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 7 

Abstract 8 

 9 

Fluid gels have shown potential for use in numerous applications including foods.  One such 10 

application is in the production of self-structuring food formulations that take advantage of 11 

natural digestive processes to increase satiety, potentially helping to combat obesity.  The 12 

formation and properties of low-acyl gellan gum fluid gels, produced by applying shear during 13 

the gelation process are discussed.   The acid gelation process of the low-acyl gellan gum fluid 14 

gels was investigated through the direct addition of hydrochloric acid, inducing a range of pH 15 

environments and also their response to a prolonged exposure to an acidic environment, similar 16 

to the conditions found in the stomach.  Quiescent LA gellan gum gels were also exposed in this 17 

way for comparison to the fluid gels. 18 

Rheology was performed on the fluid gels after their formation to determine structure 19 

development.  Using these methods, the influence of applied shear and acid concentration on 20 

the transition temperature, viscosity and molecular ordering in the fluid gel systems has been 21 

studied. 22 

 23 
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 31 

1. Introduction 32 

Polysaccharides are widely used as replacements for fats and sugars in low fat and reduced 33 

calorie foods or within enhanced satiety products (Tang et al., 1994; Brown et al., 1996; Garrec 34 

et al., 2012; Norton et al., 2006).  The use of hydrocolloids only as simple gelling and thickening 35 

agents does not offer any specific benefit to health, convenience or quality in a formulated 36 

product (Gabriele et al., 2009).  This has led to the development of hydrocolloid fluid gels, which 37 

can be designed to achieve a wide range of structural properties (Cassin et al., 2000; Norton et 38 

al., 2000) to impart specific advantages to formulated foods. 39 

Fluid gels are formed when shear stress is applied to a solution undergoing gelation; as a 40 

result particles are formed within the solution rather than the entire solution forming a 41 

homogenous gel. These particles of gel exist as a highly concentrated (high volume fraction) 42 

suspension, giving rise to an entirely different set of material properties to the quiescently 43 

formed gel (Brown et al., 1996).  The application of fluid gels in food formulations has been 44 

investigated, and many studies manipulate the ability of some polysaccharides to form solid, 45 

brittle gels under quiescent cooling. One such polysaccharide is Gellan.  Gellan gum (Sworn et 46 

al., 1995; Sworn, 2000; Sworn, 2009; Valli & Miskiel, 2001; Caggioni et al., 2007) is a 47 

multifunctional hydrocolloid which is already available for use in a wide variety of food products 48 

as a gelling and stabilising agent (Kelco Division of Merck and Co., 1993; Sanderson, 1990; 49 

Gibson, 1992).  The gellan polymer consists of monosaccharides b-ᴅ-glucose, b-ᴅ-glucuronic acid 50 

and α-L-rhamnose in molar ratios of 2:1:1 (Sanderson, 1990) linked together to form a primary 51 
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linear structure.  The biopolymer is produced with two acyl substituents present on the 3-linked 52 

glucose, L-glycerol positioned at O(2) and acetyl at O(6).  Direct recovery of the polysaccharide 53 

from the fermentation broth yields the high acyl form whereas deacylation by alkali treatment 54 

results in a low acyl counterpart.  Gellan gum is currently commercially available in both the high 55 

acyl and the low acyl form.  When hot solutions of gellan gum are cooled in the presence of gel-56 

promoting cations, gels ranging in texture from brittle to elastic are formed, principally through 57 

cation-mediated helix-helix aggregation (Gibson & Sanderson, 1997).  This paper reports results 58 

obtained with low acyl gellan gum since it forms clear gels, while high acyl gellan yields opaque 59 

gels with less thermal stability.  It is important to note however that clarity is not a natural 60 

attribute of low acyl gellan gum, it is the result of an additional clarification process that is not 61 

applied to the high acyl gellan gum commercial product.  The gel phase transition temperatures 62 

of low acyl gellan (30 – 50 °C) are lower than those of high acyl gellan gum (70 – 80 °C), which 63 

also makes the formation of fluid gels less complex. 64 

To form low acyl gellan gum fluid gels with deionised water, four steps must be followed: (a) 65 

dispersion, (b) hydration, (c) addition of either salt or acid and (d) the cooling process, which 66 

leads to a quick set as soon as the gelling temperature is reached (Valli et al., 2010).  The 67 

traditional mechanism proposed for the sol-gel transition of gellan gum is based on a random 68 

coil to double helix transition followed by helix to helix aggregation, which involves weak 69 

interactions such as Van der Waals forces and Hydrogen bonds.  Gel-promoting ions reduce the 70 

effect of electrostatic repulsions among helices, augmenting the development of a network.  In 71 

addition, ionic bridges among carboxylic groups of neighbouring chains have been reported to 72 

occur when divalent cations are used (Tang et al., 1997; Nickerson et al., 2003).  The properties 73 

of gellan gum gels, such as texture, setting temperature and melting temperature, are 74 

dependent upon the types of ions present and their concentrations (Sanderson et al., 1988). 75 
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The ordering of helices in the production of gellan gum fluid gels is restricted by the shear 76 

force applied to small volumes during the cooling step (Valli & Miskiel, 2001), the greater the 77 

shear, the smaller the volumes in which ordering can occur, the smaller the resultant fluid gel 78 

particles. Weak gels with a similar consistency to fluid gels have also been produced, by allowing 79 

gelation to occur in quiescent conditions, provided specific gellan and gel-promoting ion 80 

concentrations are used (Sworn et al., 1995; Rodríguez-Hernández et al., 2003). These are 81 

structurally different however, as Rodríguez-Hernández et al. (2003) visualised the 82 

heterogeneous microstructure of Na-low acyl gellan gum weak gels by confocal scanning laser 83 

microscopy (CSLM), showing a network structure rather than the particulate structure of a fluid 84 

gel. 85 

Within the food industry, gellan gum fluid gels have numerous applications as suspension 86 

and emulsion stabilisers, working at lower concentrations than standard thickeners (García et 87 

al., 2011).  They also find uses in paint formulations, ophthalmic drug delivery systems (Suri et 88 

al., 2006; Sultana et al., 2006), and in medicine for the preparation of artificial lacrimal fluids 89 

