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Use of Electrophoretic Impregnation and Vacuum Bagging to Impregnate SiC powder into 

SiC Fiber Preforms 

 

Jon Binner*, Bala Vaidhyanathan, David Jaglin and Sarah Needham† 

 

Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU, 

United Kingdom 

 

Abstract 

Techniques based on vacuum bagging (VB) and electrophoretic impregnation (EPI) have been 

investigated for the impregnation of SiC powder into layered Nicalon SiC fabric preforms. The 

aim was to produce pre-impregnated samples for subsequent chemical vapour infiltration (CVI) 

with reduced intertow porosity that arises from the construction of the fabric layers whilst leaving 

unblocked the intratow porosity that is so indispensable for a successful infiltration. Since the 

goal was simply to learn about the ability to impregnate the samples, no interphase coating was 

applied to the fibers as would normally be used when producing SiCf-SiC composites. Whilst the 

VB process generally yielded much stronger preforms, depending on the pressure used and the 

powder particle size, it resulted in powder becoming located in the intratow rather than the 

intertow porosity. In contrast, provided an appropriate electrode arrangement was used, EPI 

offered the potential for a more controlled impregnation process with the powder primarily found 

in the intertow porosity; however, the preforms were very weak and delaminated easily. The 

combination of the two processes resulted in a very successful approach, with greater uniformity 

of particle infiltration and higher green strengths, whilst largely avoiding impregnating the 

intratow porosity. 

                                                 
* J.binner@Lboro.ac.uk 
† Now with Rolls Royce plc., UK 
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I Introduction 

SiCf/SiC composites are very promising materials for high temperature structural applications 

because of their good thermal stability and excellent mechanical properties. Of the various 

techniques used to produce fiber reinforced ceramic matrix composites, chemical vapour 

infiltration (CVI) has received considerable attention1-2. Combining isothermal or temperature 

gradient, isobaric or pressure gradient features, as well as the use of pulsing, CVI results in 

composites still containing 10 - 20% residual porosity3-6 however. This is mainly due to two 

reasons: (i) when the minimum percolation threshold for transport through the pore structure is 

reached, infiltration becomes more and more difficult as the pore size decreases resulting in 

deposition occurring on the outside of the fiber network, and (ii) when the composite reaches a 

fractional density of ~70% the surface area becomes dominated by the macropores; these can 

take too long to infiltrate from a commercial viewpoint. It is the last 30% of densification that is 

financially costly because the infiltration time becomes extended (to days and even weeks in 

some cases) during this phase7 and to produce fiber-reinforced ceramic matrix composites 

(FRCMCs) by any form of CVI at a commercially acceptable cost, the processing time must be 

kept short8. 

 

As implied above, the porosity itself can be divided into two main types; fine intratow and much 

larger intertow porosity. In fibrous preforms densified up to 82% of theoretical9, the lamination of 

the plies combined with the weave design can result in intertow pores being as large as 0.3 to 

0.6 mm in width and tens of millimetres long. There is also the problem of the packing of the 

fabric layer in the Z-direction10. Fig. 1a11 provides an illustration of this type of porosity, which is 

the most harmful type of defect for mechanical properties as well as providing a path for 

corrosive agents. When present, these pores are very difficult to eliminate in fiber preforms 

produced from the lay-up of fiber sheets. In contrast, intratow pores are typically <15 m in 

diameter and are formed when the matrix deposition on the individual fibers traps small pores, 
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Fig. 1b. Whilst some will probably always be residual after CVI-based processes, they are not 

considered to be particularly detrimental to the overall strength of the composite due to their 

small size9. Nevertheless, the elimination of this porosity by the use of the right infiltration 

conditions would also undoubtedly be desirable – provided it can be achieved without a 

significant increase in processing time and hence costs. 

 

Two-stage CVI processes have therefore been investigated where, under the right conditions, 

the initial stage sees the efficient filling of the finer, intratow porosity and the second stage seeks 

to fill as much of the coarser, intertow pores as possible within the economic limitations of the 

process12-13. For example, using marker layers, Lackey et al.14 found that when using forced-flow 

CVI, intratow infiltration could be virtually complete within the first 2 h, although filling the intertow 

porosity took considerably longer. One potential problem with this approach is that some 

intertow porosity can become trapped in the structure when the intratow porosity becomes filled. 

 

Although not the focus of this paper, many other techniques are available for the fabrication of 

FRCMCs as well as CVI. For example, hot-pressing techniques have been used15 in which the 

stacked green body was hot-pressed at up to 2023 K with a matrix consisting of -SiC powder 

and sintering aids. Unfortunately, the composite displayed brittle behaviour even though Hi-

Nicalon fibers were used. An approach based on slurry-cast melt infiltration with reaction-

sintering16-18 used a slurry consisting of SiC powder or a mixture of SiC powder and carbon 

powder in water that was impregnated into the SiC fiber preform. The green composite was then 

reaction sintered at 1720 K with melted silicon to obtain a rich SiC matrix. Disadvantages lay in 

the need for a designed mould and residual silicon metal as high as 15-20 vol.%, despite the low 

porosity achieved. 

 

An alternative approach can be based on the pre-impregnation of the macropores by a process 
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other than CVI and polymer impregnation and pyrolysis (PIP) processes are very common and 

effective manufacturing techniques for high performance SiCf/SiC composites19-24. Six or more 

cycles of impregnations, followed by the pyrolysis, are typically required to achieve densities of 

80-85%. An important aspect of the process is that the matrix development affects the 

mechanical properties by inducing residual stresses due to shrinkage of the matrix during 

pyrolysis and also the anisotropy of the thermal expansion coefficient between the fibers and 

matrix25. 

 

The introduction of powder into the PIP was investigated by Gonon and Hampshire21 who used 

polysilazane as precursor with the addition of Si3N4 powder into SiC fiber preforms; 7 to 8 cycles 

of precursor impregnation and pyrolysis were required to reduce the porosity to approximately 

15%, but the presence of powder did not allow good cross-linking of the precursor and resulted 

in lower mechanical properties than the composite with the polymer alone, a result confirmed by 

Casadio23. Gotoh et al.20 also pointed out that optimisation of the mechanical properties relies on 

the right volume of fiber and sintering aids. Fast heating techniques such as microwaves can be 

applied during the pyrolysis stage, providing time and energy savings since suitably high 

temperatures can be induced in a matter of minutes. Dong and co-authors24 used this particular 

technique but required 8 cycles of impregnation to achieve a final density of 78%. 

 

Combining PIP with CVI allowed Kim et al.22 to achieve an initial preform density of up to 70% 

after PIP, the subsequent isobaric, isothermal CVI step yielding a composite density of 82%. 

Ortona et al.10 found that an initial CVI stage can prevent the swelling of the preform during the 

PIP stages. 

 

Two simple and rapid processes that have been shown to lead to a successful pre-impregnation 

in other, non-SiC fiber-based systems are vacuum bagging (VB) and electrophoretic 
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impregnation (EPI). VB is a relatively simple process that was developed by Rolls Royce in the 

1980s for the preparation and/or repair of polymer matrix carbon fiber composites in the 

aerospace industry26-28. This technique has subsequently been modified for the impregnation of 

ceramic powders between tows and layers of fiber-based fabrics in order to reduce the porosity 

and improve the green strength29. The fabric layers are individually coated with ceramic slurry 

and stacked, prior to being dried and consolidated under vacuum. Process parameters are 

mainly associated with the preparation of the slurry, which controls the particle size being used 

and the amount of powder to be impregnated, and the pressure involved during vacuum 

bagging. 

