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1 Introduction 

Ceramic powder processing within the Y2O3-Al2O3 system has largely been intended for optical and structural 

applications. In this system, three stable yttrium aluminates exist with different polymorphs, perovskite-based 

orthorhombic YAlO3 (YAP), monoclinic Y4Al2O9 (YAM) and garnet Y3A15O12 (YAG) (Abell et al. 1974). The 

latter is rich in Al2O3 and crystallises with cubic symmetry. It does not exhibit any birefringence effects at the 

grain boundaries and hence results in high in-line transparency. A hexagonal YAlO3 (YAH) has also been 

identified as an intermediate metastable phase during the processing of YAG (Tanner et al. 2003).  

The choice of powder synthesis route has a significant effect on powder characteristics such as size, shape, 

distribution and the extent of agglomeration, each of which greatly influences the microstructural homogeneity 

of the resulting ceramics (Akio Ikesue, Yan Lin Aung,Takunori Taira, Tomosumi Kamimura, Kunio Yoshida, 

Gary L. Messing 2006). Each factor has the potential to introduce an adverse effect on densification and 

microstructure of the ceramics. The presence of particle agglomeration, for example, is a well-known source of 

inhomogeneity, and hence defects, in the final microstructure of ceramic components (Lange 1989). Therefore, 

efforts have been made to produce high quality ceramic powders by a range of synthesis routes.  

The conventional method for preparing YAG involves mixing Y2O3 and Al2O3 in a 3:5 molar ratio and then 

calcining at 1600°C for prolonged times together with repeated grinding (Li et al. 2007). Wet chemical routes 

such as sol-gel (Gowda 1986), co-precipitation (Li et al. 2004), solvo-thermal (Wang et al. 2006) and 

combustion (Devi et al. 2002, Ramanathan et al. 2003) routes are promising methods for synthesising high 

purity single phase YAG at relatively low temperatures, though there are some disadvantages. Solvo-thermal 

synthesis, for example, requires the use of an autoclave and pressures of about 70–175 MPa, whilst combustion 

synthesized powders result in chemical inhomogeneities and particle agglomeration due to the intense local 

mailto:b.vaidhyanathan@lboro.ac.uk
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heating. In contrast, sol-gel and co-precipitation synthesis can be low cost and are more likely to yield 

homogenous YAG powders. The use of alkoxide precursors (Veith et al. 1999) leads to crystallisation from 700 

- 1000°C and the resultant powder consequently exhibits particle sizes of about 60-80 nm with heavy 

agglomeration. In contrast, nitrate (Hou et al. 2009) and chloride (Tachiwaki et al. 2001) precursors lead to 

crystallisation at about 950°C, although chlorine ions are more difficult to rinse from the hydroxide precipitate, 

even with washing. The presence of chlorine ions results in hard agglomerates
 
in the nanopowder (Wang et al. 

2010) and hence has negative effects on the mechanical properties of the subsequent ceramic. To reduce the 

level of agglomeration, several complexing and precipitating agents have been examined for both sol-gel and 

co-precipitation methods using nitrate precursors. Nanocrystalline YAG was synthesised using citric acid as a 

chelating ligand in sol-gel method, (Vaqueiro and Arturo Lopez-quintela 1998). This resulted in rod shaped 

particle morphology with particle sizes in the range of 20-70 nm and significant agglomeration was still 

observed. Recently, Yang (2010) optimised the solvent concentration and calcination conditions to achieve nano 

