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Abstract 

Oxidation tests were carried out on HfB2-SiC, HfB2-HfC, HfB2-WC-SiC, and HfB2-WSi2 ceramics 

using an oxyacetylene torch.  The samples were oxidized between 2100 and 2300C.  From 

cross-sectional images, scale non-adherence was noted as a limiting factor in oxidation 

resistance.  The sample with the best scale adherence was HfB2-WSi2.   Factors involving scale 

non-adherence such as vapour pressure, coefficient of thermal expansion mismatch and phase 

transformations were considered.  In comparing the scale adherence of the samples it was 

hypothesized that vapour pressure build-up is the principal contributing factor in the scale 

adherence differences observed among the tested samples. However, the coefficient of thermal 

expansion mismatch and HfO2 phase transformation cannot be neglected as contributing factors 

to scale non-adherence in all samples. 
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1. Introduction  

Transition metal borides and carbides with melting temperatures exceeding 2700C are 

commonly referred to as ultra-high temperature ceramics (UHTCs) and have been studied as 

primary candidates for extreme environment thermal protection systems such as those found at 

the sharp leading edges of hypersonic vehicles. [1,2]  Most commonly explored are the ZrB2-SiC 

and HfB2-SiC (MeB2-SiC) systems with and without various additives.  Most oxidation resistance 

testing of UHTCs has involved either resistive-element furnace heating or arc jet heating.  Over 

the past decade the cost and limited availability of arc jet testing and the temperature and 

heating rate limitations of furnace heating have led many laboratories to develop new testing 

methods in order to probe higher temperatures.  The first widely reported test, direct electrical 

resistance, developed primarily under J. Halloran, [3,4] provided insight into the volatile nature 

of the oxidation products of ZrB2-SiC at temperatures up to 2100C.  Observations of mixing 

between the ZrO2 and SiO2 led to a better understanding of the dynamic characteristics 

occurring at testing temperature.  Using this technique, oxidation resistance and mechanical 

strength retention comparisons between samples with different chemistries can easily and 

rapidly be examined. [5,6]  The main drawback of this method, the internal heating, has limited 

its widespread use. Laser testing of UHTC materials has been utilized by researchers to reach 

temperatures from benign to beyond the melting points of the UHTC materials. [7,8]  Laser 

heating technology is versatile and more economical than arc jet testing, yet is also not widely 

available.  As such, several laboratories have developed oxyacetylene torch testing as a rapid 

screening tool for UHTC materials at temperatures up to 3400C. [9-14]  The oxyacetylene torch 

test is naturally ablative owing to the high velocity gas flow associated with the flame.  The 

oxidation characteristics of the oxyacetylene torch can be controlled by the acetylene to oxygen 

ratio, while at a given ratio temperature is controlled by the distance to the flame.  The torch has 



been used as a standard test method for oxyacetylene ablation testing of thermal insulation 

materials (ASTM E285-08). 

As UHTCs have been tested using these various techniques with parameters that include higher 

temperatures (> 1800C) and high velocity flow, [14-20] it has become apparent that there is a 

point at which the protective SiO2-MeO2 scale that is formed on MeB2-SiC begins to fail.  Above 

a critical temperature, the viscosity of glassy SiO2 will be too low to remain integral to the scale. 

Under these conditions the SiO2 will flow out of the pores of the MeO2 and from the sample 

surface resulting in a less protective porous outer scale. [20]  Oxide scale non-adherence at 

temperatures in excess of 2000C has also been observed during oxidation testing of MeB2-SiC 

materials. [9,21,22]  The loss of scale adherence could be a result of many factors including 

stress induced by the difference in thermal expansion coefficient (CTE) of the MeB2 and MeO2-

based layers upon heating/cooling,  phase transformation of the MeO2 and its associated 

volume increase upon cooling  or fracture caused by the escape of gaseous by-products of 

oxidation such as CO, SiO and B2O3.   

The present paper focuses on evaluating the relative performance of four different compositions 

among the HfB2 containing UHTCs, at temperatures above 2100C for long duration, using an 

oxyacetylene torch.  A baseline sample of HfB2-SiC was tested and compared to W-containing 

samples.  W has been found to be a beneficial additive for both ZrB2 and HfB2-based UHTCs 

when samples are tested under furnace heating up to 2000C, [21,23,24] and as such two 

chemistries including W, HfB2-WC-SiC and HfB2-WSi2, were tested. A qualitative analysis of the 

differences in behaviour is presented. 