 

EPI is directly related the electrophoretic deposition process (EPD) wherein charged particles 

are deposited on an electrode surface via their migration under the action of an electrical field30. 

In the EPI process, a fiber preform is impregnated via the deposition of particles from a slurry 

onto individual cloth layers prior to assembly into the preform. The movement of ceramic 

particles in a suspension within an electric field is governed mainly by factors such as the field 

strength31, the pH of the suspension and its ionic strength32. The amount of polyelectrolyte 

addition also influences the rate of deposition and the homogeneity of the deposited material33. 

Green composite microstructures with good infiltration uniformity and few macro defects have 

been obtained by this technique34-35 and previous work with a SiCf/SiC system resulted an 

increase in density from 20 vol.% (the initial fiber preform density) to over 40 vol.% in only 20 

minutes36. 

 

In the present work, a methodical examination of the use of stand-alone VB and EPI techniques 

as well as their combination with a number of geometrical modifications has been undertaken 

with a view to producing SiC powder-loaded SiC fiber preforms that are suitable for subsequent 

infiltration with a SiC matrix using CVI. The goal was to fill the larger intertow pores, so reducing 
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the time that would be needed during a subsequent CVI stage, whilst avoiding the introduction of 

powder particles within the tows themselves. The particles can cause abrasion during use and 

damage the tows. In addition, it was desired to produce impregnated fiber preforms that were 

mechanically robust and capable of being handled prior to and during the CVI stage. 

 

II Experimental procedure 

(1) Materials 

The preforms were made from NL-202 SiC fibers (Nippon Carbon, Tokyo, Japan) woven (by 

Sigmatex Ltd., UK) into a 2D plain weave NP1616 pattern. Forty eight mm circular discs were 

cut from the cloth using a metal template and ceramic scissors. The sizing agent was removed 

by heating the fiber discs in a furnace at 600C for 2 h. Note, no attempt was made in this work 

to apply an interphase coating to the fibers prior to undertaking the impregnation with powder 

particles. This was because it was not believed that such a coating would materially affect the 

identification of the best choice of impregnation process, which was the goal of this work. For the 

impregnation experiments themselves, five SiC powders with mean particle sizes of 

approximately 0.6, 2.5, 6.7, 10.0 and 12.8 m were used; their details are provided in table 1. 

 

(2) SiC powder slurry preparation 

Three types of slurries were prepared. Slurry A was used during the impregnation of preforms by 

vacuum bagging (VB), whilst slurries B and C were used for electrophoretic impregnation (EPI) 

and gravitational settling (GS). 

Slurry A: Aqueous slurries containing solids loadings between 20 and 40 vol.% were prepared 

for all five of the SiC powders. The powders were dispersed using 1 to 1.5 wt.% of Glascol K11 

(Ciba Speciality Chemicals, Bradford, UK) and the pH was fixed at 9.0 ± 0.2 via the addition of 

ammonia solution. To eliminate powder agglomerates, the slurries were ball-milled in airtight 
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polyethylene bottles using zirconia media for 24 h, the viscosity being regularly monitored. Note 

that, although slurries with a solid loading higher than 45 vol.%, were prepared, problems were 

experienced with subsequent wetting of the fiber fabric and hence these slurries were discarded. 

Slurry B: Ethanol-based slurries containing solids loadings of 5 and 10 vol.% were prepared for 

four of the SiC powders, the powders being dispersed using 0.5 vol.% of triethylamine (Ciba 

Speciality Chemicals, Bradford, UK); the pH was 9.0 ± 0.2. The 12.8 m SiC powder was not 

used as it was found that particle migration was difficult to achieve at the voltages used. To 

remove powder agglomerates, during preparation the slurries were exposed to ultrasonic energy 

at 23 kHz (Soniprep 150 Ultrasonicator, MSE Scientific Instruments, Manchester, UK) for a 

minimum of 60 s together with mechanical agitation using a magnetic stirrer. 

Slurry C: An identical preparation route as for slurry B was used to prepare aqueous 

suspensions containing 5 vol.% of SiC powders for all five of the SiC powders, again with the 

addition of ~0.5 vol.% of triethylamine. The pH was again 9.0 ± 0.2. Ultrasonic energy and 

mechanical agitation was again used, as described for slurry B. 

 

(3) Vacuum bagging 

A small amount of slurry A was applied to the discs of SiC fabric using a nylon brush. Since the 

impregnation of the powder was performed manually, the VB technique potentially lacked 

repeatability with respect to the amount of powder deposited on each fabric layer. To minimise 

this problem each layer was weighed after brushing to ensure that a consistent amount had 

been deposited. Ten discs were then stacked and the layers compressed using a roller. Each 

preform was placed in the vacuum bagging equipment (Townsend & Mercer Ltd., Croydon, UK), 

Fig. 2a, and dried overnight at temperatures ranging from 20 to 60C, a rotary pump being used 

to apply a vacuum of ~0.5105 Pa. The combination of the pressure used and drying process 

meant that the stack of disks held together sufficiently for subsequent handling.  
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(4) Electrophoretic impregnation and gravitational settling 

Fig. 2b is a schematic diagram of the experimental arrangement used for the electrophoretic 

impregnation process. Initially, flat stainless steel plates were used as electrodes, Fig. 3a, 

placed vertically in the suspension 15 mm apart. The fiber preforms were attached to the anode 

since gas formed at the cathode that could have become trapped in the green compact. Two 

further electrode systems were devised following the initial results with the vertical electrodes, 

these being (i) vertical electrodes accommodating a rotating device for the anode, Fig. 3b, with 

speeds from 0 to 6 rpm and (ii) horizontal electrodes, Fig. 3c. The latter were also used without 

an electric field for comparative work involving the gravitational settling (GS) of particles. The 

authors are not aware of any previous work in terms of impregnating fiber preforms using simple 

gravitational settling; it was used simply to get a feel for how important the electrical field was. 

 

For each impregnation a fabric disc measuring 48 mm diameter was laid on top of the 

appropriate anode and a polypropylene (PP) mask the same size as the electrode clamped over 

it using plastic grips. The PP cover had a 40 mm internal diameter opening cut in it to allow 

impregnation to occur into the preform; it should be noted that this design prevented any 

deposition of SiC powder in the outer 4 mm of the preform. Electrophoretic impregnations were 

carried out by applying a potential difference ranging from 50 to 100 V in constant voltage mode 

using slurries B and C. Each fabric disc was processed and the anode wiped clean of slurry 

before the next disc was attached on top of the previous, wet disc. The whole process was 

performed as fast as possible and the stack of ten powder impregnated discs was then allowed 

to dry overnight at room temperature. For all of the EPI-based processes, the final drying stage 

provided some strength to the stack of disks but they needed very careful handling. 

 

For the gravitational settling (GS) process, the horizontal anode was used with no applied field. 

Each fabric disc was mounted on the anode as for the EPI process and held in place by the PP 
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cover. The slurry was stirred and, the moment the stirring stopped, the anode was plunged to 

the bottom of the beaker containing the suspension for a set period of time. The anode was then 

removed from the beaker and a fresh fabric disc placed in position on top of the wet one and the 

process repeated until a preform consisting of ten discs had been produced. Once again, the 

stack of discs produced needed very careful handling to prevent them delaminating. 

 

(5) Combined process 

Fabric discs were initially infiltrated with slurries B and C using the EPI and GS processes and 

then subsequently consolidated using the VB process as described previously. The use of the 

latter provided adequate strength to the stack for subsequent handling. 