YAG with soft agglomerates using a sol-gel method. This work also confirmed that the molar concentration 

ratio of the Y
3+

 and Al
3+ 

ions in the precursor solution has a significant effect on particle size. Wang (2000) also 

studied the effect of different concentrations of precursor solution for the co-precipitation synthesis of YAG 

nano powder. They achieved 20-30 nm particles using a precursor solution ratio of <1 and calcination for 2 

hours at 900°C. The uses of different precipitants (Li et al. 2000) and pH conditions (Apte et al. 1992, Palmero 

et al. 2005) have also been studied; these are also considered to be very important factors governing particle 

morphology with the co-precipitation method. Li (2000) studied the effect of precipitants using ammonium 

hydroxide and ammonium hydrogen carbonate (AHC) with a precursor solution ratio of about 1.5 at pH 9. Their 

comparative study suggests that the YAG powder synthesized using AHC resulted in less agglomeration with 

crystallite size of about 52 nm. However, neither the precursor concentration, nor the control over the pH was 

optimized. Apte and Vrolijk (1992, 1990) investigated the best pH range for the precipitating YAG using 

ammonium hydroxide was investigated and suggested that it was pH 7 – 9. Palmero (2005) investigated the 

influence of calcination temperature on the phase evaluation of YAG from 800 - 1100°C, but omitted 950 and 

1000°C/1h, the powders were over calcined at 1100°C and resulted in large particles with heavy agglomeration.  

These results suggest that identification of the most suitable processing conditions is still required for the 

production of fine, nanocrystalline YAG displaying little agglomeration. In the present work, the syntheses of 

nano YAG by sol-gel and co-precipitation methods are compared with a view to optimising the processing 

conditions and determining the formation mechanisms. 
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2 Experimental  

2.1 Materials  

99.9% Y(NO3)3.6H2O and ≥ 98% Al(NO3)3.9H2O, both from Sigma Aldrich, Dorset, UK were used as the 

source of Y
3+

 and Al
3+ 

ions. 99.9% citric acid, also from Sigma Aldrich, was used as the complexing agent for 

the sol-gel synthesis. 35% ammonium hydroxide and 99% n-butanol, both from Fisher Chemicals, 

Loughborough, UK were used as the precipitating agent for the cations and for dehydrating them in the co-

precipitation method, respectively.  

2.2 Synthesis  

2.2.1 Sol-gel 

A solution containing the stoichiometric ratio of 3:5 (Y:Al) was prepared by mixing calculated amounts of 0.6M 

Y(NO3)3.6H2O and 1M Al(NO3)3.9H2O aqueous solutions in 1M citric acid solution. The schematic 

representation of the sol-gel process is shown in figure 1a. Homogenous mixing was achieved in a round bottom 

(RB) flask equipped with a magnetic stirrer and a refluxing condenser. The reaction flask was immersed in a 

thermostatic oil bath and refluxed at 90±10°C for 24 hours. During mixing, the transparent precursor sol 

underwent substitution and polymerization reactions to form a transparent gel, which was then dried in an oven 

at 100°C for 24 hours. The fluffy mass obtained after drying was subsequently ground using an agate pestle and 

mortar for further characterisation. 

2.2.2 Co-precipitation  

The reverse strike co-precipitation method used involved mixing the same 0.6M Y(NO3)3.6H2O and 1M 

Al(NO3)3.9H2O aqueous solutions for 2 hours. The schematic representation of the co-precipitation process is 

shown in figure 1b. This precursor solution was placed in a burette and added drop-wise to 200 ml of the 

aqueous NH4OH precipitant solution whilst simultaneously stirring and maintaining the pH at 8.20 ± 0.05. The 

first few drops of the precursor solution were found to decrease the pH rapidly to 4; therefore excess ammonia 

solution of 5M concentration was added concurrently to maintain the pH. Continuous monitoring of the pH 

allowed it to be controlled to ± 0.05 pH units. The resultant precipitate was filtered, washed three times with 

dilute ammonia solution of pH 8.2 to remove nitrate residues, and then the filtered precipitate was dispersed 
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with 20 ml of n-butanol using ultrasound for two minutes. The dispersed precipitate was dried at 100°C for 24 

hours and ground using the pestle and mortar.  

The precursor powders from the sol-gel (SG-nYAG) and co-precipitation (CP-nYAG) routes were then calcined 

for 1 or 2 h in a silica crucible at temperatures in the range 900 - 1000°C in an air atmosphere, using a heating 

and cooling rate of 10°C/min.  