2. Materials and Methods 

Commercially available HfB2 (Materion ,99.9%, -325 mesh), WC (Materion ,99.5%, -325 mesh), 

WSi2 (Materion ,99.5%, -325 mesh), Hf (Materion ,99.8%, -325 mesh), C (Materion ,99.5%, -325 



mesh), and β-SiC (Materion, 99.9%, 1m) were used to prepare four different sample 

compositions: HfB2-20vol.%SiC (HS), HfB2-20vol.%SiC-4vol.%WC (HSW), HfB2-4vol.%WSi2 

(HW), and HfB2-4vol.%HfC (HH).  For the HH sample, Hf and C were added in a 1:1 molar ratio 

to produce HfC during reactive sintering.  The powder mixtures were ball milled in isopropanol 

for 24 h with SiC grinding media, dried at room temperature, and subsequently dry milled for 12 

h.  Typical weight loss of the SiC grinding media after milling was 0.2 mg (0.2 wt.% of the total 

batch).  The powders were sieved through an 80-mesh (177 m) screen.   

Sample composition and sintering conditions are summarized in Table 1.  Milled powders were 

loaded into a 20 mm diameter graphite die to produce a 13 mm thick cylinder.  A layer of BN 

and graphite foil separated the powder from the die with the powder in contact with the graphite 

foil.  The powder-filled dies were cold pressed at approximately 50 MPa. The powders were 

sintered using field assisted sintering (FAS: FCT Systeme GmbH, Model HPD 25-1, Rauenstein 

Germany) at 2100C (HSW, HH, HW) or 1940C (HW) for 25 min (HS), 15 min (HSW and HW), 

or 50 min (HH) under a 32 MPa load.  The controlled heating and cooling rates were 50C/min. 

The load was applied during heating to 1600C and released on cooling to 1000C. The 

graphite foil was removed from the sample by manual grinding, and the faces of the disks were 

polished to 45 m for exposure to the torch.    

Samples were oxidized using the oxyacetylene torch apparatus developed at Loughborough 

University. [13,14] Samples were held in place using a carbon-carbon foam insert in a water-

cooled graphite holder.  The surface of the sample was 25 mm from the exit point of the torch.   

During the test, the temperature of the exposed face was recorded using a 2 colour pyrometer 

(Marathon MR1SCSF, Raytek GmbH, Berlin, Germany) while the back face temperature was 

measured by a J-type thermocouple.  An oxygen rich flame was chosen for testing the UHTC 

samples.  The acetylene to oxygen ratio was 1:1.35 with flow rates of 0.8 m3
h-1 and 1.1 m3

h-1 



respectively. The heat flux was measured at 25 mm using the same acetylene to oxygen flow 

rates and ratio with a water-cooled gardon gauge (TG1000-54, Vattel Corp., Christiansburg, VA).  

Oxidized samples were analysed by X-ray diffraction (XRD: D8 Bruker AXS limited, Coventry, 

UK), and then mounted in epoxy and cut in half.  The cross section of the oxidized face was 

then polished to 1 m.  The microstructures were characterized using scanning electron 

microscopy (SEM: Quanta, FEI, Hillsborough, OR) along with energy dispersive spectroscopy 

(EDS: Pegasus 4000, EDAX, Mahwah, NJ) for elemental analysis.  Wavelength dispersive 

spectroscopy (WDS: SX100, Cameca, France) was used for the chemical analysis of W and Si.  

Transmission electron microscopy (TEM:Phillips CM200 FEI, Hillsborough, OR) samples were 

prepared by focused ion beam milling (FIB: DB235, FEI, Hillsborough, OR). 

3. Results 

3.1 Oxidation Test Parameters 

The oxyacetylene torch test is one that is gaining commonality in use, but is not completely 

characterized.  Sample temperature is dictated by sample composition (its heat capacity and 

thermal conductivity), the sample distance from the flame, and the oxygen to acetylene ratio.  In 

addition, the oxyacetylene flame environment is complicated by the presence of carbon species 

that depend on the flame chemistry. [25,26] The heat flux can be measured by calorimetry.  