(García et al., 2011). Gellan gum fluid gels exhibit highly pseudoplastic flow, which provides 90 

stable suspension of large included particles combined with low viscosity at higher rates of 91 

shear. When used in foods, this results in low viscosity in the mouth, so they can be used to 92 

great effect in beverages because of the low viscosity under shear, whilst still allowing for 93 

suspension of fruit pulp or jelly pieces.  This suspension can be achieved without adversely 94 

affecting mouthfeel.   95 

In this work, we aim to investigate the influence of processing conditions during low acyl 96 

gellan gum fluid gel formation using two common production methods, and determine how an 97 

acid environment affects the structural properties of the resultant fluid gels.  This will enable 98 

improved understanding of their structure and material responses for their potential application 99 

in self-structuring satiety improving food products. 100 
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 101 

2. Materials and methods 102 

2.1.   Sample preparation 103 

Low acyl (LA) gellan gum (Kelcogel F, CPKelco, UK) was used to prepare the model acid-104 

sensitive hydrocolloid system in this study, with no further purification or modification to its 105 

properties.  The water used for the prepared hydrocolloid solutions was passed through a 106 

reverse osmosis unit and then a milli-Q water system. Hydrochloric acid was purchased from 107 

Fisher Scientific (Loughborough, UK) and was used for the acid bath soaks and direct 108 

acidification of the fluid gels. 109 

 110 

2.2 Fluid gel production 111 

Fluid gel production and rheological measurements (both during and after fluid gel 112 

production) were carried out in a Gemini HR nano stress-controlled rheometer using a 4° 113 

truncated (150 µm) cone (40 mm in diameter) and plate geometry.  This approach allows for the 114 

precise control of the temperature, rate of cooling and the applied rate of shear, which 115 

determine the structure of the produced fluid gels.  Solutions of 2 wt. % LA gellan gum were 116 

transferred via pipette to the rheometer plate at 90 °C.  The sample temperature was allowed to 117 

reach equilibrium (2 minutes) after the geometry was lowered and excess material removed.  All 118 

experiments were carried out using a thin film of silicon oil, around the outer edge of the 119 

geometry, to control evaporation. Cooling was then performed whilst a constant shear between 120 

50 - 1000 s
-1

 was applied, with a cooling at a rate of 3 °C/min.  By conducting these sheared 121 

cooling profiles with LA gellan gum solutions, fluid gels are formed and their viscosities during 122 

formation can be measured.  Note that due to the cooling constraints of the rheometer 123 

equipment, the maximum cooling rate possible is 6 °C/min.   124 
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 125 

A pin-stirrer was used to produce the LA gellan gum fluid gels on a larger scale than the 126 

rheometer method.  The pin-stirrer consists of a rotating shaft (13 mm diameter) with 8 pairs of 127 

pins evenly distributed along its length, which is inserted into a jacketed vessel with 8 pairs of 128 

stator pins along the length of the inside wall.  The rotating pins pass between the stator pins as 129 

they rotate, increasing the anisotropy of the flow field.  The average shear rate within the pin 130 

stirrer apparatus has been shown to be about 50 s
-1 

with these process conditions (Gabriele, 131 

2011).  The hot LA gellan gum solution was fed into the pin-stirrer.  The internal pin-stirrer 132 

volume (with shaft inserted) was approximately 140 ml.  The temperature of the fluid entering 133 

(Tin) and exiting (Texit) the pin-stirrer were recorded using thermocouples, and Texit was 134 

controlled via a recirculating water bath that ran through the cooling jacket of the pin-stirrer.  135 

Silicon tubing was used to connect all of the units within the process, and material flow was 136 

induced via a peristaltic pump (Masterflex® L/S®).  A shaft rotation speed of 1500 rpm was used, 137 

with the flow rate maintained at 100 ml/min.  Samples were then collected, refrigerated (3 °C) 138 

and stored for at least 24 h, before testing, to allow post processing ripening effects to fully take 139 

place (Gabriele et al., 2009). 140 

 141 

2.3 Direct and post-production exposure to acidic environment 142 

Both LA gellan gum fluid and acid fluid gels were assessed post-production in terms of their 143 

response to a prolonged exposure to an acidic environment that simulates the conditions found 144 

in the stomach during digestion.  Quiescent LA gellan gum gels were also exposed in this way for 145 

comparison.  The fluid gels (1 wt. %) were produced using the jacketed pin-stirrer and were 146 

placed into visking dialysis tubing (23mm ID, 14 kDa pore size, Medicell International, Ltd.) 147 

immediately after production, which was then allowed to soak in a 0.5 % HCl acid solution 148 
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(corresponding to ~ pH 1) for 24 hours.  The acid soaking time of 24 hours was hugely 149 

exaggerated to take into consideration exposure extremities and the possible effects of chemical 150 

breakdown.  Texture analysis of these systems was then performed to assess their structural 151 

properties.  Acid exposure (after approximately 1 hour of soaking) caused the gel strength of the 152 

samples to increase and for them to change state from a fluid to a solid.  The strengths of the 153 

solid gel samples formed enabled compression testing to be performed.  After 24 hours of 154 

soaking no obvious chemical breakdown of the systems during prolonged acid exposure was 155 

observed, with all samples remaining to fit the requirements for compression testing.  156 

Mechanical breakdown of the systems then proceeded.  157 

 158 

2.4.      Measurement techniques 159 

2.4.1. Rheology 160 

To investigate the post-production flow behaviour, rheological analysis was performed on 161 

the 2 wt. % LA gellan gum fluid gels produced by using either the rheometer or pin-stirrer and 162 

the 1 wt. % LA gellan gum acid fluid gels produced using the pin-stirrer, immediately after their 163 

production.  The Malvern Gemini HR nano rheometer was used, and the tests were performed 164 

at 25 °C for a range of shear rates, frequencies and strains, using a 4°, 40 mm cone and plate 165 

geometry for the 2 wt. % LA gellan gum fluid gel and a 40 mm parallel plate geometry (1 mm gap 166 

size) for the 1 wt. % LA gellan gum fluid gel samples. 167 

 168 

2.4.2. Texture Analysis 169 

The structures of the prepared LA gellan gum fluid and acid fluid gels following post-170 

production HCl acid exposure were assessed by performing a series of compression tests using a 171 