2.3 Powder characterisation 

Thermal analysis of the dried SG-nYAG and CP-nYAG precursor powders was performed using simultaneous 

TGA/DSC (SDT 2960, TA Instruments, USA). The precursors were weighed to 25 mg and placed into an 

alumina sample pan with a clean, empty alumina pan used as a reference. All TGA/DSC traces were recorded 

between 25°C and 1000°C at a ramp rate of 10°C min
-1

 under flowing air. Fourier transform-infrared 

spectroscopy (FT-IR 8400S, Shimadzu, Maryland, USA) was used to identify structural features in the 

precursors and heat-treated powders. Transmission FTIR was carried out over the wavenumber range of 4000 – 

400 cm
-1

. All samples for FTIR measurement were well mixed with KBr in a weight ratio of 1:20 and then 

pressed into translucent pellets. The crystalline structure of the calcined nano powders was characterised using 

X-ray diffraction (Bruker D8, Bruker AXS GmbH, Karlsruhe, Germany, fitted with a quarter-circle Eulerian 

cradle). All the powder samples were analysed at a step size of 0.02° whilst the XRD patterns were recorded 

from 20° to 90°. TEM, (JEOL JEM 2000FX, JEOL Ltd. Tokyo, Japan) was used to study the particle size of the 

powders. The samples for TEM were prepared by dispersing the powders in an alcohol medium using 

ultrasound and then a drop of the suspension was deposited on a carbon film, from Agar Scientific, Stansted, 

UK. The TEM samples were dried in a laboratory oven at 60°C for 15 minutes and loaded into a single tilt 

holder. The TEM was operated at 200 kV and the images were obtained at different magnifications. 

3 Results and Discussion 

3.1 TGA/DSC 

The thermal analysis curves for the dried SG-nYAG and CP-nYAG precursor powders are shown in figures 2a 

and 2b. The curves show 45 wt% and 35 wt% total weight loss for the dried SG-nYAG and CP-nYAG precursor 

powders respectively. The difference in the weight loss for the co-precipitation route is due the removal of 

~10% of the organics in the precipitates during filtering and washing before the heat treatment. Nevertheless, 
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these results match with the conversion yield of the YAG powders, 19.6 wt %, after thermal decomposition of 

the precursors from both the methods. The substantial weight loss from 100–600°C is associated with the 

decomposition of the organics in the precursors. The difference in total weight loss between the powders and the 

crystallisation kinetics are described with the endotherms and exotherms provided by the DSC analyses.  

For the SG-nYAG powder, figure 2a, an endothermic peak near 390°C corresponds to the decomposition of 

NO3
-
 and CO2(Lu et al. 2002)due to the redox reaction between them, where citrate acts as a reductant and the 

nitrate as an oxidant (Li et al. 2008). The second endothermic peak at 450°C is attributed to the oxidation of free 

carbon from the incomplete combustion of carboxylate groups in the citric acid (Li et al. 2008). As the 

temperature exceeded 600°C, the weight loss became insignificant and the transition of the crystalline phase 

proceeded with the change in heat capacity. An exothermic peak observed near 917°C indicates the onset 

crystallization temperature, Tc. 

The DSC result for the CP-nYAG powder, figure 2b, confirms that the loss of organics during heat treatment is 

less than for the SG-nYAG powder and the reaction mechanism is simpler. The first endothermic peak near 

170°C can be attributed to the removal of butanol; this is due to the substitution of surface hydroxyl groups by 

the butoxyl groups in the precipitates (Qiu et al. 1995). The small endothermic peaks from 300 - 500°C are due 

to the decomposition of residual CO2, NO2 and NH4 in the powder. These endotherms explain the difference in 

weight loss in the TGA curves between the two powders. The excess hydroxyl molecules and NO3
- 
ions will be 

removed during the filtering stage in the co-precipitation process. The exotherm observed near 916°C 

corresponds to the onset crystallisation temperature for YAG (similar to the SG-nYAG powder).  