 

(6) Characterisation 

Specimen diameters and thicknesses were measured using a vernier calliper gauge. The 

relative fiber volume, Vf, and relative powder volume, Vp, of the preforms (as a percentage of the 

total preform volume) were determined from the mass of the preform prior to powder 

impregnation, mf, and its mass after powder impregnation, ms, (from which the mass of powder 

impregnated, mp, could be calculated) and the actual volume of the preforms, Vs, the latter being 

calculated from its geometry: 

fs

f
f V

m
V

 
  100 (%) (1) 

SiCSiC     

)(

 s

p

s

fs
p V

m

V

mm
V 


  100 (%) (2) 

where f is the density of NL-202 Nicalon fiber (2.55 g cm-3) and SiC is the density of 

stoichiometric SiC (3.21 g cm-3). 
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Assessment of the efficiency of the different processes was achieved by calculating the void 

reduction: 

100)
100

)(100
1(.. 





f

pf

V

VV
RV  (%) (3) 

Scanning electron microscopy was used to study both the powder distribution across the sample 

and the level of impregnation into the intratow and intertow porosity. The use of secondary and 

backscattered electron imaging allowed the powder additions to be differentiated with clarity 

from the fibers. 

 

Dual energy X-ray absorptiometry (DEXA) also provided information on the powder distribution 

after impregnation. A Lunar DPX-L DEXA was calibrated for SiC materials11 and photon 

attenuation maps acquired which, particularly when artificially coloured, provided a clear, 

qualitative representation of density variations across the diameter of the specimens. 

 

Using Darcy’s law for laminar viscous flow in porous materials37, the gas permeability of the 

samples, K, was calculated by plotting the ratio of the pressure difference across the sample 

thickness against the airflow. This provided a rough measure of the permeability of the preforms, 

with a view to ensuring that a subsequent CVI process would be capable of occurring. The 

pressure drop, P, across the preforms (thickness L) was measured from the difference 

between the inlet and outlet pressure in a permeability rig similar to that described elsewhere38. 

The viscosity of the air was taken as air = 1.82710-5 Pa s. 

 

III Results & Discussion 

As indicated above, the primary aim of the impregnation experiments was to reduce the intertow 

porosity pore sizes of the preform, in order to shorten a subsequent chemical vapour infiltration 

process (not reported in this work), whilst ensuring that the preform has enough green strength 

Comment [JB1]: Equation corrected 
(extra pair of brackets inserted). 
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to allow handling and that the intratow porosity was accessible for infiltration. The distribution of 

the powder in the intertow and intratow porosity, as well as the uniformity of its distribution 

across the fiber preform, were therefore of key importance. 

 

Throughout the results, including Tables II – IV, the samples are identified by a code in which 

the first letter(s) is indicative of the impregnation system used; V for vacuum bagging, E for 

electrophoretic impregnation, G for gravitational settling, EV for combined electrophoretic 

impregnation and vacuum bagging and GV for combined gravitational settling and vacuum 

bagging. 

 

(1) Vacuum bagging 

The vacuum bagging results are shown in Table II and Fig. 4. As expected, it can be seen that 

the amount of powder impregnated into the preforms (indicated by the values of Vp) was mainly 

influenced by the solids loading of the slurry, rather than the particle size. Repeatability of the 

results were confirmed with similar samples displaying Vp values (and hence V.R. and relative 

density values) of 1%within ±1% variation. SEM analysis revealed that compaction of the layers 

occurred with the intertow porosity pores being reduced to typically 50-100 m wide (the 

uncompacted intertow pores were up to ~500 m wide). When the solids loading was 30 vol.% 

the particles systematically infiltrated these intertow voids leaving only a few, small regions 

unfilled, Fig. 5a. In contrast, when a 20% slurry was used very little intertow powder 

impregnation occurred, Fig. 5b, with just a little localised impregnation. For all solids contents, 

impregnation of the tows occurred for the 0.6 and 2.5 m particle sizes as the pressure and 

vacuum applied during vacuum bagging forced powder into the intratow voids, Figs. 5c and 5d. 

 

When the degree of impregnation of powder in the intertow pores was substantial, cracks 
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appeared during the drying process in the intertow regions, the cracks usually being parallel to 

the fabric layers, Fig. 5c. It is believed that these were caused by the shrinkage of the powder 

matrix within the large intertow pores as a result of drying, whilst the fiber architecture prevented 

the preform as a whole from shrinking. The effect was less pronounced when a larger particle 

size was used. 

 

DEXA characterisation on the green preforms provided very clear, if qualitative, information on 

the powder distribution across the samples, Fig. 6a. When high solids content suspensions were 

used less uniformly impregnated samples resulted, presumably as a result of the higher viscosity 

of these suspensions, which made them more difficult to brush uniformly across the fabric discs. 

Similarly, when the finer powders were used the particles may be seen to be mainly located 

around the edges of the preforms whilst the reverse was true for the larger particle sizes. This 

may be due to the applied pressure squeezing the finer powders outwards towards the edge of 

the preforms during the compaction stage. These results suggest that a more uniform 

distribution of the initial precursor suspension across the fabric discs and the use of intermediate 

particle sizes, in the range 5 – 8 m, are desirable to maximise the uniformity in the powder 

impregnation of the preforms. 

 

Whilst the gas permeability results in Table II showed relatively little variation as a function of 

particle size or solid loading for the samples measured, they do show that the introduction of 

powder reduced the permeability significantly, from 1610-12 m2 for a powderless preform11 to 

values of 1 – 210-12 m2. This suggests strongly that the powder blocks a significant fraction of 

the gas paths necessary for CVI. Subsequent work389, however, demonstrated that all of the 

preforms could be successfully infiltrated by CVI. 

 

Finally, it should be noted that whilst no mechanical test data was gathered for any of the 
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impregnated preforms produced in this work, those processed by VB were thinner, stronger, 

very handleable and less susceptible to delamination compared to the other methods. This is 

believed to result from the compression used under vacuum whilst the preform was still moist, 

the whole preform being strongly compacted. 

 

(2) Electrophoretic infiltration 

Vertical electrode: Due to settling of the powder in the suspension, it was not possible to 

achieve EPI successfully using vertical electrodes with powders coarser than 2.5 m; the results 

obtained using the finer powders for suspension B are shown in Table III and Fig. 7. Irrespective 

of the particle sizes used, there was a clear trend as a function of the product of voltage and 

time, Fig. 7, with increased deposition being achieved at higher voltages and longer times as 

expected. However, for a given product of voltage  time the 0.6 m particles resulted in greater 

powder deposition than the 2.5 m particles (provided all layers within the tow were 

impregnated), which in turn led to greater porosity reduction, Table III. In addition, the powder 

deposition rate decreased as processing time increased, compare for example, E/5/25-100/30 

and E/5/25-100/60 in Table III. This is also not surprising since the deposition rate is affected by 

the particle concentration in the suspension. This will decrease as deposition progresses, 

especially when the initial solids loading is low and the suspension is not stirred. Although the 

effect of stirring was briefly investigated, it was found that the gain in mass was reduced 

indicating that the movement of particles in the electric field was perturbed. 

 

SEM examination revealed that both sizes of powder deposited on the front surface of each 

fabric layer forming a continuous film covering the exposed surface, with very little SiC powder 

penetration within the fiber tows, Fig. 8a and 8b. As expected, the 0.6 m particles penetrated a 

little further than the 2.5 m particles, however higher voltages resulted in less penetration. 
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Although this is perhaps counter-intuitive, higher voltages will have resulted in the particles 

accumulating on the fabric surface more rapidly, consequently blocking the paths into the 

intratow porosity. Nevertheless, the powders were deposited with a high density in the intertow 

porosity, Fig. 8c, leaving relatively few unimpregnated regions after stacking the fabric layers to 

form the preforms, Fig. 8a. Despite this, the impregnated preforms were very weak and suffered 

delamination very easily, preventing gas permeabilities being measured. 

