

risk of pre-eclampsia and fetal growth restrict{e®&R).

We hypothesized that vitamin D insufficiency durimgegnancy may lead to
dysregulation of placental morphological developtmend thus the development of
malplacentation disorders including pre-eclampsid &GR. Vitamin D has been
demonstrated to regulate inflammation in humandiediuterine natural killer (UNK)

cells [9], which in turn is postulated to impact ttwe invasion of fetal-derived EVT in
a paracrine manner [10]. In this study, we have moxgstigated the direct effects of

1,25-D; and 25-13 upon isolated human first trimester primary ENMNitro.

Methods

Ethical approval

Human samples wemllected with informed written consent and witle #pproval
of the South Birmingham Research Ethics commitRefdrence: 06/Q2707/12) and
the Research and Development office of the Walshor Hospitals NHS Trust

(Project code: 20070130G(W); approval number: 17@30).
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Sample collection

Placental samples were obtained from women undsggaelective surgical
termination of apparently uncomplicated pregnanc@snples were collected from 8-
11 completed weeks of gestation as determined thgsound measurement of crown
rump length prior to pregnancy termination. Theuses were not known to have

abnormal karyotypes nor structural anomalies.

Cell isolation and culture

Following collection, placental tissues were disseécfree and washed three times
with PBS. Primary EVTs were isolated using a metbbdnzyme digestion followed
by percoll separation as previously described [Cljaracterization of these cells by
immunocytochemistry for EVT markers using anti-&gmtin 7 (Novocastra,
Newcastle-upon-Tyne, UK; 1:20) and anti-HLA-G (Sem Oxford, UK; 1:200) with
an avidin-biotin peroxidase method (VectastatinteElkit, Vector Laboratories,
Peterbotough, UK) confirmed 95% purity (Figure 1A-Cells were cultured on
growth factor-reduced Matrig&matrix (BD Biosciences, Erembodegem, Belgium) in
DMEM:F12 medium containing 10% FBS, 1000U/ml péhici 1 mg/ml
streptomycin, 2 mM.-glutamine and 1.;ug/ml amphoteracin B (all reagents from
Gibco Life Technologies, Paisley, UK) in standafb £0, in an air incubator at
37°C. These cells were treated with 1,25{Bnzo Life Sciences, Exeter, UK) at
concentrations of 0-10 nM or with 25D0Enzo Life Sciences) at 0-100 nM.
Incubations were for 48h or 60h as defined in presty reported studies [12].
Inhibition of CYP27B1 was carried out by pre-treatrh for 2h with the pan-
cytochrome P450 inhibitor, ketoconazole (Sigma-ithlr Dorset, U.K), at 18M,

before culture with or without 25-3reatment for 60h.
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I mmunofluorescence microscopy

Isolated EVT cells were grown (60h) on chambereslidoated with poly-D-lysine
(200ul/well of 0.1mg/ml) and immunofluorescent-stl as described previously
[13]. Cells were co-stained for VDR (clone D-6, &aiCruz Biotechnology) and
CYP27B1 (Clone H-90, Santa Cruz Biotechnology) (iFegg1l). VDR and CYP27B1

were detected using anti-mouse Alexa Fluor 488 é®rend anti-rabbit Texas Red
(Red) secondary antibodies (Life Technologies) eespely. All antibodies were

used at 1:100 dilution. Slides were mounted witlcteshield™ containing DAPI

(Vector Laboratories Inc., Peterborough, UK) andameied using a fluorescent

microscope (Carl Zeiss, Hertfordshire, UK).

Quantitative RT-PCR

Total RNA was extracted using TRI reagent (Sigmdrigh, Dorset, U.K.) following
recovery of cells from Matrigel Matrix using BD tetecovery solution (BD
Biosciences, Bedford, UK) according to the manufiaats instructions. Total RNA
(1ng) was reverse transcribed using Avian Myeloblastdgrus (AMV) reverse
transcriptase (Promega, Southampton, UK) followtimg manufacturer’s guidelines.
Expression of mMRNA encoding CYP27B1 (Hs01096154 mIJYP24A1
(Hs00167999 _m1), VDR (Hs00172113_m1l) or catheliciffis01011707_gl) was
determined and normalized to the expression of rTRB$A (4319413E), an internal
control in multiplex reactions, using the ABI PRISK500 Sequence Detection
System (ABI, Foster City, USA). All primer and pesbowere produced by Applied
Biosystems, Paisley, UK. Quantification of generesgion was determined using the
ACt method described previously [14]. Relative mRB¥pression for each sample

was compared with the mean gene expression abwest vitamin D dose at which
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expression was detectable, with this being assighedarbitrary value of 1 within

each experiment.