3.2 FT-IR analysis 

Further investigation of the crystalline transition and the decomposition pathways of the two powders were 

performed using FT-IR spectroscopy. The goal was to obtain an improved understanding of the crystallisation 

kinetics and the relevant formation mechanisms. 

FT-IR spectra from 4000 - 400 cm
−1

 for the two powders after heat treatment at different temperatures are 

shown in figures 3a and 3b. The broad absorption bands near ~3450 cm
−1

 and ~1630 cm
−1

 in both powders at 

100°C are associated with the O-H stretching vibrations of coordinated water molecules and the characteristics 

of H–O–H bending modes of molecular water (Su et al. 2005, Tanner et al. 2003). 
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The COOH functional groups, chelating ligands, near ~1729, ~1450 and ~1323 cm
-1

 in the SG-nYAG curve, 

figure 3a, after drying at 100°C are associated with the carboxyl vibrations of the citric acid. The weak band 

near ~1729 cm
−1

 coincides with ν(C=O) stretching (Ojamäe et al. 2006), which suggests that not all the carboxyl 

groups are bonding with the metal cations or free ν(C=O) exists. The other two bands near ~1450 cm
−1

 and 

~1323 cm
−1

 are associated with the symmetric νs(C=O) and asymmetric νas(C=O) vibrations(Rajendran and Rao 

1994, Xia et al. 2005), which implies that the dissociated carboxylic ions from the citric acid react to form bonds 

with the Al
3+

 and Y
3+ 

ions, forming a coordinative complex structure between the ligands and the metal 

ions(Motta et al. 2008, Tanner et al. 2003). The nitrate groups were also observed at ~1380 cm
−1

 and ~825 cm
−1

, 

which corresponds to ν(NO2) and ν(NO3), respectively(Li et al. 2008). After heat treatment at 600°C, the 

unreacted ν(C=O), ν(NO3) and δ(CO) scissoring band (~1037 cm
-1

) disappear and some traces of the νas and νs of 

C=O, along with ν(NO2) vibrations, are still present in the SG-nYAG curve. This demonstrates that νas and νs 

(C=O) and ν(NO2) were involved in the redox reaction(Li et al. 2008) and also supplements the thermal analysis 

results for the SG-nYAG powder. After heat treating at 925°C, the new bands near ~783, ~713 and ~680 cm
−1

, 

associated with the metal–oxygen vibration characteristics of Al–O, Y–O, and Y–O–Al stretching confirms the 

formation of the YAG phase
(15)

 and also coincides with the onset crystallisation peak observed from the DSC 

results. Nevertheless, the ν(NO2) vibration is still present in the SG-nYAG powder after heat treatment at 

1000°C for 1h, which suggest that some traces of nitrate persists, even after calcination with the sol-gel route.
 

The FT-IR spectra for the as-dried CP-nYAG powder, figure 3b, displayed very few functional groups when 

compared to the dried SG-nYAG powder. This also confirms the reaction mechanism between the precipitations 

is simple and most of the organics were removed during the washing process. The bands near ~1460 cm
-1

 and 

~1380 cm
-1

 are associated with the vibrations of v(NH) and ν(NO2)(Chen et al. 2007), whilst the peak intensities 

of the H–O–H bending modes (~1630 cm
−1

) and ν(NO2) were apparently low and the ν(NO3) vibrations present 

in the SG-nYAG (100°C) trace were absent in the equivalent CP-nYAG curve. This could be due to the effect of 

ammonia washing and the dehydration effect of the n-butanol treatment on the precipitates. The intensities of 

these bands were further reduced in the CP-nYAG curve after heat treatment at 600°C and there was also 

agreement with the thermal decomposition results. On further heat treatment at 925°C, the triplet bands formed 

between 800 - 600 cm
-1

 correspond to the vibrations of Al-O, Y-O and Y-O-Al stretching, which coincides with 

the crystallisation peak of the DSC analysis. Moreover, the ν(NO2) band present in the SG-nYAG after 

calcination at 1000°C for 1 hour is absent in the equivalent curve for the CP-nYAG powder, which confirms 

that the nitrate ions are removed during the co-precipitation synthesis method.  
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3.3 XRD - YAG formation 