 

DEXA characterisation showed that the powder tended to form a ‘crown’ pattern around the 

centre, leaving the centre less impregnated than the periphery, Fig. 6b (the lack of deposition 

around the circumference arises from the presence of the polypropylene mask used to keep the 

fabric layer attached to the electrode). It is believed that this was caused by the lack of stirring 

during deposition resulting in sedimentation and hence preferential deposition at the bottom of 

each fabric layer attached to the electrode. Once randomly stacked up together, the ‘crown’ 

pattern was formed. 

 

Rotating electrode: Since stirring the slurry reduced mass deposition by disturbing the motion 

of the particles within the suspension, a rotating electrode approach was investigated to improve 

the uniformity of the powder distribution across the fabric area. Whilst very little variation in the 

mass of powder deposited was observed in the range 0 to 6 rpm, a rotation of 3 rpm was found 

to be the optimum speed based on the uniformity of the powder deposition. This electrode 

proved to be more tolerant of stirring of the suspension and very low stirring speeds were found 

to benefit the uniformity of deposition on the fabric surface without significantly affecting the 

amount of powder deposited. 

 

Horizontal electrode: The horizontal electrode arrangement enabled larger SiC particles to be 

deposited, indeed they benefited the process by adding a degree of gravitational settling and so, 
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as expected, the masses deposited were slightly more than for the vertical electrode, Fig. 9. 

They also resulted in less intratow penetration whilst continuing to achieve successful filling of 

the intertow porosity. The most even distributions across the fabric surface were observed to 

occur for deposition times of less than 90 s. 

 

When the horizontal electrode was used without the application of an electric field, i.e. pure 

gravitational settling (GS), the mass of powder deposited was approximately halved but the 

distribution of powder across the fabric surface was slightly more even and the intertow 

macrovoids were efficiently filled, irrespective of the slurry used. This is presumably because the 

slower deposition rate yielded a more uniform build up of powder.  

 

Throughout the work using EPI, the ethanol-based slurry B took less time to dry, but resulted in 

a greater degree of cracking and delamination of the preforms than the aqueous-based slurry C, 

presumably because of the faster rate of solvent movement. 

 

(3) Combined processes 

Table IV summarises the results obtained when powder was deposited on the fabric layers from 

slurry C by EPI, using the horizontal electrode arrangement and 50 V for 60 s, and then the 

resulting preforms were consolidated by VB. Very uniform powder deposition across the fabric 

layers was observed, Fig. 6c, with the intertow porosity densely filled but almost no penetration 

of the particles into the intratow porosity when the 6.7 and 10 m SiC particle sizes were used, 

Fig. 10. The major advantage observed for this technique was the ability to produce relatively 

strong and well compacted preforms from the VB stage of the process, with high densities as a 

result of the EPI process, but without the SiC particles filling the intratow voids when the coarser 

SiC particles were used. Despite the higher densities, the gas permeabilities were a factor of 3 – 

6 higher than for the VB route on its own supporting the view that the intratow gas channels, so 
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important for CVI, had not become blocked. 

 

Table IV also shows the results obtained when gravitational settling of the SiC particles was 

used to coat the fabric layers using the horizontal electrode but without any electric field and 

then the preforms were consolidated using the VB process. Once again, the powder distribution 

across the preform diameter was uniform, the intertow porosity was densely filled and the 

intratow porosity remained largely empty. Although the gas permeability was similar for the 

combined EPI/VB process for the aqueous slurry C, when the ethanol-based slurry B was used 

the value was approximately doubled to almost that of the unimpregnated preforms. 

 

IV Conclusions 

Both the VB and EPI processes led to the impregnation of SiC fabric preforms with SiC powders, 

although the distribution of the powder was significantly different in the two cases, affecting both 

the strength and gas permeability of the final preforms. With the VB process, the SiC powder 

was forced into the intratow porosity and only filled the intertow porosity if the solids content of 

the suspension was sufficiently high; the opposite of what was required. In addition, the process 

relied on the manual brushing of the suspension onto the fabric disks; a process that led to a 

degree of variability despite attempts to control it. Much more uniform, controllable and 

reproducible deposition was achieved with the EPI process, with the intertow porosity being filled 

particularly densely but relatively little penetration of the particles into the intratow porosity, 

particularly when larger SiC particles were used. To avoid non-uniform distribution of the 

particles across the SiC fabric layers, a horizontal electrode arrangement was developed. This 

actually yielded slightly superior preforms when the electric field was turned off and gravity alone 

used to achieve deposition, although the time required obviously increased. 

 

The main problem with the EPI process was that the resulting preforms were particularly weak 
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and delaminated easily during handling. In contrast, the VB-formed preforms were relatively 

strong. The combination of EPI using a horizontal electrode, with or without the electric field 

switched on, followed by VB yielded strong preforms with a high degree of powder loading but 

which also retained a high level of gas permeability, a major requirement for the subsequent CVI 

stage. 
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Captions 

 

Fig. 1: SEM images of SiCf/SiC composites processed by CVI (a) low magnification showing 

large intertow voids and (b) high magnification showing fine intratow porosity. 72 x 72 dpi 

 

Fig. 2: Schematic diagrams showing (a) the vacuum bagging equipment and (b) the 

electrophoretic impregnation system. 72 x 72 dpi 

 

Fig. 3: Design variations for the anode used for EPI of SiC powder from suspension onto SiC 

fabric layers. 72 x 72 dpi 

 

Fig. 4a: Reduction in porosity observed in the VB preforms as a function of the solids loading in 

the SiC slurries. 72 x 72 dpi 

 

Fig. 4b: Reduction in porosity observed in the VB preforms as a function of the particle size in 

the SiC slurries. 72 x 72 dpi 

 

Fig. 5: SEM cross sectional micrographs of preforms prepared by VB at two different 

magnifications (a) and (c) V/30/6, (b) and (d) V/20/6. 72 x 72 dpi 

 

Fig. 6: Colour enhanced ERA DEXA scans for samples prepared by a) VB, b) EPI using the 

vertical electrode and c) combined VB and EPI using the horizontal electrode. 72 x 72 dpi 

 

Fig. 7: Reduction in porosity versus (voltage×time) applied during the EPI process using the 

vertical electrode. 72 x 72 dpi 
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Fig. 8: Low and high magnification SEM images of cross sections of preforms formed by EPI (a) 

and (b) E/5/6-50/90† and (c) E/5/6-100/45. 72 x 72 dpi 

 

Fig. 9: Reduction in porosity versus deposition time for EPI using the vertical (V) and horizontal 

(H) electrodes and different SiC particle sizes. 72 x 72 dpi 

 

Fig. 10: Low and high magnification SEM images of cross sections of preforms formed by 

combined VB and EPI (a) and (b) EV/5/25-50/60; (c) and (d) EV/5/67-50/60 and (e) and (f) 

EV/5/100-50/60. 72 x 72 dpi 

 

 

 

Table I: Mean particle size and source of SiC particles used. 

 

Table II: Impregnation results achieved by the VB process. 

 

Table III: Impregnation results achieved by the EPI process. 

 

Table IV: Impregnation results achieved by the combined horizontal EPI and VB processes and 

the combined horizontal GS and VB processes. 
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Table I: Mean particle size and source of SiC particles used.  