When the flow rates, gas ratio and distance to the flame are set, the heat flux as measured by 

the calorimetry is fixed.  The heat flux was measured to be 880 Wcm-2 at 25 mm from the torch 

exit using an acetylene to oxygen ratio of 1:1.35 with flow rates of 0.8 m3
h-1 and 1.1 m3

h-1 

respectively. 

The pyrometer data recorded during sample oxidation is plotted in Fig. 1.  Tests were targeted 

for an 8 minute duration and this was achieved for all but the HS sample, which was liberated 

from a degraded holder after 3.6 minutes. The samples were positioned 25 mm from the torch 



nozzle after it had been lit. Transient heat up time was about 90 s. The samples reached peak 

temperatures between 2100 and 2300C.  The average temperature value noted in Fig. 1 is the 

average of the last 60 s of exposure.  The back face temperature reached approximately 

1200C for the HSW, HW, and HS samples, while the back face temperature of the HH sample 

was approximately 1100C.   

3.2 Analysis of the Oxide Scales 

Optical photographs of the sample surfaces are shown in Fig. 2.  The hottest part of the flame 

was slightly off-centre creating a cooler crescent-shaped region (evidenced by less extensive 

oxidation) on the sample surface.  Evidence of oxide non-adherence was observed in each 

sample.  The oxide scale was white in all samples except the HSW and HW samples, which had 

areas coloured light green that could be evidence of WO3.   XRD analysis (Fig. 3) of the 

oxidized sample surfaces showed that in all cases monoclinic HfO2 was the primary crystalline 

constituent.  In the HS and HSW samples, peaks of HfB2 were observed; probably as a result of 

the cracks in the oxide exposing the underlying bulk material.  The HSW sample contained a 

peak near 40°, not seen in any of the other samples.  Considering the sample chemistry, the 

peak could be attributable to various W-containing species such as W or WxSiy.   

SEM analyses of the sample cross sections across the centre of the hot zones clearly show the 

non-adherent nature of the oxide scales (Fig. 4).  The images in Fig. 4 are from the centre of the 

sample.  Samples HS (Fig. 4a), HSW (Fig. 4b), and HH (Fig. 4d) exhibit multiple oxide layers, 

with each subsequent oxide scale forming on surfaces below which the scale had previously 

disadhered.   Adherence was limited to the sample perimeter, where the scale was thinner and 

the sample has been shown in previous experiments to be cooler by a thermal imaging camera.  

Fig. 4 shows an overview of the oxide scale of each sample.  Magnified images of the oxide 

scales are shown in Fig. 5.  The outer oxide layers were HfO2 in the HS and HH samples, while 



HfO2 and a W-phase were observed in the HSW sample.  Oxide scale layers between the 

outermost oxide layer and the bulk of the HS and HSW samples retained SiO2 glass while SiO2 

could also be found at the interface between the non-adherent layers and the bulk sample.  

SiO2 was likely removed by the flowing gases as velocities up to 70 m/s have been reported at 

distances 15-30 mm from an oxyacetylene cutting torch. [27]  EDS of the W-phase found with 

HfO2 in the HSW sample showed primarily W, but because of the small size of the phase, the 

high absorption coefficient of W and the surrounding oxide, a precise phase identification was 

not achieved.  A W-phase with similar morphology has also been observed in furnace and direct 

electrical resistance heating of W-containing HfB2-based samples heated to 2000C and above. 

[21,22] 

The oxide scale in the HW sample (Fig. 4c and Fig. 5c) was distinctly different.  Although some 

separation between the scale and bulk sample was observed, areas of adhered scale were also 

found near the centre of the sample.  Additionally, the regions of non-adherent oxide were a 

single layer that broke away from the underlying bulk.  A comparison of the W-containing 

phases in HSW and HW are indicated in Fig. 6.  In the HW sample, the W-phases were present 

in the denser outer oxide scale (Fig. 6(b)) and in the more porous inner scale (Fig. 6(c)), while 

W-phases were only found in the interior porous HfO2 of the oxidized HSW sample.  A Cu 

impurity in the WSi2 (0.001 vol.%, as reported) manifests as Cu found with W at the bulk-oxide 

interface and in some instances with the W-phase in the oxide scale.  After annealing at 200C, 

thin films of 45 to 72 at% Cu in W can be formed, but at room temperature the systems show 

negligible mutual solubility. [28]  EDS estimates place the Cu content at 7-9 at.% if a Cu-W alloy 

is assumed.   However, the low symmetry electron diffraction patterns cannot be matched to a 

W-Cu solid solution.   As shown by TEM (Fig. 6(d)) a W-containing grain boundary phase exists 

between the large W-containing phases and HfO2 in the oxide scale.   The volume of this phase 

precludes its identification. 