Figures 4a and 4b show the phase evolution as a function of temperature and time for the SG-nYAG and CP-

nYAG powders respectively. The obtained peaks are compared with the standard JCPDS card no: 33-0040.  

After being heat-treated at 900°C for 2 h and 925°C for 1 h, some traces of the metastable hexagonal h-YAlO3 

(YAH) phase was observed for both the SG-nYAG and CP-nYAG powders. However, after heat treating at 

925°C for 2 h, no detectable YAH phase was observed for the CP-nYAG powder; whilst the SG-nYAG powder 

still displayed characteristic peaks of the YAH phase. These peaks were still present after 1 h at 950°C, but 

disappeared after heat treating for 1 h at 1000°C for the SG-nYAG powders. Thus, after heat treatments of 2 h at 

925°C (CP-nYAG) and 1 h at 1000°C (SG-nYAG), all the peak positions matched with the standard YAG 

diffraction reference pattern and no intermediate phases such as YAM or YAP were observed. Only the 

metastable YAH formed as an intermediate, which subsequently transformed to YAG at elevated temperatures.  

3.4 Mechanisms of YAG formation 

Possible mechanisms for YAG formation via the sol-gel and co-precipitation routes are proposed based on the 

analytical evidence obtained from the thermal analysis, FT-IR spectroscopy and XRD of the precursor powders 

after heat treatment at different temperatures. 

3.4.1 Sol-gel mechanism 

The mixing of citric acid, C3H4OH (COOH)3, with deionised water results in partial dissociation of H
+
 ions from 

the chelating ligands (COOH) and protonation of the water, equation 1. The solvation of the metal cations, 

introduced as metal nitrates is described by equation 2(Brinker and Scherer 1990). 

                                      
                                                                    

                                                                                   

 

The second step involved adding the solvated precursor solution into the citrate solution to achieve the 

substitution reaction given in equation 3. A coordinative complex structure was formed between the metal 

cations and citrate anions (Blosi et al. 2009).  

(
                       

                   
 

)  (
          

  
               

 

                
 

)                      
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During drying, the precursor sol partially hydrolysed to form a cross-linked polymer chain between the 

chelating ligands and the metal ions, i.e. it formed a gel that was, in turn, dried to form a porous fluffy mass, 

which was ground further and then calcined. Equation 4 and 5 show the reactions being followed during 

calcination: 

(
                            

                
 

)
    
→    (

                       
     

        
)                     

                                 
 
 

     
→                                                                                            

During calcination at 1000°C, the transformation of the (COO
-
)3Y

3+
-Al

3+
(COO

-
)3 network to metal oxygen 

bonding (M-O-M) took place and complete crystallisation was achieved, as supported by the thermal analysis 

and XRD data. A thermally induced anionic redox reaction (reduction and oxidation) took place between the 

(COO
-
)3 and the NO2

-
, with the citrate acting as a reductant and the nitrate as an oxidant(Li et al. 2008). 

3.4.2 Co-precipitation mechanism 

The co-precipitation process for YAG requires an accurate control over the pH. This is because of the difference 

in saturation solubility of the yttrium hydroxide and amphoteric aluminium hydroxide (which can react as both 

an acid and a base). These are stable at different pH range, i.e. pH 7 - 9 for Y(OH)3 and pH 5 - 9 for 

Al(OH)3(Pourbaix 1974). If the pH is not maintained between the above specified ranges, then the hydroxides 

redissolve into M
3+

 ions, M = Y or Al, resulting in a heterogeneous precipitation. Besides the pH control, the 

particle size of the precipitate was controlled by the concentration of the precipitating species and the nucleation 

and growth of the precipitates (Townshend and Jackwerth 1989). 