I nvasion assays

Primary EVT were seeded in cell culture insertsZd+well plates [8um membrane
pore size (BD Biosciences)] coated with growth daceduced Matrigel® matrix

(10ul; BD Biosciences). Invaded cells (assesseduplicate) were fixed in ethanol,
stained with Mayer's hematoxylin and eosin (Signddgh, Dorset, UK), and

counted across the entire membrane at 20X magmificasing a light microscope
[11]. The invasion index was expressed as the rafioinvaded cells in the

experimental group relative to the control groupMQ within each experiment.

Matrix metalloproteinase (MMP) quantification by zymography

Levels of secreted MMP2 and MMP9 protein, which &ey gelatinases in the
degradation of the basement membrane by EVT dimivegion, were assessed using
gelatin zymography as described previously [15]efBr, total protein (16-20uQ)
from EVT-conditioned medium was resolved by elgutraresis in a 12% SDS-PAGE
gel and then incubated (30 min) in zymograph-remagu buffer followed by
zymograph-developing buffer (Invitrogen, RenfrewK)Uovernight at 37°C before
staining with Coomassie Brilliant Blue R250. Driggls were then scanned and
densitometry of pro-MMP9 and pro-MMP2 performed ngsilmage J software.
Although active MMP2 was detectable, poor resotutiof bands precluded

guantification by relative densitometry.

MTT assays
Cells were seeded in 96 well plates and experimpat®rmed with three or four

replicates of each dose using the quantitativercokdric 3-(4,5-dimethyldiazol-2-
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179 yl)-2,5 diphenyl Tetrazolium Bromide (MTT; Sigmadkich, Dorset, U.K) assay of
180 mitochondrial metabolism, as described previousBj.[ Within each experiment, the
181 absorbance values were normalized to the valueainglst with no vitamin D

182 treatment (OnM), which was given an arbitrary vadfi@ 00%.

183 Statistical analysis

184 Data were analyzed using the SigmaStat v3.1 statistoftware (Systat Software Inc,
185 California, USA). Repeated measures one-way arsalysivariance was performed
186 followed by Tukey all pairwise multiple comparisopsst-hoc tests. Data sets passed
187 the normality test except for the quantitative RIRPand pro-MMP2 data, which
188 required logarithmic transformation prior to statial analysis. Statistical significance

189 was taken as p<0.05.

190 Results

191 EVT express a functional vitamin D intracrine system and respond to 1,25-D3 and
192 25-Dj

193 Isolated EVT from first trimester placentae demoatsd coincident protein
194 expression of the vitamin D-activating enzyme CYB27and the intracellular
195 receptor for 1,25-B VDR (Figure 1D-G), confirming previous quantitetiRT-PCR
196 and immunohistochemistry findings in intact decidussue sections [8]. Expression
197 of mRNA encoding CYP27B1 and VDR (Figure 2A-B) imolated EVT was
198 unaffected by treatment with 25;r 1,25-03 consistent with previous reports in
199 primary cultures of first trimester human choriomilbous sampling (CVS) specimens
200 [17]. The co-expression of CYP27B1 and VDR indictite presence of a potential

201 EVT vitamin D intracrine system.
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Expression of mMRNA encoding the vitamin D feedbeatabolic enzyme CYP24A1,
which attenuates vitamin D responsiveness by caoingel,25-03 and 25-Q to less
active metabolites, was undetectable in untrea¥d @Eigure 2C). This is consistent
with the CYP24A1 gene being methylation-silencedoesviously reported in term
villous placenta and in first trimester cytotroplash [17]. However, CYP24Al
MRNA expression was induced in EVT treated with 1h/#5-0;. Treatment with a
higher concentration of 1,25;0010nM) resulted in a 9-fold increase in CYP24Al
MRNA expression compared to 1nM-treated EVT (p<Q0.Gigure 2C). This
magnitude of response in EVT is similar to the @letHincrease reported in CVS cells
treated with 100nM 1,25-D3, but this magnitudeti significantly less than those in
the hundreds reported in cells in which CYP24Aha$ methylation-silenced [17].
Evidence that human EVT is vitamin D-responsive \ftagher demonstrated by a
dose-dependent induction of MRNA encoding the \itab+responsive antibacterial
protein, cathelicidin, by 1,254ANOVA p<0.001; Figure 2D). Messenger RNA
encoding cathelicidin increased by 217-fold and-#8d with 1nM and 10nM of
1,25-D; treatment respectively (both p<0.001). These daa consistent with
previous findings in human term placental explardad isolated primary