TA.XT.plus texture analyser (Stable Micro Systems Ltd., UK), fitted with a 40 mm diameter 172 

cylindrical aluminium probe.  All samples had a diameter of 23 mm and length of 10 mm. All 173 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

measurements were carried out in triplicate with a compression rate of 1 mm/s, with all samples 174 

being compressed to fracture.  Slippage of the gel samples did not pose a problem with the data 175 

obtained. 176 

The force/distance (of compression) data, as obtained directly from the texture analyser, 177 

was converted into true strain (ƐH) and true stress (σT) data to obtain true stress/true strain 178 

curves for all of the LA gellan gum fluid and acid fluid gel acid structures according to Bradbeer 179 

et al. (2014).  From the obtained true stress/true strain curves, the slope of the initial linear 180 

region (up to strain values of 0.05 %) can be used to calculate the Young’s modulus (Smidsrød et 181 

al., 1972) while the slope of the second linear region (for strain values over ~ 0.1 %), leading to 182 

the subsequent structure failure can be used to calculate the bulk modulus (Nussinovitch, 2004).  183 

The calculated moduli provide information regarding the two deformation mechanisms 184 

associated with each of the two linear regions.  When the samples are initially loaded the 185 

connections between the hydrocolloid molecules within the gel network are bent, as a result of 186 

the applied stress.  During this compression stage the gel matrix exhibits an elastic behaviour, a 187 

measure of which is given by the calculated Young’s modulus.  When a critical stress is reached 188 

the connections between the hydrocolloid chains collapse and the process of deformation 189 

enters a second much steeper linear region, during which packing of the hydrocolloid chains 190 

takes place.  During this compression stage the exhibited behaviour is non-elastic and the slope 191 

of the linear region in the true stress/true strain curve, thus the calculated bulk modulus, relates 192 

to the stiffness/deformability of the gel matrix, until structure failure occurs.  Finally the total 193 

work of failure (Kaletunc et al., 1991) is the total work (given as work per unit area in this study) 194 

that is required in order for the structure to fail and is represented by the area, up to the point 195 

of failure, under the true stress/true strain curve.  196 

 197 

3.        Results and Discussion 198 

3.1.       A comparison of the two methods of fluid gel production 199 
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3.1.1. Viscometric response 200 

 Viscosity profiles on cooling from 90 °C at constant shear rates between 50 - 1000 s
-1

 and 3 201 

°C/min are shown in Fig. 1 in order to investigate the effect of the applied shear on the 202 

production of LA gellan gum fluid gels.  The obtained data across all shear rates shows that as 203 

the temperature of the system is lowered, a sharp increase in viscosity occurs at ~ 42 °C.  This 204 

viscosity increase has been ascribed (Norton et al., 1999) to the formation of small gel nuclei 205 

(initiation of ordering), which begins close to the gelation temperature.  On continued cooling, 206 

the initially formed gel nuclei continue to grow until an equilibrium particle size, as determined 207 

by the shear regime, is reached.  It is at this point that a fluid gel has been formed. 208 

 The initial formation of the small gel nuclei is thought to be the consequence of a demixing 209 

process that results in the formation of polymer-rich and polymer-poor regions in the system.  210 

Norton et al. (1998) suggested that demixing occurs either via spinodal decomposition or 211 

nucleation and growth.  Either way, it is apparent that particles start to form in the early stages 212 

of the aggregation process, during which the nuclei are subjected to the applied shear forces 213 

and will appear to behave as water-in-water emulsion droplets; thus it is expected for both 214 

droplet coalescence and droplet break-up phenomena to take place within the system (Gabriele 215 

et al., 2009).  In terms of the growth of the fluid gel particles, it has been suggested (Norton et 216 

al., 1999) that this occurs either via an “enrichment” process, of the initially small nuclei, from 217 

the surrounding non-gelled matrix or due to the coalescence/agglomeration of the particles 218 

being forced to come together under the applied shear flow.  Thus, it is clear that the observed 219 

rapid increase in viscosity is a direct result of the continual increase in both the number and 220 

volume fraction of the formed particles, which occurs at a temperature range approaching the 221 

hydrocolloid’s gelation temperature. 222 

 On further cooling past 30 °C (Fig. 1) the rapid increase in viscosity slows, and further 223 

increases are much more gradual for all of the applied shear rates.  This observed change in 224 
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viscosity could be a result of further ordering of a small number of remaining disordered 225 

polymer chains within the particles and/or at their surface; conformational ordering persists 226 

even at temperatures much lower than the gelling temperature.  This would be expected to 227 

slightly increase the size of the particles and thus the viscosity during their production.  228 

Additionally, the observed behaviour could be a consequence of the inter-particle interactions 229 

that take place as a result of the presence of disordered charged polymer chains at their surface 230 

(Norton et al., 1998) which likely bind to free ions in the surrounding particles, forming inter-231 

particle bridges.  As the applied shear rate is increased (for example from 200 s
-1

 to 300 s
-1

) 232 

these chains are drawn towards the fluid gel particles as a consequence of the greater shear-233 

induced fluid flow, forming a much smoother surface and thus limiting the likelihood of any 234 

inter-particle interactions.  This in turn results in the observed decrease in the final viscosity 235 

(the viscosity measured at the end of the fluid gel production process at 5 °C) as a function of 236 

the applied shear.  Consideration should also be made to the contribution to the increase in 237 

viscosity with decreasing temperature, typically known to obey the Arrhenius model (Gabriele 238 

et al., 2009).  Alternatively, gel shrinkage as each gel particle becomes more ordered 239 

structurally could also be responsible for the reduced rapid viscosity increase rate on cooling 240 

past 30 °C. 241 

 The viscosity of fluid gel samples (all 2 wt. %), produced using a range of applied shear rates 242 