In this process, the stoichiometric amounts of yttrium and aluminium nitrate were mixed to obtain an aqueous 

solution of the metal ions and HNO3, equation 2. Equation 6 explains the co-precipitation reaction between the 

solvated precursor solution and the NH4OH(aq) solution. The presence of nitrate ions in the precursor solution 

makes it even more critical to sustain the pH for precipitation. Therefore, the concentrated precipitant solution 

was added concurrently to maintain the pH. In the present work, the concentration ratio of the precursor solution 

was kept at <1, a narrow pH window (±0.05) was maintained and a precipitation rate of about 4 ml/min was 

used to control the nucleation and growth of the homogenous precipitates. In addition, a nucleophilic 

substitution reaction between the precursor solution and the NH4OH occurred yielding an aqueous ammonium 

nitrate (NH4NO3) and H2O.  
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→            

    
→                                                                       

Equation 7 describes the possible reaction mechanism during calcination. The metal hydroxides are oxidized to 

form an amorphous Y-O-Al (M-O-M bonding) network and the atomic diffusion between them transformed to a 

crystalline YAG phase at 925°C. The overall reaction is accompanied by the thermal decomposition of the 

volatiles and crystallisation kinetics of the CP-nYAG precursor as obtained from thermal analysis, FT-IR and 

XRD.  

3.5 TEM morphology 

Figure 5 shows the TEM images of the SG-nYAG and CP-nYAG powders. It is evident that for both powders 

the primary particle size is in the range between 20-30 nm and a significant degree of agglomeration occurs for 

the SG-nYAG powder, figures 5a and 5b. This could be due to the complex networking of metal ions in the gel 

matrix, which the organics were burned off from the network, and led to a severe agglomeration of the primary 

particles. 

When the results obtained in the present work are compared to the literature, the particle size observed by (Chen 

et al. 2007, Wang et al. 2000), both using co-precipitation, was in a similar region, 30-60 nm, but their powders 

displayed a higher degree of agglomeration. One reason for our CP-nYAG particles being a little finer, figures 

5c and 5d, might be due to the lower calcination temperature used, whilst the reduced degree of agglomeration 

might be attributed to three possible effects, (i) controlling the pH with a minimal tolerance, (ii) suitable thermal 

conditions for precipitation and (iii) dehydrating the hydroxyl ions by the n-butanol treatment.  

Controlling the pH is considered to be the most important factor during co-precipitation reactions. In this case, 

the precipitating conditions for Y
3+

 and Al
3+ 

ions are different for nitrate precursors; Y
3+

 ions precipitates at pH 

8.1 whilst Al
3+ 

precipitates at pH 3.5(Apte et al. 1992). To avoid the heterogeneity of the co-precipitation, 

aqueous solutions of Y
3+

 and Al
3+

 ions were mixed and added drop-wise to the precipitant solution, which was 

maintained at pH 8.20±0.05 by adding concentrated NH4OH concurrently. It was observed that when the pH of 

the precipitant solution increased or decreased by just 0.10, both the homogeneity and the morphology of the 

precipitates changed, Figure 6.  
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From Figure 6a, it is clear that whilst the precipitates are approximately spherical, there was a significant 

variation of their size, which is due to the difference in precipitating conditions of Y
3+

 and Al
3+ 

ions. When the 

pH was maintained at 8.20±0.05, Figure 6b, the hydroxides of the mixed metal cations displayed a stable 

nanostructure and the precipitates were found to be discrete and to have a uniform size distribution. In contrast, 

bulk precipitation morphology is displayed in Figure 6c. When the pH was increased to 8.30±0.05, the 

precipitation reaction surpasses the saturation limit and resulted in agglomeration of the precipitates. This could 

be due to the excess OH
-
 ions provided by the NH4OH solution, which dissolves Al(OH)3 (acts as a Lewis acid) 

into AlO2
- 

ions (Pourbaix 1974) and resulted in heterogeneous precipitation. At the best pH conditions 

(8.20±0.05) a closer look at the nanostructure of the precipitates reveals the formation of a clear core-shell 

structure, figure 7, during the co-precipitation process. Similar results were reported by Wang (2000) at pH 

values of 8 which retard the agglomeration. 