cytotrophoblast treated with 1,25:[18].

Effects of 1,25-D3 and 25-D3 on EVT invasion

Treatment of human primary EVT with 1,25 B3ignificantly increased directly

quantified cell invasion into Matrig8(ANOVA p<0.01; Figure 3A). A peak invasion

response was demonstrated at 1nM 1,25with a 1.9-fold increase in the number of
invaded cells compared with untreated controls ¥0 Compared with untreated
EVT, a statistically significant increase in inasiby 1.7-fold (p<0.05) was also

noted with a lower dose of 0.1nM 1,25%-But not at a higher dose of 10nM 1,25-D
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The diminished response at 10nM 1,25eDuld be due to preceptor regulation and

inactivation of 1,25-R by increased CYP24A1 expression.

Primary EVT also responded to 25;@onfirming the efficacy of the CYP27B1/VDR
intracrine system. There was a dose-dependentaser®m EVT invasion with rising
25-D3 concentrations (ANOVA p<0.05; Figure 3B). A similaagnitude in the peak
response, as seen with 1,25-Df a 2.2-fold rise in the number of invaded celts
100nM 25-13 compared to controls (p<0.05) suggests that batmd of vitamin D

use a similar response pathway in the promotida\orf invasion.

To confirm that this observed increase in EVT invass mediated by vitamin D,
EVT were pre-treated with a cytochrome P450 inbibiketoconazole [19], prior to
25-Ds treatment. Ketoconazole by itself did not inhilmivasion of EVT, but when
CYP27B1 activity was blocked by ketoconazole theiprvasive effects of 25-Pwas

significantly attenuated (ANOVA p<0.01; Figure 3Guggesting that intracellular

EVT metabolism of 25-pmediates EVT invasion.

Enhanced Matrigel® invasion by EVT with vitamin Beatment was paralleled by
increased secretion of pro-MMP2 and pro-MMP9 (FegudA-4D). Pro-MMP2
increased significantly (ANOVA p<0.001; Figure 4@ith 1,25-D; at 1nM (p<0.001)
and 10nM (p<0.001), and pro-MMP9 was increasedifsigmtly (ANOVA p<0.05;

Figure 4D) with 100nM 25-pcompared with untreated EVT (p<0.05).

Effects of 1,25-D3 and 25-D3 on EVT cell viability
To confirm that the observed increase in EVT invaswith vitamin D reflected
increased invasive capability rather than enharmedidproliferation and/or survival,

we assessed EVT cell viability. Data from MTT amsa&ly showed no significant
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change in EVT cell viability following treatment thi 1,25-03 or 25-D; (Figures 4E-

F).

Discussion

Vitamin D deficiency in pregnancy has been assediatith an increased risk of pre-

eclampsia [7, 20], but the underlying mechanisnesuaclear. We have demonstrated
that the vitamin D metabolites, 1,25 Bnd 25-0 have a direct pro-invasive effect

on isolated human EVin vitro, highlighting an entirely novel action for vitamb

in the placenta. Furthermore, pro-invasive responsge vitamin D suggest that

attenuated EVT invasion of uterine decidua and wasare, may be one of the

mechanisms by which vitamin D deficiency contrilsute the increased risk of pre-

eclampsia and FGR.

The pathogenesis of pre-eclampsia is proposed ta tveo-stage process: the first
stage occurring in the first and early second tsitmes of pregnancy involving
impaired EVT invasion and maternal spiral artempoéelling (malplacentation), and
the second stage occurring after 20 weeks of gestathen the clinical syndrome of
hypertension and proteinuria manifests associatath wascular endothelial
dysfunction [21]. Maternal factors (genetic, beloaval, environmental) interact with
events at both stages, and also influence theblatkeen the first and second stages,
leading to variable pre-eclampsia phenotypes, whieh likely to require different

preventive strategies and treatment [21].