(50 – 1000 s
-1

) and at a constant cooling rate of 3 °C/min, was measured immediately after the 243 

end of their formation process; data for 50 s
-1

 is shown on a log-log scale in Fig. 2.  After 244 

production, all samples (shear rates 50 – 1000 s
-1

) exhibited comparable shear thinning (power 245 

law) behaviour, despite the assumed differences in particle size between them.  Very small 246 

differences in the viscosities were observed with increasing shear rate; with a higher shear rate 247 

giving rise to smaller values (~ 80 Pas smaller for a shear rate of 1000 s
-1

).  The reason behind 248 

this behaviour is that in highly concentrated systems of particles, the flow is characterised on 249 

the micro scale by the relative flow of particles “squeezing” past each other.  The bulk viscosity 250 
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would thus be a direct function of the deformability (intrinsic elasticity) and packing of the 251 

particles, similarly to the behaviour of highly “packed” emulsions (Mason et al., 1996). 252 

For the fluid gels produced using the pin-stirrer, the applied shear (1500 rpm rotating shaft 253 

speed) and cooling rate (30 °C/min; 20 °C at water bath) were kept constant throughout.  This 254 

high cooling rate that the particles were exposed to within the pin-stirrer makes it very difficult 255 

to make a direct comparison of the fluid gel samples formulated using the rheometer production 256 

method, due to the cooling constraints of the rheometer equipment (maximum cooling rate = 6 257 

°C/min).  Thus, comparisons of the respective fluid gel samples were based solely on their shear 258 

rates during production. 259 

  The post-production flow behaviour was measured, by recording the viscosity of the fluid 260 

gel sample (2 wt. %) 24 hours after production.  The data is shown on a log-log scale in Fig. 2, 261 

where an almost identical shear-thinning behaviour is observed to that of the fluid gel sample 262 

produced using the rheometer at the calculated equivalent shear rate (50 s
-1

).  The conclusion 263 

therefore is that the particle sizes are similar independent of the method of production, so long 264 

as the shear rate during gelation is comparable. 265 

 266 

3.1.2. Material response over time 267 

Fluid gel systems involve inter-particle interactions that persist post-processing, and further 268 

develop or ripen for a significant time after processing completion.  To understand the time 269 

scale over which this strengthening process occurs kinetic studies were implemented.  For both 270 

the 2 wt. % LA gellan gum fluid gels produced using the rheometer and the 2 wt. % LA gellan 271 

gum fluid gels produced using the pin-stirrer, an oscillatory frequency of 1 Hz and a 1 % strain 272 

were applied to the fluid gel samples after production following a 1 hour resting period, and the 273 

elastic and viscous modulus responses were measured as a function of time.  The results are 274 

shown in Fig. 3. 275 
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Fig.3 shows that for the fluid gel sample produced using the rheometer the storage modulus 276 

remains at a constant level over time.  The viscous modulus also remained constant over time, 277 

except for a 15 Pa decrease at the start.  This could be due to the low shear rate allowing more 278 

inter-particle interactions to occur during formation, but it is likely to be a mere measurement 279 

error during the time period where the oscillation experiment is first being established.  280 

Particularly, since a similar decrease was not observed with the viscous modulus recorded for 281 

the fluid gel sample produced using the pin-stirrer (Fig. 3).  282 

In contrast, the data shown in Fig. 3 for the fluid gel sample produced using the pin-stirrer 283 

exhibits much higher viscous and elastic moduli, although both remain constant over time.  This 284 

is accounted for by the high cooling rate (30 °C/min) used with the pin-stirrer method where the 285 

gelation process dominates, resulting in the production of fluid gels that have high storage 286 

modulus characteristics, and thus more solid-like behaviour. 287 

The results indicate that after a 1 h resting period, both fluid gel sample networks have 288 

reached their maximum inter-particle interaction levels, with no further strengthening or 289 

ripening occurring thereafter.    290 

Overall, each of the fluid gel samples produced by the two methods display weak gel 291 

behaviour.  This can be explained structurally; closely packed particle interactions allow an 292 

elastic network to form at rest, whilst under shear, they are disrupted allowing material flow.  293 

 294 

3.1.3. The coil-helix transition 295 

Low-amplitude oscillation measurements were performed on the fluid gel samples produced 296 

using each production method after their formation, during heating and cooling. These enabled 297 

the coil-helix transition temperatures to be identified, allowing an improved understanding into 298 

the molecular ordering.   299 
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Figure 4 shows the elastic and viscous moduli at 1.585 Hz for 2 wt. % low acyl gellan gum 300 

fluid gels, produced within a rheometer (50 s
-1

 applied shear rate, 3 °C/min cooling rate) 301 

following frequency tables from 0.1 – 10 Hz performed every 10 °C during temperature heating 302 

(a) and cooling (b) steps between 20 – 90 °C.  On heating, the aggregated regions must be 303 

disassembled before the helix-coil transition can occur.  This is represented by the steep 304 

decrease in the elastic modulus between 20 – 30 °C, with the helix-coil transition occurring 305 

thereafter between 30 – 70 °C.  Above 70 °C, the solution exists in the disordered coil state.  306 

However, a steep increase in the elastic modulus is evident between 80 – 90 °C.  The elastic 307 

modulus data point at 90 °C is most likely to be a result of sample evaporation, which is possible 308 

when performing tests of this type at high temperatures that are close to the boiling point of 309 

water, even with the appropriate evaporation prevention methods in place.  This leads to an 310 

increased concentration of the gellan aqueous solution, forcing the disordered coils closer 311 

together causing them to have restricted mobility, and hence increased solid-like character.  312 

The midpoint temperature (Tm) is the midpoint between the two linear regions 313 

corresponding to disordered and ordered polymer conformations.  For the helix-coil transition in 314 

Fig. 4a, Tm = ~ 50 °C.  Tm represents the temperature at which the number of moles of saccharide 315 

residues in the disordered and ordered states are equal, and where the events of helix growth 316 

(zipping-up) and decay (un-zipping) are occurring at equal rates (Goodall & Norton, 1987).   317 