 
 

Mean particle 
size / µm 

Source 

0.6 UF15, HC Starck, Goslar, Germany 

2.5 ESK1500F, ESK, Kempten, Germany 

6.7 Reliable Techniques, Newcastle-under-Lyme, UK 

10.0 
Carborex BW Micro F 600 PV, Washington Mills Electro Minerals, 
Manchester, UK 

12.8 
Silkaride CS F1200, Washington Mills Electro Minerals, 
Manchester, UK 

 
 
 
 
 
 
 

Table II: Impregnation results achieved by the VB process. 

Sample 
Slurry 
type 

Solid 
loading 

/ % 

Particle size 
/ m 

Vf 
/ % 

Vp 
/ % 

V.R. 
/ % 

Relative 
density 

/ % 

Gas 
permeability# 

/ 10-12 m2 

V/20/6 A 20 0.6 25 9 12 34 * 

V/20/25 A 20 2.5 23 6 10 29 * 

V/20/128 A 20 12.8 21 8 11 29 * 

V/30/6 A 30 0.6 35 15 23 50 * 

V/30/100 A 30 10.0 14 15 17 29 1.3 

V/35/6 A 35 0.6 21 18 23 39 2.0 

V/35/25 A 35 2.5 19 16 28 35 1.9 

V/35/67 A 35 6.7 16 19 23 35 1.8 

V/35/100 A 35 10.0 18 21 26 39 1.1 

V/40/100 A 40 10.0 16 21 25 37 1.0 
 

#1610-12 m2 for a powderless preform 
*Technique not available at the time 
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Table III: Impregnation results achieved by the EPI process. 
 

Sample 
Slurry 
type 

Solid 
loading 

/ % 

Particle 
size 
/ m 

Electrode 
type 

Voltage
/ V 

Time
/ s 

Vf 
/ % 

Vp 
/ % 

Void 
reduction

V.R. 
/ % 

Relative 
density / 

% 

E/5/6-50/45† B 5 0.6 Vertical 50 45 21 7 9 28 

E/5/6-50/60 B 5 0.6 Vertical 50 60 17 15 18 32 

E/5/6-50/90 B 5 0.6 Vertical 50 90 16 18 21 34 

E/5/6-50/90† B 5 0.6 Vertical 50 90 22 12 15 34 

E/5/6-100/45 B 5 0.6 Vertical 100 45 20 19 24 39 

E/5/25-50/60 B 5 2.5 Vertical 50 60 20 11 14 31 

E/5/25-100/30 B 5 2.5 Vertical 100 30 22 13 17 35 

E/5/25-100/60 B 5 2.5 Vertical 100 60 19 21 26 40 

E/10/25-50/60 B 10 2.5 Vertical 50 60 18 26 32 44 

E/5/25-50/60 B 5 2.5 Horizontal 50 60 18 12 15 30 
 
† Alternate layers impregnated 

 
 
 
 

Table IV: Impregnation results achieved by the combined horizontal EPI and VB processes and 
the combined horizontal GS and VB processes. 

 

Sample 
Slurry 
type 

Solid 
loading 

/ % 

Particle 
size / 
m 

Vf 
/ % 

Vp 
/ % 

Void 
reductionV.R.

/ % 

Relative 
density 

/ % 

Gas 
permeability 

/ 10-12 m2 

EV/5/25-50/60 C 5 2.5 18 17 21 35 6.9 

EV/5/67-50/60 C 5 6.7 21 18 23 39 6.8 
EV/5/100-

50/60 
C 5 10 21 19 24 40 6.3 

GV/5/67-B B 5 6.7 17 19 23 36 12.8 

GV/5/67-C C 5 6.7 19 22 27 41 6.8 

GV/5/100-B B 5 10 21 20 25 41 10.6 

GV/5/100-C C 5 10 20 20 25 40 6.0 
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Use of Electrophoretic Impregnation and Vacuum Bagging to Impregnate SiC powder into 

SiC Fiber Preforms 

 

Jon Binner*, Bala Vaidhyanathan, David Jaglin and Sarah Needham† 

 

Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU, 

United Kingdom 

 

Abstract 

Techniques based on vacuum bagging (VB) and electrophoretic impregnation (EPI) have been 

investigated for the impregnation of SiC powder into layered Nicalon SiC fabric preforms. The 

aim was to produce pre-impregnated samples for subsequent chemical vapour infiltration (CVI) 

with reduced intertow porosity that arises from the construction of the fabric layers whilst leaving 

unblocked the intratow porosity that is so indispensable for a successful infiltration. Since the 

goal was simply to learn about the ability to impregnate the samples, no interphase coating was 

applied to the fibers as would normally be used when producing SiCf-SiC composites. Whilst the 

VB process generally yielded much stronger preforms, depending on the pressure used and the 

powder particle size, it resulted in powder becoming located in the intratow rather than the 

intertow porosity. In contrast, provided an appropriate electrode arrangement was used, EPI 

offered the potential for a more controlled impregnation process with the powder primarily found 

in the intertow porosity; however, the preforms were very weak and delaminated easily. The 

combination of the two processes resulted in a very successful approach, with greater uniformity 

of particle infiltration and higher green strengths, whilst largely avoiding impregnating the 

intratow porosity. 

                                                 
* J.binner@Lboro.ac.uk 
† Now with Rolls Royce plc., UK 
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I Introduction 

SiCf/SiC composites are very promising materials for high temperature structural applications 

because of their good thermal stability and excellent mechanical properties. Of the various 

techniques used to produce fiber reinforced ceramic matrix composites, chemical vapour 

infiltration (CVI) has received considerable attention1-2. Combining isothermal or temperature 

gradient, isobaric or pressure gradient features, as well as the use of pulsing, CVI results in 

composites still containing 10 - 20% residual porosity3-6 however. This is mainly due to two 

reasons: (i) when the minimum percolation threshold for transport through the pore structure is 

reached, infiltration becomes more and more difficult as the pore size decreases resulting in 

deposition occurring on the outside of the fiber network, and (ii) when the composite reaches a 

fractional density of ~70% the surface area becomes dominated by the macropores; these can 

take too long to infiltrate from a commercial viewpoint. It is the last 30% of densification that is 

financially costly because the infiltration time becomes extended (to days and even weeks in 

some cases) during this phase7 and to produce fiber-reinforced ceramic matrix composites 

(FRCMCs) by any form of CVI at a commercially acceptable cost, the processing time must be 

kept short8. 

 

As implied above, the porosity itself can be divided into two main types; fine intratow and much 

larger intertow porosity. In fibrous preforms densified up to 82% of theoretical9, the lamination of 

the plies combined with the weave design can result in intertow pores being as large as 0.3 to 

0.6 mm in width and tens of millimetres long. There is also the problem of the packing of the 

fabric layer in the Z-direction10. Fig. 1a11 provides an illustration of this type of porosity, which is 

the most harmful type of defect for mechanical properties as well as providing a path for 

corrosive agents. When present, these pores are very difficult to eliminate in fiber preforms 

produced from the lay-up of fiber sheets. In contrast, intratow pores are typically <15 m in 

diameter and are formed when the matrix deposition on the individual fibers traps small pores, 
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Fig. 1b. Whilst some will probably always be residual after CVI-based processes, they are not 

considered to be particularly detrimental to the overall strength of the composite due to their 

small size9. Nevertheless, the elimination of this porosity by the use of the right infiltration 

conditions would also undoubtedly be desirable – provided it can be achieved without a 

significant increase in processing time and hence costs. 

 

Two-stage CVI processes have therefore been investigated where, under the right conditions, 

the initial stage sees the efficient filling of the finer, intratow porosity and the second stage seeks 

to fill as much of the coarser, intertow pores as possible within the economic limitations of the 

process12-13. For example, using marker layers, Lackey et al.14 found that when using forced-flow 

CVI, intratow infiltration could be virtually complete within the first 2 h, although filling the intertow 

porosity took considerably longer. One potential problem with this approach is that some 

intertow porosity can become trapped in the structure when the intratow porosity becomes filled. 