4. Discussion 

The common aspect of the oxidation behaviour among HS, HSW and HH is the formation of 

multiple layers, presumably from repeated separation of scale from the bulk. There are at least 

three possible reasons why the oxide scale may separate from the bulk sample during testing: 

(1) vapour pressure build-up at the scale-bulk interface; (2) CTE mismatch between the oxide 

scale and the bulk; and (3) the phase transformation between monoclinic and tetragonal HfO2 

and its associated volume change.   

When a vapour species or combination of vapour species at the bulk/oxide interface exceeds 

1 atm (1  105 Pa) pressure the oxide scale may be disrupted.  Thermodynamic calculations 

made by Opeka et al [29] and Fahrenholtz [30,31] on the ZrB2-SiC system at 2227C  reveal 

that  the vapour pressure of Zr  (and Hf )  oxides are at least 4 orders of magnitude lower than 

the 1 atm limit.  It has been shown that B2O3 does exceed the 1 atm criteria at 1950C, [29] but 

its vapour pressure is sufficiently high above 1200C to cause evaporation from the surface long 

before the internal pressures exceed 1 atm.  The SiO partial pressures can exceed 1 atm at the 

interface at temperatures above 1865C, while the vapour pressure of CO is much higher than 

this.  The dissimilarity in the appearance of the HW oxide scale suggests a different set of 

mechanisms are at work.  Unlike in the HS, HSW and HH samples, there are no C-containing 

phases in the HW sample, suggesting that CO evolution may play a role in the lack of oxide 

adherence during testing.  This mechanism would be active during heating of the sample. 

In addition, prior studies of SiC oxidation report bubble formation within the SiO2 scale at 

1700C, attributed to CO partial pressures up to 7.5 atm. [32]  Luthra [33] argues for a SiC 

oxidation mechanism that involves both diffusion limited and interface limited reactions where 

CO gas bubbles can form if the permeabilities or diffusion rates of CO are substantially lower 

than that of oxygen or the SiC or bulk-oxide interface is C-rich.  Such C-rich deposits have been 



observed at the bulk-oxide interface in oxidized MeB2-SiC systems. [22,34] Bubbling of the SiO2 

scale has also been reported in MeB2-SiC systems between 1500-2200C. [2,6,10,22]  But it is 

possible that for HfB2-based systems heated to ~2300C, sintering of the outer HfO2 could 

hinder vapour escape and lead to spallation as a result of the build-up of vapour .  In fact, 

sintering of the outer HfO2 scale is suggested in Fig. 5 and has been reported in ZrB2-based 

oxidation studies at temperatures in excess of 1800C. [10,35]   

The CTE difference and phase transformations may also be playing a role, particularly 

considering that there was non-adherence of the scale in the HW sample suggestive of such 

mechanisms – a singular layer removed from the un-oxidized bulk.   No tetragonal phase 

stabilization was found in either the HSW or HW sample, as expected. [36]   As for CTE 

modification, hafnium and zirconium tungstates are known to have a negative CTE, but are only 

stable in a narrow temperature regime, 1276-1105C for HfW2O8. [37,38] The latter can be 

quenched to room temperature with fast cooling rates, but if decomposition occurs the by-

products are HfO2 and WO3. [37]  It is possible with the rapid cooling experienced by the 

samples some HfW2O8 remains.  Although the phase was not observed by XRD, the 

concentration could be below the detection limit or sufficiently deep within the oxide to avoid 

detection.  EDS scans of the W-containing phases from the dense outer oxide scale in the HW 

oxide scale show the presence of W and Cu.  A grain boundary phase is found between the 

large W-phase and HfO2 grains. This phase has not been previously reported or observed in 

oxidized W-containing HfB2 samples. Because of the small volume of the phase a precise 

composition could not be determined.  A WO3-HfO2 liquid phase can form at temperatures 

above 1280C, [39] suggesting that such a phase could form during testing.   