During the frequency test on cooling (Fig. 4b), we essentially monitored the formation of a 318 

quiescently cooled gel, since the test was performed immediately after melting the fluid gel, and 319 

with no external shear force applied, from 90 – 20 °. As with heating, three distinct 320 

conformational regions exist in the elastic modulus data: 90 – 60 °C, the solution exists in the 321 

disordered state; 60 – 40 °C, the coil-helix transition occurs; 40 – 20 °C, formation of an ordered 322 

structure via aggregation.  For the coil-helix transition, the Tm = ~ 50 °C.  The coil-helix transition 323 

has been described as a dynamic equilibrium where the rate constant at Tm is zero, and on 324 
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decreasing temperature the likelihood of growth events is increased relative to those of decay 325 

(Norton et al., 1983).  Thus molecular rearrangements to both quiescent and fluid gels, via decay 326 

and growth mechanisms are reduced on decreasing temperature below Tm.  The growth 327 

mechanism that is most likely to be responsible for the formation of the quiescent LA gellan gel 328 

in Fig. 4b, involves intermolecular association of the polymer molecules in the solution during 329 

the coil-helix transition, which result in the formation of small, soluble clusters of chains.  As the 330 

extent of association increases (as the temperature is reduced) these clusters grow, until 331 

ultimately they interlink to span the entire volume of the solution and form a continuous 332 

crosslinked network (Morris et al., 2012). 333 

For both Figs. 4a and b, the elastic modulus values across the temperature range are greater 334 

than those recorded for the viscous modulus from the point of gel ordering completion to the 335 

region where the solution is first in the disordered coil state.  During this latter region, the values 336 

follow identical pathways.  Interestingly, the elastic modulus values reported for the formation 337 

of the quiescent gel are of a higher magnitude (~ 5 times), than those for the melting of the fluid 338 

gel.  In the absence of shear, the re-ordering during cooling can take place between particles (as 339 

well as within particles) i.e. interparticulate helices form, thus the products require a greater 340 

force to allow the particles to move past one another and store more energy (greater elastic 341 

modulus) (Garrec & Norton, 2012). 342 

It has been suggested that the LA gellan gum fluid gel particles consist of an internal 343 

polymeric network, and therefore the elasticity of individual particles is equivalent to that of the 344 

quiescently cooled gel (Caggioni et al., 2007).  The fact that very similar viscoelastic responses 345 

with temperature were observed for the fluid gel produced under shear using the rheometer, 346 

and with the quiescent gel formed on cooling in the absence of shear (Figs. 4a and b) suggests 347 

that this is correct.   348 
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The fluid gel sample produced using the jacketed pin-stirrer exhibited similar rheology with 349 

temperature on heating and cooling to that formed using the rheometer.  On heating and 350 

cooling, the three distinct conformational regions were also observed in the elastic modulus 351 

data, and as expected the temperature ranges for each were identical for both experiments.  352 

These were: 20 – 30 °C, dissembling of the aggregated stable structures (heating) and formation 353 

of an ordered structure (cooling); 30 – 50 °C, helix-coil transition (heating) and coil-helix 354 

transition (cooling); 50 – 90 °C, the solution exists in the disordered coil state.  For each system 355 

(fluid and quiescent respectively) the mid-point temperature was Tm = ~ 40 °C.  The 10 °C 356 

difference in this mid-point temperature value compared with that observed for the gels 357 

produced using the rheometer method, is accounted for by the thermal lag in the oscillatory 358 

measurements due to the mass of the geometry used.  However, overall these values together 359 

with the helix-coil and coil-helix transition ranges recorded for each fluid gel production method 360 

agree well with the gel phase transition temperatures reported in the literature for LA gellan 361 

gum (García et al., 2011).  They also reinforce the ordering initiation temperature of ~	42 °C 362 

from the viscosity measurements during LA gellan gum fluid gel formation within the rheometer 363 

(Figure 1). 364 

The fluid gels formed using the jacketed pin-stirrer also had elastic modulus values across 365 

the temperature range that were greater than those recorded for viscous modulus.  As 366 

described for the former production method, the elastic modulus values reported for the 367 

quiescent gel using this method were also of a higher magnitude than those for the melting of 368 

the fluid gel.  Additionally, the viscoelastic measurements obtained using this method were 369 

found to be approximately 3 times larger than those obtained when using the rheometer to 370 

produce a fluid gel.  This can be explained through the fact that the fluid gel sample formed 371 

using the jacketed pin-stirrer was allowed to rest for 24 hours after production, prior to 372 

rheological testing where this is not possible when the fluid gel is made directly on the 373 

rheometer itself. 374 
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For each production method, the fluid gel samples displayed similar viscous modulus 375 

measurements.  The fluid gels formulated using the jacketed pin-stirrer displayed on melting 376 

viscous modulus values almost identical to those of the elastic moduli up until the end of the 377 

helix-coil transition at 50 °C.  Whilst, the fluid gels formulated using the rheometer displayed on 378 

cooling viscous modulus values almost identical to those of the elastic moduli up until the start 379 

of the coil-helix transition at 60 °C.  Thereafter, a steady increase was observed, which is 380 

reflective of the samples’ elastic distortion of the disentangled/entangled network during 381 

structural rearrangement, in response to the low-amplitude oscillatory deformation 382 

perturbation (Morris et al., 2012).  383 

 384 

3.2.  Texture analysis and post-production exposure to acidic environment 385 

The previous section compared the two methods of fluid gel production via the use of a 386 

rheometer and a jacketed pin-stirrer.  The rheometer is advantageous in that it provides a 387 

constant and near uniform shear field, with a high degree of control.  However, the technique is 388 

not particularly typical of industrial processes.  The jacketed pin-stirrer method on the other 389 

hand, is more representative for commercial processes, thus this was the method chosen for the 390 

direct and post-production acid exposure experiments. 391 

Post-production exposure of the LA gellan gum fluid gels to an acidic environment can be 392 

used to assess their response to prolonged acid conditions that are similar to those found in the 393 

stomach during digestion.  It is widely accepted (Yamamoto & Cunha, 2007; Norton et al., 2011) 394 

that LA gellan is acid-sensitive.  Research (Norton et al., 2011; Bradbeer et al., 2014) has shown 395 

that LA gellan gum gel strength increases on exposure to an HCl acid soak.  This is a result of the 396 

existing gel networks already partially formed within the gels prior to soaking being reinforced 397 

on acid exposure.  Ordering and aggregation between individual hydrocolloid chains occurs 398 

immediately upon acidification (Moritaka et al., 1995).  An increase in gel strength was observed 399 
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qualitively with the 1 wt. % LA gellan gum fluid gels (1500 rpm shaft speed; 100 ml/min pump 400 

rate; 20 °C water bath) post HCl acid bath soak, by the change in gel state from a fluid to a solid.  401 