 

Although not the focus of this paper, many other techniques are available for the fabrication of 

FRCMCs as well as CVI. For example, hot-pressing techniques have been used15 in which the 

stacked green body was hot-pressed at up to 2023 K with a matrix consisting of -SiC powder 

and sintering aids. Unfortunately, the composite displayed brittle behaviour even though Hi-

Nicalon fibers were used. An approach based on slurry-cast melt infiltration with reaction-

sintering16-18 used a slurry consisting of SiC powder or a mixture of SiC powder and carbon 

powder in water that was impregnated into the SiC fiber preform. The green composite was then 

reaction sintered at 1720 K with melted silicon to obtain a rich SiC matrix. Disadvantages lay in 

the need for a designed mould and residual silicon metal as high as 15-20 vol.%, despite the low 

porosity achieved. 

 

An alternative approach can be based on the pre-impregnation of the macropores by a process 

Page 29 of 63

International Journal of Applied Ceramic Technology

International Journal of Applied Ceramic Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 4

other than CVI and polymer impregnation and pyrolysis (PIP) processes are very common and 

effective manufacturing techniques for high performance SiCf/SiC composites19-24. Six or more 

cycles of impregnations, followed by the pyrolysis, are typically required to achieve densities of 

80-85%. An important aspect of the process is that the matrix development affects the 

mechanical properties by inducing residual stresses due to shrinkage of the matrix during 

pyrolysis and also the anisotropy of the thermal expansion coefficient between the fibers and 

matrix25. 

 

The introduction of powder into the PIP was investigated by Gonon and Hampshire21 who used 

polysilazane as precursor with the addition of Si3N4 powder into SiC fiber preforms; 7 to 8 cycles 

of precursor impregnation and pyrolysis were required to reduce the porosity to approximately 

15%, but the presence of powder did not allow good cross-linking of the precursor and resulted 

in lower mechanical properties than the composite with the polymer alone, a result confirmed by 

Casadio23. Gotoh et al.20 also pointed out that optimisation of the mechanical properties relies on 

the right volume of fiber and sintering aids. Fast heating techniques such as microwaves can be 

applied during the pyrolysis stage, providing time and energy savings since suitably high 

temperatures can be induced in a matter of minutes. Dong and co-authors24 used this particular 

technique but required 8 cycles of impregnation to achieve a final density of 78%. 

 

Combining PIP with CVI allowed Kim et al.22 to achieve an initial preform density of up to 70% 

after PIP, the subsequent isobaric, isothermal CVI step yielding a composite density of 82%. 

Ortona et al.10 found that an initial CVI stage can prevent the swelling of the preform during the 

PIP stages. 

 

Two simple and rapid processes that have been shown to lead to a successful pre-impregnation 

in other, non-SiC fiber-based systems are vacuum bagging (VB) and electrophoretic 
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impregnation (EPI). VB is a relatively simple process that was developed by Rolls Royce in the 

1980s for the preparation and/or repair of polymer matrix carbon fiber composites in the 

aerospace industry26-28. This technique has subsequently been modified for the impregnation of 

ceramic powders between tows and layers of fiber-based fabrics in order to reduce the porosity 

and improve the green strength29. The fabric layers are individually coated with ceramic slurry 

and stacked, prior to being dried and consolidated under vacuum. Process parameters are 

mainly associated with the preparation of the slurry, which controls the particle size being used 

and the amount of powder to be impregnated, and the pressure involved during vacuum 

bagging. 

 

EPI is directly related the electrophoretic deposition process (EPD) wherein charged particles 

are deposited on an electrode surface via their migration under the action of an electrical field30. 

In the EPI process, a fiber preform is impregnated via the deposition of particles from a slurry 

onto individual cloth layers prior to assembly into the preform. The movement of ceramic 

particles in a suspension within an electric field is governed mainly by factors such as the field 

strength31, the pH of the suspension and its ionic strength32. The amount of polyelectrolyte 

addition also influences the rate of deposition and the homogeneity of the deposited material33. 

Green composite microstructures with good infiltration uniformity and few macro defects have 

been obtained by this technique34-35 and previous work with a SiCf/SiC system resulted an 

increase in density from 20 vol.% (the initial fiber preform density) to over 40 vol.% in only 20 

minutes36. 

 

In the present work, a methodical examination of the use of stand-alone VB and EPI techniques 

as well as their combination with a number of geometrical modifications has been undertaken 

with a view to producing SiC powder-loaded SiC fiber preforms that are suitable for subsequent 

infiltration with a SiC matrix using CVI. The goal was to fill the larger intertow pores, so reducing 
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the time that would be needed during a subsequent CVI stage, whilst avoiding the introduction of 

powder particles within the tows themselves. The particles can cause abrasion during use and 

damage the tows. In addition, it was desired to produce impregnated fiber preforms that were 

mechanically robust and capable of being handled prior to and during the CVI stage. 

 

II Experimental procedure 

(1) Materials 

The preforms were made from NL-202 SiC fibers (Nippon Carbon, Tokyo, Japan) woven (by 

Sigmatex Ltd., UK) into a 2D plain weave NP1616 pattern. Forty eight mm circular discs were 

cut from the cloth using a metal template and ceramic scissors. The sizing agent was removed 

by heating the fiber discs in a furnace at 600C for 2 h. Note, no attempt was made in this work 

to apply an interphase coating to the fibers prior to undertaking the impregnation with powder 

particles. This was because it was not believed that such a coating would materially affect the 

identification of the best choice of impregnation process, which was the goal of this work. For the 

impregnation experiments themselves, five SiC powders with mean particle sizes of 

approximately 0.6, 2.5, 6.7, 10.0 and 12.8 m were used; their details are provided in table 1. 

 

(2) SiC powder slurry preparation 

Three types of slurries were prepared. Slurry A was used during the impregnation of preforms by 

vacuum bagging (VB), whilst slurries B and C were used for electrophoretic impregnation (EPI) 

and gravitational settling (GS). 

Slurry A: Aqueous slurries containing solids loadings between 20 and 40 vol.% were prepared 

for all five of the SiC powders. The powders were dispersed using 1 to 1.5 wt.% of Glascol K11 

(Ciba Speciality Chemicals, Bradford, UK) and the pH was fixed at 9.0 ± 0.2 via the addition of 

ammonia solution. To eliminate powder agglomerates, the slurries were ball-milled in airtight 
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polyethylene bottles using zirconia media for 24 h, the viscosity being regularly monitored. Note 

that, although slurries with a solid loading higher than 45 vol.%, were prepared, problems were 

experienced with subsequent wetting of the fiber fabric and hence these slurries were discarded. 

Slurry B: Ethanol-based slurries containing solids loadings of 5 and 10 vol.% were prepared for 

four of the SiC powders, the powders being dispersed using 0.5 vol.% of triethylamine (Ciba 

Speciality Chemicals, Bradford, UK); the pH was 9.0 ± 0.2. The 12.8 m SiC powder was not 

used as it was found that particle migration was difficult to achieve at the voltages used. To 

remove powder agglomerates, during preparation the slurries were exposed to ultrasonic energy 

at 23 kHz (Soniprep 150 Ultrasonicator, MSE Scientific Instruments, Manchester, UK) for a 

minimum of 60 s together with mechanical agitation using a magnetic stirrer. 