Studies where maternal circulating 25\Bas measured at a time coinciding with the
beginning of the critical maternal vascular rembdgl process, have shown
conflicting results, with one study associating lo2b-D; with subsequent

development of pre-eclampsia [7], but with two othidies showing no association
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[22, 23]. However, one of these latter studies iigort a significant association
between low circulating 25-Dat 24-26 weeks gestation with pre-eclampsia in a
predominantly white population with pre-existingkifactors for pre-eclampsia [22].
These discrepancies may be due to studies usirdgretit assay methodology,
different populations of various ethnic mix andkriactors for pre-eclampsia, being
underpowered, to the lack of differentiation betweake various manifestations of
pre-eclampsia and failure to account for disrugionvitamin D metabolism within

the local uteroplacental environment.

Malplacentation, which is characteristically asatail with pre-eclampsia, may also
result in fetal growth restriction (FGR). Interesjy, women with severe early onset
pre-eclampsia who also delivered small for gestalioage babies had lower
circulating 25-03 compared with pre-eclamptic women with approphatgrown
babies [24]. Furthermore, independent of matergpktiension, FGR has also been
associated with lower maternal serum 2HeDncentrations [25]. All of this supports
the hypothesis that vitamin D deficiency is an legecal factor in the first stage of

pre-eclampsia pathogenesis and in malplacentation.

Furthermore, given the relatively high expressibrihe activating CYP27B1 in the
placenta [8], local uteroplacental concentratiohghe active metabolite, 1,25sD
may not reflect the prevailing concentration of 25 the maternatirculation. In
pre-eclampsia there is additional disruption of ph&cental vitamin D system with
reports of reduced CYP27B1 activity in primary ek trophoblasts [26], thus
potentially exacerbating the effects of low matérmarculating vitamin D
concentrations or contribute to pre-eclampsia dekpite normal circulating 253D

concentrations. Vitamin D may also be implicatedha development of the second
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stage of pre-eclampsia pathophysiology as vitamindédicient rodents display
endothelial vasodilator dysfunction and hypertensja7, 28] although data from

human studies are conflicting [29, 30].

In this study, a significant pro-invasive effect28-D; was only demonstrable at an
optimal maternal circulatory concentration of 100malthough at lower 25-pPdoses
an insignificant trend suggestive of dose-dependenieased EVT invasion with
rising 25-0; concentrations was observed. The pro-invasiveetiel,25-13 in EVT

is in contrast to previous reports of an anti-imvaseffect of 1,25-Q in several
human cancer cell lines including the human breaster cell line MDA-MB-231
[31], human prostate cancer cell lines [32], Lewing carcinoma cells [33] and
murine squamous carcinoma cells [34]. Similarly251D; inhibited MMP2 and
MMP9 activity in human primary uterine fibroid celand the immortalized HuLM
fibroid cell line [35]. The specific differences inuman EVT cell characteristics
which lead to differential invasion responses tamwiin D treatment are unknown and
warrant further investigation. With our methodolpgiespite the high purity of
primary EVT cultures, there remains the possibititgt uncharacterized non-EVT
invasive cell types could have made a minor couatiagn to the population of invaded
cells. Although increased pro-MMP2 and pro-MMP9rsegon was associated with
the EVT invasion promoted by vitamin D, attributioh a direct causative role for

MMP in the mechanism of effect requires furthedgtu

In addition to a direct vitamin D effect on EVT theelves, indirect paracrine effects
on invasion could also occur through vitamin D dagan of cytokine secretion by

neighbouring decidual uNK cells [9] and villousghmblasts [36]. Thusn vivo, EVT
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invasion is tightly regulated at multiple levelsdahe summation of vitamin D effects

at all of these levels is an area for further redea

Apart from EVT invasive capacity, vitamin D may @lsnpact on other events in
placental development such as angiogenesis [37#ume regulation [9, 36] and

enhanced hormone synthesis [38, 39] through am®emd paracrine mechanisms.