Determination of the mechanisms leading to non-adherence may allow engineering of UHTC 

compositions that form more resilient oxide scales.  Further information regarding chemical 



composition of the oxide scale and whether the oxide scale spalls during the hold at testing 

temperatures (most likely to be as a result of vapour pressure effects) or upon cooling 

(corresponding to CTE mismatch or phase transformations) could improve this understanding.   

5. Conclusion 

Oxyacetylene torch testing is an aggressive test for assessing the oxidation and ablative 

resistance of ultra-high temperature ceramics.  All samples formed outer HfO2-based oxide 

scales.  In the HS, HSW, and HH samples, the oxide scale consisted of multiple layers that 

were non-adherent to the underlying bulk material. From the multiple layers and the presence of 

new layers forming on the non-oxidized bulk, it is possible that as each layer broke away from 

the surface oxygen was able to penetrate and form new oxide layers.  The HW sample was 

distinct in that its oxide scale consisted of a single, partially adherent layer.  The differences in 

the samples suggest that the evolution of CO during oxidation may adversely impact scale 

adherence.  However, the CTE mismatch and HfO2 phase transformation cannot be ruled out as 

important factors in establishing adherence of the oxide scales.    
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Table 1.  Sample composition and sintering parameters with sample ID 

Sample ID  Composition Sintering temp., hold time, pressure 

     HS  HfB2-20vol.%SiC           2100C, 25 min, 32 MPa 

     HSW  HfB2-20vol.%SiC-4vol.%WC           2100C, 15 min, 32 MPa 

     HH  HfB2-4vol.%HfC           2100C, 50 min, 32 MPa 

     HW  HfB2-4vol.%WSi2           1940C, 15 min, 32 MPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1.  Plot of the measured pyrometer temperature readings during oxyacetylene torch 

testing of the HfB2-based samples.  Temperature was measured at the centre of the front face 

of the sample and is plotted from the beginning of the test until the torch was extinguished.  The 

average temperature was calculated from the last 60 s of exposure. 

Figure 2. Photographs taken after oxyacetylene torch testing of the HfB2-based UHTCs.  The 

samples were 20 mm diameter and 15 mm thick. 

Figure 3.  XRD plot of the four HfB2-based UHTC monoliths after oxyacetylene torch testing.  All 

peaks are HfO2 except the peaks labelled * (HfB2) and ~ (possibly a W-phase). 

Figure 4. SEM micrographs of an overview of the oxide scale formed on (a) HS, (b) HSW, (c) 

HW, and (d) HH after oxyacetylene torch testing.  Spallation is evident in all samples with 

multiple layers forming on the HS, HSW, and HH samples.  The dark continuous phase is 

mounting epoxy while the light regions correspond to (O) the oxide scale, (B) the bulk, 

unoxidized sample, and (D) the SiC-depleted layer. 

Figure 5. SEM micrographs of a magnified view of the oxide scale formed on (a) HS, (b) HSW, 

(c) HW, and (d) HH after oxyacetylene torch testing.  Labelled regions are (a) A=primarily HfO2 

and B=HfO2/SiO2; (b) C=primarily HfO2 and D=HfO2/W-phase; (c) E=dense HfO2/W-phase, F= 

porous HfO2/W-phase and G=HfB2/W-phase/Si-phase; and (d) H=HfO2. 

Figure 6. SEM micrograph of the W-containing phases (lighter) found with HfO2 after 

oxyacetylene torch testing of (a) HSW and (b,c) HW. The phases in (b) are found at the porous 

inner oxide, while the phases in (c) are found in the dense outer oxide of the HW sample.  The 

W-phase in (a) and (b) are similar in morphology and chemistry (see inset EDS in (b)).  The W-

phases found in the dense layer of the HW sample are larger and in some cases contain Cu.  

The C in the EDS is an artefact of the C-coating applied for SEM analysis. WDS (see inset WDS 



in (c)) confirms W and Cu without Si. (d) TEM micrograph of a W-containing phase in HW from 

the dense outer oxide scale.  Phase 1 was shown by TEM-EDS to contain W and Cu, while 

phase 2 is a grain boundary phase potentially composed of Hf, W, and O. 
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