Slurry C: An identical preparation route as for slurry B was used to prepare aqueous 

suspensions containing 5 vol.% of SiC powders for all five of the SiC powders, again with the 

addition of ~0.5 vol.% of triethylamine. The pH was again 9.0 ± 0.2. Ultrasonic energy and 

mechanical agitation was again used, as described for slurry B. 

 

(3) Vacuum bagging 

A small amount of slurry A was applied to the discs of SiC fabric using a nylon brush. Since the 

impregnation of the powder was performed manually, the VB technique potentially lacked 

repeatability with respect to the amount of powder deposited on each fabric layer. To minimise 

this problem each layer was weighed after brushing to ensure that a consistent amount had 

been deposited. Ten discs were then stacked and the layers compressed using a roller. Each 

preform was placed in the vacuum bagging equipment (Townsend & Mercer Ltd., Croydon, UK), 

Fig. 2a, and dried overnight at temperatures ranging from 20 to 60C, a rotary pump being used 

to apply a vacuum of ~0.5105 Pa. The combination of the pressure used and drying process 

meant that the stack of disks held together sufficiently for subsequent handling.  
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(4) Electrophoretic impregnation and gravitational settling 

Fig. 2b is a schematic diagram of the experimental arrangement used for the electrophoretic 

impregnation process. Initially, flat stainless steel plates were used as electrodes, Fig. 3a, 

placed vertically in the suspension 15 mm apart. The fiber preforms were attached to the anode 

since gas formed at the cathode that could have become trapped in the green compact. Two 

further electrode systems were devised following the initial results with the vertical electrodes, 

these being (i) vertical electrodes accommodating a rotating device for the anode, Fig. 3b, with 

speeds from 0 to 6 rpm and (ii) horizontal electrodes, Fig. 3c. The latter were also used without 

an electric field for comparative work involving the gravitational settling (GS) of particles. The 

authors are not aware of any previous work in terms of impregnating fiber preforms using simple 

gravitational settling; it was used simply to get a feel for how important the electrical field was. 

 

For each impregnation a fabric disc measuring 48 mm diameter was laid on top of the 

appropriate anode and a polypropylene (PP) mask the same size as the electrode clamped over 

it using plastic grips. The PP cover had a 40 mm internal diameter opening cut in it to allow 

impregnation to occur into the preform; it should be noted that this design prevented any 

deposition of SiC powder in the outer 4 mm of the preform. Electrophoretic impregnations were 

carried out by applying a potential difference ranging from 50 to 100 V in constant voltage mode 

using slurries B and C. Each fabric disc was processed and the anode wiped clean of slurry 

before the next disc was attached on top of the previous, wet disc. The whole process was 

performed as fast as possible and the stack of ten powder impregnated discs was then allowed 

to dry overnight at room temperature. For all of the EPI-based processes, the final drying stage 

provided some strength to the stack of disks but they needed very careful handling. 

 

For the gravitational settling (GS) process, the horizontal anode was used with no applied field. 

Each fabric disc was mounted on the anode as for the EPI process and held in place by the PP 
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cover. The slurry was stirred and, the moment the stirring stopped, the anode was plunged to 

the bottom of the beaker containing the suspension for a set period of time. The anode was then 

removed from the beaker and a fresh fabric disc placed in position on top of the wet one and the 

process repeated until a preform consisting of ten discs had been produced. Once again, the 

stack of discs produced needed very careful handling to prevent them delaminating. 

 

(5) Combined process 

Fabric discs were initially infiltrated with slurries B and C using the EPI and GS processes and 

then subsequently consolidated using the VB process as described previously. The use of the 

latter provided adequate strength to the stack for subsequent handling. 

 

(6) Characterisation 

Specimen diameters and thicknesses were measured using a vernier calliper gauge. The 

relative fiber volume, Vf, and relative powder volume, Vp, of the preforms (as a percentage of the 

total preform volume) were determined from the mass of the preform prior to powder 

impregnation, mf, and its mass after powder impregnation, ms, (from which the mass of powder 

impregnated, mp, could be calculated) and the actual volume of the preforms, Vs, the latter being 

calculated from its geometry: 

fs

f
f V

m
V

 
  100 (%) (1) 

SiCSiC     

)(

 s

p

s

fs
p V

m

V

mm
V 


  100 (%) (2) 

where f is the density of NL-202 Nicalon fiber (2.55 g cm-3) and SiC is the density of 

stoichiometric SiC (3.21 g cm-3). 
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Assessment of the efficiency of the different processes was achieved by calculating the void 

reduction: 

100)
100

)(100
1(.. 






f

pf

V

VV
RV  (%) (3) 

Scanning electron microscopy was used to study both the powder distribution across the sample 

and the level of impregnation into the intratow and intertow porosity. The use of secondary and 

backscattered electron imaging allowed the powder additions to be differentiated with clarity 

from the fibers. 

 

Dual energy X-ray absorptiometry (DEXA) also provided information on the powder distribution 

after impregnation. A Lunar DPX-L DEXA was calibrated for SiC materials11 and photon 

attenuation maps acquired which, particularly when artificially coloured, provided a clear, 

qualitative representation of density variations across the diameter of the specimens. 

 

Using Darcy’s law for laminar viscous flow in porous materials37, the gas permeability of the 

samples, K, was calculated by plotting the ratio of the pressure difference across the sample 

thickness against the airflow. This provided a rough measure of the permeability of the preforms, 

with a view to ensuring that a subsequent CVI process would be capable of occurring. The 

pressure drop, P, across the preforms (thickness L) was measured from the difference 

between the inlet and outlet pressure in a permeability rig similar to that described elsewhere38. 

The viscosity of the air was taken as air = 1.82710-5 Pa s. 

 

III Results & Discussion 

As indicated above, the primary aim of the impregnation experiments was to reduce the intertow 

pore sizes of the preform, in order to shorten a subsequent chemical vapour infiltration process 

(not reported in this work), whilst ensuring that the preform has enough green strength to allow 
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handling and that the intratow porosity was accessible for infiltration. The distribution of the 

powder in the intertow and intratow porosity, as well as the uniformity of its distribution across 

the fiber preform, were therefore of key importance. 

 

Throughout the results, including Tables II – IV, the samples are identified by a code in which 

the first letter(s) is indicative of the impregnation system used; V for vacuum bagging, E for 

electrophoretic impregnation, G for gravitational settling, EV for combined electrophoretic 

impregnation and vacuum bagging and GV for combined gravitational settling and vacuum 

bagging. 

 

(1) Vacuum bagging 

The vacuum bagging results are shown in Table II and Fig. 4. As expected, it can be seen that 

the amount of powder impregnated into the preforms (indicated by the values of Vp) was mainly 

influenced by the solids loading of the slurry, rather than the particle size. Repeatability of the 

results were confirmed with similar samples displaying Vp values (and hence V.R. and relative 

density values)within ±1% variation. SEM analysis revealed that compaction of the layers 

occurred with the intertow pores being reduced to typically 50-100 m wide (the uncompacted 

intertow pores were up to ~500 m wide). When the solids loading was 30 vol.% the particles 

systematically infiltrated these intertow voids leaving only a few, small regions unfilled, Fig. 5a. 

In contrast, when a 20% slurry was used very little intertow powder impregnation occurred, 

Fig. 5b, with just a little localised impregnation. For all solids contents, impregnation of the tows 

occurred for the 0.6 and 2.5 m particle sizes as the pressure and vacuum applied during 

vacuum bagging forced powder into the intratow voids, Figs. 5c and 5d. 