In conclusion, we presemnt vitro experimental evidence that supports a directfaole

vitamin D in human EVT function. We have provideddence which suggests that
improved vitamin D status through supplementatiariyein pregnancy or prior to

conception may therefore be a potential strategygducing the risk of pre-eclampsia
and FGR through adequate EVT invasion during tligcar phase of placentation
occurring in the first half of gestation. Indeed,redirospective study of maternal
supplementary intake of vitamin D demonstrated & 2&duction in the incidence of
pre-eclampsia [40] and a pooled analysis of trealggested protective effects of

supplementation on low birth weight [41].
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Figure legends

Figure 1: Expression of an intracrine vitamin D sygem in primary EVT.

(A-C) Immunocytochemistry using an avidin-biotinrpeidase method for the EVT
markers (A) cytokeratin 7 (CK-7) and (B) HLA-G, wi{C) control performed with
omission of primary antibody. (D-K) Immunofluoresce microscopy of (D) the
intracellular vitamin D receptor (VDR), (E) the amhin D-activating enzyme
(CYP27B1), (F) DAPI only, with a merged image (@) primary EVT from first
trimester human placentae. Control images are pémxents with omission of the
primary antibody with (H) Alexa Fluor 488 (Greem)(t) Texas Red (Red) secondary
antibodies, with the corresponding DAPI-stained andrged images (J and K
respectively). Images were captured using the Agiom Software (Carl Zeiss,
Hertfordshire, UK).

Figure 2: Effect of 1,25-3 on expression of mRNA for CYP27Al, VDR,
CYP24A1 and cathelicidin in primary EVT. Relative expression of mRNA
encoding: (A) CYP27B1; (B) VDR; (C) 24-hydroxylag@YP24A1); (D) cathelicidin
in human first trimester primary EVT. Mean mRNA eagsion at the lowest vitamin
D dose at which expression was detectable wasreskitpe arbitrary value of 1. Bars
represent mean + SEM from three different EVT mesaStatistical significance are

indicated by ** p<0.01, *** p<0.001.

Figure 3: Effect of 1,25-03 and 25-D; on Matrigel® invasion by primary EVT.
Effect of treatment with increasing concentratiafis(A) 1,25-D; for 48 hoursyB)
25-D; for 60 hours on human first trimester primary EVHoOr invasion through
growth factor-reduced Matrig&the number of invaded EVT cells in each experiment
was normalized to the average number of invaded celthe control group (0 nM)

and expressed as a percentage of control. (C)dseceinvasion of EVT by 254D
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492 (100 nM) is inhibited by ketoconazole (KC: M), a cytochrome P450 inhibitor.
493 Bars represent mean data from EVT isolated fromeglgA) or six (B) or three (C)
494 different pregnancies respectively £ SEM. Statilyc significant differences

495 compared to control (OnM) are indicated by *p<0.8$<0.01.

496 Figure 4: Effect of 1,25-13 and 25-D; on primary EVT secretion of matrix
497 metalloproteinase (MMP) and EVT cell viability. (A and B) Representative gel
498 zymograph from one experiment showing bands reptege pro-MMP9 (92kDa),
499 pro-MMP2 (72kDa) and active MMP2 (63kDa) in conalited media from culture of
500 primary human EVT following treatment with: (A) 5:D; or (B) 25-0. (C and D)
501 Relative densitometry of pro-MMP2 and pro-MMP9 éoling treatment with: (C)
502 1,25-D; or (D) 25-0. Results were normalized to their respective @st(0 nM)
503 within each experiment. Bars represent the meanEM SC: n=5; D: n=6).
504 Statistically significant differences compared tontol (OnM) are indicated by
505 *p<0.05, **p<0.001. (E and F) EVT cell viability as assessed using MTT assays.
506 Within each experiment data were compared to radrtrent (O nM), which was given
507 an arbitrary value of 100%. Absorbance is expressedhe difference between
508 absorbance at OD 570nm and 690nm (background).Bpresent the mean =+ SEM
509 (A: n=6; B: n=5). Although the overall ANOVA on treell viability data for 25-B
510 was statistically significant (p<0.05), further &ms#s by post-hoc tests failed to
511 identify any statistically significant differencebetween the different 25{D

512 concentrations.
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Figure 4
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Highlights
« Human primary extravillous trophoblast (EVT) isantin D responsive.
« Vitamin D directly promotes the invasion of primd&yT through Matrigel®.

- Maternal vitamin D deficiency may thus lead to nfetentation and pre-eclampsia.