Fig. 5 shows the resulting true stress/true strain curves following compression tests performed 402 

on these solid gels, as a function of the number of runs that the gel was processed through the 403 

pin-stirrer unit during fluid gel formation.  Each of the samples displayed purely brittle fracture 404 

behaviour, with a rapid decrease in the applied stress once the gels fail at strains between 40 – 405 

42.5 %, where a clear fracture point is observed.   406 

In terms of gel stiffness and their resistance to fracture after soaking in acid, minimal 407 

differences (0.0260 MPa and 0.0250 J/m
2
 respectively) were found between the fluid gel 408 

samples collected after the first two cycles through the pin-stirrer.  However, for the sample 409 

collected after three runs, a reduction in gel strength and stiffness (0.5907 MPa) was observed; a 410 

smaller force (0.2347 J/m
2
) was needed to induce fracture (Fig. 5).  This sample was exposed to 411 

the shear force and cooling environment within the pin stirrer for a greater time period than the 412 

other samples.  It has been reported that interparticle interactions diminish with continued 413 

cooling and shearing during processing, although some interactions will still persist (Cox et al., 414 

2009).  Therefore, it would be expected for the fluid gel structure to be weaker and less 415 

responsive to the acid exposure, resulting in a weaker acid gel.  In addition, the cooling rate 416 

implemented (32 ml/min) during the fluid gel production was fairly high.  Generally, during high 417 

cooling rates the gelation process dominates and fluid gels are produced that have high storage 418 

modulus characteristics, and thus more solid-like behaviour indicating larger and more 419 

irregularly shaped particles (Cox et al., 2009), essentially resulting in a chopped quiescent gel 420 

rather than a fluid gel.  As a result, a heterogeneous fluid gel sample is produced, consisting of 421 

fluid gel particles along with broken-up fragments, which ultimately leads to a weaker gel with a 422 

reduced packing fraction.  This together with the diminished interparticle interactions within the 423 

gel structures reduces the subsequent response to the acid exposure, explaining why the weak 424 

gel behaviour is observed. 425 
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 426 

3.3. Direct exposure to acidic environment 427 

A variety of acid fluid gel structures can be generated through the direct addition (dropwise) 428 

of 0.5 % HCl acid to the aqueous LA gellan solution at natural pH, during the production process 429 

prior to shearing inducing a range of pH environments.  However, the rate of aggregation using 430 

this direct HCl addition method is expected to be much higher than the rate achieved by 431 

thermally, or ionically induced gelation.  This suggests that the extent of cross-linking between 432 

the polymer chains (and therefore the elasticity and strength of the overall LA gellan acid fluid 433 

gel structure) during direct addition of HCl becomes less efficient than when cross-linking occurs 434 

in thermally or ionically set gels. 435 

Figure 6 shows flow curve data as a function of pH, for 1 wt. % LA gellan gum fluid gels 436 

produced within the jacketed pin-stirrer (1500 rpm shaft speed, 100 ml/min pump rate, 15 °C 437 

water bath), measured 24 hours after production.  In terms of viscosity response on pH 438 

reduction the acid gels with acidity from natural pH – pH 3 displayed much higher resistances to 439 

flow than those at pH 2.  Initial acidification from neutral pH to pH 3.5 causes a large increase in 440 

ordering and aggregation to occur between the individual hydrocolloid chains immediately upon 441 

acidification (Moritaka et al., 1995), resulting in marked increases in viscosity.  However, on 442 

further decrease in pH below the pKa of the glucuronate residues of gellan, at ~ pH 3.4 (Haug, 443 

1964), over-structuring occurs, causing the gels at pH 2 to be extremely weak and turbid, and 444 

showing precipitation of the polymer (Moritaka et al., 1995).  As a result an almost sponge-like, 445 

weak structure is created rather than a stronger homogeneous one.  It is very likely that gel 446 

structuring at pH 2 is disrupted by the shear applied during the acidification process, and that 447 

much lower levels of shear-induced disruption would occur for the mixing conditions found in 448 

the stomach.  Singh (2007) reported that the shear force on the surface of a food particle (~ 449 
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0.00043 N) is insignificant in comparison to the crushing or grinding force due to the walls of the 450 

stomach (0.2 N). 451 

At pH 2, the 1 wt. % LA gellan gum acid fluid gel displayed non-Newtonian shear-thinning 452 

flow behaviour i.e. the fluids decrease in viscosity with increasing shear stress (Fig. 6).  However, 453 

for the respective gels with acidities from natural pH – pH3, a range of individual viscosity yield 454 

stresses appear to exist between the approximate shear stress range of 0.07 – 1 Pa.  For each 455 

pH, a minimum force exertion (shear stress) was required to induce flow behaviour.  As soon as 456 

the yield stresses had been exceeded, the liquid samples then proceeded to display shear-457 

thinning behaviour (Cui, 2004).  This pseudoplastic flow behaviour is characteristic of the stiff 458 

polysaccharide chains present in gels of this type under such reduced pH conditions (Cui, 2004). 459 