The effect of processing temperature is shown in the figure 8. From the results, it is evident that the thermal 

conditions such as 10±1°C and 20±1°C (figure 8a and 8c) resulted in bulk precipitation, which could result in 

composition inhomogeneity and particle agglomeration. The precipitates processed between these conditions, 

13±3°C (figure 8b), offered a homogenous precipitation. The TEM result suggests that a suitable processing 

temperature is also appears to be required for obtaining homogenous precipitates. 

During the n-butanol treatment, the surface hydroxyl groups are replaced by the butoxyl groups and thus form 

an azeotropic layer (Qiu et al. 1995), which acts as a potential barrier between the particles. Due to the low 

surface tension of n-butanol compared to water, the binding force among the particles decreased whilst drying 

and so hard agglomeration caused by the capillary forces was avoided. Consequently, depletion of the excess 

OH
- 
ions in the precipitates controlled the agglomeration during drying and resulted in soft agglomerates of the 

dried precipitates. 

4 Conclusions  

Nanocrystalline YAG powders have been synthesised via sol gel and co-precipitation using nitrate precursors. 

The thermal and phase evolution for the formation of nYAG were investigated using DTA/DSC, FT-IR and 

XRD techniques. It has been observed that 925°C/2h and 1000°C/1h are the optimum temperatures to calcine 

nYAG by the co-precipitation and sol-gel methods respectively. From the TEM morphologies, the CP-nYAG 

route yielded particle sizes of 25-30 nm with less agglomeration when compared to the sol-gel synthesis. The 
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proposed co-precipitation mechanism suggests that an extremely narrow pH range (8.2±0.05), processing 

temperature (13±3°C) and the effective dehydration of n-butanol appears to be required for production of a 

homogeneous nYAG powder.  
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Figure 1a Flow chart of sol-gel process
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Figure 1b  Flow chart of co-precipitaiton process
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Figure 2a TGA/DSC of SG-YAG powders
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Figure 2b TGA/DSC of CP-YAG powders
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Figure 3a FT-IR spectra of SG-YAG powders
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Figure 3b FT-IR spectra of CP-YAG powders
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Figure 4a XRD patterns of SG-YAG powders
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Figure 4b XRD patterns of CP-YAG powders
Click here to download high resolution image

http://www.editorialmanager.com/nano/download.aspx?id=122292&guid=521bdeb4-afc7-4c73-9f1c-8a03c7444158&scheme=1


Figure 5a TEM image of SG-nYAG (1000°C), low magnification
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Figure 5b TEM image of SG-nYAG (1000°C), high magnification
Click here to download high resolution image

http://www.editorialmanager.com/nano/download.aspx?id=122294&guid=61a1461c-c6b2-42d6-8ef7-c15ce0b95a03&scheme=1


Figure 5c TEM image of CP-nYAG (925°C), low magnification
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Figure 5d TEM image of CP-nYAG (925°C), high magnification
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Figure 6a TEM image of CP-nYAG precipitates, 8.10±0.05
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Figure 6b TEM image of CP-nYAG precipitates, 8.20±0.05
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Figure 6c TEM image of CP-nYAG precipitates, 8.30±0.05
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Fig 7 Core/shell image of CP-YAG precipitates, insert: schematic
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Fig 8a TEM image of  CP-YAG precipitates, 10±1°C
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Fig 8b TEM image of  CP-YAG precipitates, 13±3°C
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Fig 8c TEM image of  CP-YAG precipitates, 20±1°C
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