 460 

Phase separation is observed as a decrease in the elastic moduli values at 1.00 Hz in Fig. 7 461 

for the 1 wt. % LA gellan gum fluid gels produced within the jacketed pin-stirrer (1500 rpm shaft 462 

speed, 100 ml/min pump rate, 15 °C water bath) at pH 2, confirmed by the observation of 463 

turbidity at the pH level where their strength began to decrease.   464 

The elastic modulus data, which was measured during a temperature ramp (10 – 90 °C), 465 

shows (Fig. 7) that, for the remaining pH values, the elasticity and strength of the gels increases 466 

systematically with pH reduction.  This demonstrates that the gels become stronger, as a result 467 

of greater numbers of cross-links between the polymer chains promoted at the lower pH 468 

conditions, and is in good agreement with the flow curve data reported in Fig. 6.  Albeit in Fig. 6, 469 

the pH 4 acid fluid gel displays the greatest strength amongst the gels, compared to the pH 3 470 

acid fluid gels in Fig. 7.   471 

The elastic modulus data (Fig. 7) shows that with decreasing pH gelation occurs sooner.  This 472 

is observed as the onset of gelation at higher temperatures for the acid fluid gels at lower pH.  473 

The elastic moduli recorded for the acid fluid gel samples at acidities of natural pH and pH4 are 474 
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similar with increasing temperature.  Disassembling of the aggregated stable structures occurs, 475 

breaking inter-helical bonds etc. (pH 5: 10 – 40 °C; pH 4: 10 – 50 °C), before moving into the 476 

conformational helix-coil transition phase (pH 5: 40 – 70 °C; pH 4: 50 – 80 °C), and finally the 477 

region where the solution exists in the disordered coil state (pH 5: 70 – 90 °C; pH 4: 80 – 90 °C).  478 

The elastic moduli recorded at pH 3 exhibit extended fluid gel deformation events, as a 479 

consequence of the speed of the gelation process.  Between 10 – 40 °C, a constant elasticity 480 

level is observed, which represents a minimum particle size unaffected by cooling or heating 481 

below the final gelation set point at 40 °C.  During heating between 40 and 70 °C  de-fixing of 482 

the gelled particle structures proceeds, disordering the hydrocolloid chains within the particles, 483 

creating disordered chain segments at the surface of the particle giving them a ‘hairy’ nature 484 

(Cox et al., 2009).  The completion of the melting occurs after 90 °C.  Between 70 and 90 °C, full 485 

conformational disordering and aggregate break up takes place.  The absence of a region, 486 

where the solution exists in the disordered coil state is explained by the fact that during 487 

formation on heating under such low pH conditions, ordering and aggregation between the 488 

individual gellan polymer chains occurs immediately upon acidification (Moritaka et al., 1995). 489 

The effects of pH on gellan gelation have been associated with the lower charge density of 490 

chains at lower pH values (Horinaka et al., 2004).  They suggested that, since the carboxyl group 491 

included in the gellan chain is a weak acid group, and that the degree of dissociation of carboxyl 492 

groups in aqueous systems is dominated by the dissociation constant, the lower the pH value, 493 

the smaller the fraction of dissociated carboxyl groups, making the gellan a less anionic 494 

polyelectrolyte.  It is then expected that the less anionic chains aggregate with one another 495 

more easily, due to the lower electrostatic repulsion.  In addition, the decrease in electrostatic 496 

repulsion between the intramolecular segments may result in the suppression of gellan chain 497 

expansion (Yamamoto & Cunha, 2007), making association even easier.  This overall ease of 498 

aggregation caused by decreasing the pH via the direct addition of HCl acid explains the 499 
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decrease in time to reach the gel point, the more densely linked structure at equilibrium and 500 

consequent changes in gel strength, deformability and turbidity. 501 

 502 

The LA gellan gum acidified fluid gels were assessed post-production in terms of their 503 

response to a prolonged exposure to an HCl acid environment as described in Section 3.2.  504 

Quiescent LA gellan gum gels were also exposed in this way for fluid gel comparison.  Fig. 8 505 

shows the resulting true stress/true strain curves following compression tests performed on the 506 

gel samples, as a function of pH.  Each of the samples displayed purely brittle fracture 507 

behaviour, with a rapid decrease in the applied stress once the gels fail at strains between 20 - 508 

35 %, where a clear fracture point is observed.   509 

The gelation of gellan can be induced by a reduction in pH, with Grasdalen and Smidsrød 510 

(1987) describing HCl acid as “the most potent gel-former”.  However, the variation in gel 511 

strength with increasing concentration of acid is not monotonic.  The addition of acid results in 512 

a large increase in break stress (Picone & Cunha, 2011) down to pH 3.5, where it then proceeds 513 

to decrease with further pH decline (Norton et al., 2011), until the gels become extremely weak 514 

and exhibit precipitation of the polymer by pH 2 (Moritaka et al., 1995).  This behaviour is 515 

particularly evident in Fig. 8, where the LA gellan acid fluid gels at acidities of natural pH were 516 

stiffer and more resistant to fracture than those at lower pH levels.  In fact, for the samples with 517 

acidities of pH 3 and pH 2, the compression tests were unable to be performed, since the gels 518 

were too weak to be tested, following their collapse on removal from the visking tubing. 519 

For both the 1 wt. % LA gellan gum quiescent and acid fluid gels at acidities of pH natural 520 

and pH 4, we observe a reduction in the failure stress and a shift in strain to lower values with 521 

decreasing pH.  The shift in strain values is generally indicative of an increase in gel brittleness, 522 

whilst the reduction in break stress can be attributed to the combination of the acid 523 

concentration and low gellan concentration within the sample, giving rise to a weak network.   524 
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Minimal differences (0.0565 MPa and 0.0092 J/m
2
 respectively) are observed between the 525 

total work of failure and bulk modulus data for the LA gellan gum quiescent and acid fluid gels 526 

at pH 4.  However, slightly larger differences (0.0615 MPa and 0.2317 J/m
2
 respectively) were 527 

observed for the samples at their natural pH, with the quiescent gel sample having both the 528 

larger break stress and strain.  This observation further reinforces the outcomes of the elasticity 529 

data collected for that of the 2 wt. % LA gellan gum quiescent and acid fluid gels at their natural 530 

pH, in which higher values were reported for the quiescent gel.  This can be explained by the 531 

theory that in the absence of shear (i.e. for quiescent gels), the re-ordering during cooling can 532 

take place between particles (as well as within particles) i.e. interparticulate helices form, thus 533 

the products require a greater force to allow the particles to move past one another and store 534 

more energy (greater elastic modulus) (Garrec & Norton, 2012).  In turn, stronger gels are 535 

formed that exhibit greater resistance to deformation past the elastic limit. 536 

 537 

4. Conclusions 538 

With the potential for use of fluid gels in low fat and reduced calorie foods, as well as within 539 

self-structuring satiety based food formulations that take advantage of the natural digestive 540 

processes, their formation and properties were explored.   541 

We have shown that by controlling the material (LA gellan gum and HCl acid 542 

concentrations) and process (shear and cooling rates during fluid gel production) parameters it 543 

is possible to manipulate the properties and size of individual particles as well as the 544 

interactions/bridging between them.  Both the fluid and acidified fluid gels produced using 545 

these production methods displayed non-Newtonian shear-thinning flow behaviour.  Very close 546 

similarities were observed between the fluid gels produced by both methods, suggesting that 547 

the two distinctive processes are capable of producing particle sizes on similar scales.   548 
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It was shown through the rheological and texture analysis data that compared with the fluid 549 

gels, the quiescent gels were characteristically stronger, due to the formation of interparticulate 550 

helices in the absence of shear on cooling.  Fluid gels are said to have fewer and shorter helices 551 

than quiescently cooled gels due to the disruption of molecular ordering caused by the applied 552 

shear during their production (Garrec & Norton, 2012).  Despite this, the coil-helix transition and 553 

mid-point temperature data recorded for both gel types, fell within the same range (30 – 70 °C), 554 

which was agreeable with the literature (García et al., 2011).  555 

Post-production and direct exposure of the fluid gels to an acidic environment resulted in an 556 

increase in gel strength.  However, the variation in gel strength with increasing concentration of 557 

acid (via direct-addition) was not monotonic, with phase separation of the polymer and solvent 558 

proceeding for the fluid gel samples with acidities below pH 3.  The elastic modulus data for the 559 

acidified fluid gels showed that decreasing the pH, leads to a subsequent reduction in the time 560 

taken for gelation to occur.   561 

These findings are promising as they clearly demonstrate that the structuring of LA gellan 562 

gum fluid gels can be controlled by both the process used for their production and by exposure 563 

to an acidic environment.  The fluid gel remains liquid and therefore has potential for inclusion 564 

in the structure of many different types of foods, and yet still structures when exposed to acidic 565 

conditions mimicking the stomach environment in the same way as the solid quiescent gel, 566 

potentially providing an increase in satiety level. 567 
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Figure Captions 

 

Figure 1.  Fluid gel production: viscosity profiles during the sheared cooling of 2 wt. 

% low acyl gellan gum solutions at 3 °C/min with varying applied shear rates (50 – 

1000 s
-1

). 

 

Figure 2.  Shear thinning behaviour of 2 wt. % low acyl gellan gum fluid gels, 

produced within a rheometer (50 s
-1

 applied shear rate, 3 °C/min cooling rate) and a 

jacketed pin-stirrer (1500 rpm shaft speed, 100 ml/min pump rate, 20 °C water bath, 

30 °C/min cooling rate). 

 

Figure 3.  Storage and loss moduli for 2 wt. % low acyl gellan gum fluid gels, 

produced within a rheometer (50 s
-1

 applied shear rate, 3 °C/min cooling rate) and a 

jacketed pin-stirrer (1500 rpm shaft speed, 100 ml/min pump rate, 20 °C water bath, 

30 °C/min cooling rate). 

 

Figure 4.  Storage and loss moduli at 1.585 Hz for 2 wt. % low acyl gellan gum fluid 

gels, produced within a rheometer (50 s
-1

 applied shear rate, 3 °C/min cooling rate) 

following frequency sweeps (0.1 – 10 Hz) every 10 °C during temperature heating (a) 

and cooling (b) ramps. 

 

Figure 5.  True stress/true strain curves for 1 wt. % low acyl gellan gum fluid gels, 

produced within a jacketed pin-stirrer (1500 rpm shaft speed, 100 ml/min pump 

rate, 20 °C water bath, 32 °C/min cooling rate) following exposure to a 0.5 % HCl acid 

bath soak overnight.  All measurements were carried out in triplicate with a 

compression rate of 1 mm/s.  Where error bars cannot be observed, they are smaller 

than the data points. 

 

Figure 6.  Flow curve data as a function of pH, for 1 wt. % acidified low acyl gellan 

gum fluid gels, produced within a jacketed pin-stirrer (1500 rpm shaft speed, 100 

ml/min pump rate, 15 °C water bath, 32 °C/min cooling rate). 

 

Figure 7.  Storage moduli at 1.00 Hz as a function of pH, for 1 wt. % acidified low acyl 

gellan gum fluid gels, produced within a jacketed pin-stirrer (1500 rpm shaft speed, 

100 ml/min pump rate, 15 °C water bath, 32 °C/min cooling rate) following 

frequency sweeps (0.1 – 10 Hz) every 10 °C during a temperature heating ramp. 

 

Figure 8.  True stress/true strain curves as a function of pH, for 1 wt. % acidified low 

acyl gellan gum fluid gels, produced within a jacketed pin-stirrer (1500 rpm shaft 

speed, 100 ml/min pump rate, 15 °C water bath, 32 °C/min cooling rate) and 1 wt. % 

acidified quiescent gels, following exposure to a 0.5 % HCl acid bath soak overnight.  

All measurements were carried out in triplicate with a compression rate of 1 mm/s.  

Where error bars cannot be observed, they are smaller than the data points. 
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Highlights 

 

• Low acyl gellan gum fluid gels were prepared. 

 

• in vitro acid-induced gelation of the fluid gel systems was 

investigated.  

 

• Fluid gel properties are dependent on pH, concentration and 

processing. 

 

• Post-production exposure to acid increased fluid gel strength 

markedly. 

 

 

 

 