 

When the degree of impregnation of powder in the intertow pores was substantial, cracks 

appeared during the drying process in the intertow regions, the cracks usually being parallel to 
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the fabric layers, Fig. 5c. It is believed that these were caused by the shrinkage of the powder 

matrix within the large intertow pores as a result of drying, whilst the fiber architecture prevented 

the preform as a whole from shrinking. The effect was less pronounced when a larger particle 

size was used. 

 

DEXA characterisation on the green preforms provided very clear, if qualitative, information on 

the powder distribution across the samples, Fig. 6a. When high solids content suspensions were 

used less uniformly impregnated samples resulted, presumably as a result of the higher viscosity 

of these suspensions, which made them more difficult to brush uniformly across the fabric discs. 

Similarly, when the finer powders were used the particles may be seen to be mainly located 

around the edges of the preforms whilst the reverse was true for the larger particle sizes. This 

may be due to the applied pressure squeezing the finer powders outwards towards the edge of 

the preforms during the compaction stage. These results suggest that a more uniform 

distribution of the initial precursor suspension across the fabric discs and the use of intermediate 

particle sizes, in the range 5 – 8 m, are desirable to maximise the uniformity in the powder 

impregnation of the preforms. 

 

Whilst the gas permeability results in Table II showed relatively little variation as a function of 

particle size or solid loading for the samples measured, they do show that the introduction of 

powder reduced the permeability significantly, from 1610-12 m2 for a powderless preform11 to 

values of 1 – 210-12 m2. This suggests strongly that the powder blocks a significant fraction of 

the gas paths necessary for CVI. Subsequent work39, however, demonstrated that all of the 

preforms could be successfully infiltrated by CVI. 

 

Finally, it should be noted that whilst no mechanical test data was gathered for any of the 

impregnated preforms produced in this work, those processed by VB were thinner, stronger, 
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very handleable and less susceptible to delamination compared to the other methods. This is 

believed to result from the compression used under vacuum whilst the preform was still moist, 

the whole preform being strongly compacted. 

 

(2) Electrophoretic infiltration 

Vertical electrode: Due to settling of the powder in the suspension, it was not possible to 

achieve EPI successfully using vertical electrodes with powders coarser than 2.5 m; the results 

obtained using the finer powders for suspension B are shown in Table III and Fig. 7. Irrespective 

of the particle sizes used, there was a clear trend as a function of the product of voltage and 

time, Fig. 7, with increased deposition being achieved at higher voltages and longer times as 

expected. However, for a given product of voltage  time the 0.6 m particles resulted in greater 

powder deposition than the 2.5 m particles (provided all layers within the tow were 

impregnated), which in turn led to greater porosity reduction, Table III. In addition, the powder 

deposition rate decreased as processing time increased, compare for example, E/5/25-100/30 

and E/5/25-100/60 in Table III. This is also not surprising since the deposition rate is affected by 

the particle concentration in the suspension. This will decrease as deposition progresses, 

especially when the initial solids loading is low and the suspension is not stirred. Although the 

effect of stirring was briefly investigated, it was found that the gain in mass was reduced 

indicating that the movement of particles in the electric field was perturbed. 

 

SEM examination revealed that both sizes of powder deposited on the front surface of each 

fabric layer forming a continuous film covering the exposed surface, with very little SiC powder 

penetration within the fiber tows, Fig. 8a and 8b. As expected, the 0.6 m particles penetrated a 

little further than the 2.5 m particles, however higher voltages resulted in less penetration. 

Although this is perhaps counter-intuitive, higher voltages will have resulted in the particles 
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accumulating on the fabric surface more rapidly, consequently blocking the paths into the 

intratow porosity. Nevertheless, the powders were deposited with a high density in the intertow 

porosity, Fig. 8c, leaving relatively few unimpregnated regions after stacking the fabric layers to 

form the preforms, Fig. 8a. Despite this, the impregnated preforms were very weak and suffered 

delamination very easily, preventing gas permeabilities being measured. 

 

DEXA characterisation showed that the powder tended to form a ‘crown’ pattern around the 

centre, leaving the centre less impregnated than the periphery, Fig. 6b (the lack of deposition 

around the circumference arises from the presence of the polypropylene mask used to keep the 

fabric layer attached to the electrode). It is believed that this was caused by the lack of stirring 

during deposition resulting in sedimentation and hence preferential deposition at the bottom of 

each fabric layer attached to the electrode. Once randomly stacked up together, the ‘crown’ 

pattern was formed. 

 

Rotating electrode: Since stirring the slurry reduced mass deposition by disturbing the motion 

of the particles within the suspension, a rotating electrode approach was investigated to improve 

the uniformity of the powder distribution across the fabric area. Whilst very little variation in the 

mass of powder deposited was observed in the range 0 to 6 rpm, a rotation of 3 rpm was found 

to be the optimum speed based on the uniformity of the powder deposition. This electrode 

proved to be more tolerant of stirring of the suspension and very low stirring speeds were found 

to benefit the uniformity of deposition on the fabric surface without significantly affecting the 

amount of powder deposited. 

 

Horizontal electrode: The horizontal electrode arrangement enabled larger SiC particles to be 

deposited, indeed they benefited the process by adding a degree of gravitational settling and so, 

as expected, the masses deposited were slightly more than for the vertical electrode, Fig. 9. 
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They also resulted in less intratow penetration whilst continuing to achieve successful filling of 

the intertow porosity. The most even distributions across the fabric surface were observed to 

occur for deposition times of less than 90 s. 

 

When the horizontal electrode was used without the application of an electric field, i.e. pure 

gravitational settling (GS), the mass of powder deposited was approximately halved but the 

distribution of powder across the fabric surface was slightly more even and the intertow 

macrovoids were efficiently filled, irrespective of the slurry used. This is presumably because the 

slower deposition rate yielded a more uniform build up of powder.  

 

Throughout the work using EPI, the ethanol-based slurry B took less time to dry, but resulted in 

a greater degree of cracking and delamination of the preforms than the aqueous-based slurry C, 

presumably because of the faster rate of solvent movement. 

 

(3) Combined processes 

Table IV summarises the results obtained when powder was deposited on the fabric layers from 

slurry C by EPI, using the horizontal electrode arrangement and 50 V for 60 s, and then the 

resulting preforms were consolidated by VB. Very uniform powder deposition across the fabric 

layers was observed, Fig. 6c, with the intertow porosity densely filled but almost no penetration 

of the particles into the intratow porosity when the 6.7 and 10 m SiC particle sizes were used, 

Fig. 10. The major advantage observed for this technique was the ability to produce relatively 

strong and well compacted preforms from the VB stage of the process, with high densities as a 

result of the EPI process, but without the SiC particles filling the intratow voids when the coarser 

SiC particles were used. Despite the higher densities, the gas permeabilities were a factor of 3 – 

6 higher than for the VB route on its own supporting the view that the intratow gas channels, so 

important for CVI, had not become blocked. 
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Table IV also shows the results obtained when gravitational settling of the SiC particles was 

used to coat the fabric layers using the horizontal electrode but without any electric field and 

then the preforms were consolidated using the VB process. Once again, the powder distribution 

across the preform diameter was uniform, the intertow porosity was densely filled and the 

intratow porosity remained largely empty. Although the gas permeability was similar for the 

combined EPI/VB process for the aqueous slurry C, when the ethanol-based slurry B was used 

the value was approximately doubled to almost that of the unimpregnated preforms. 

 

IV Conclusions 

Both the VB and EPI processes led to the impregnation of SiC fabric preforms with SiC powders, 

although the distribution of the powder was significantly different in the two cases, affecting both 

the strength and gas permeability of the final preforms. With the VB process, the SiC powder 

was forced into the intratow porosity and only filled the intertow porosity if the solids content of 

the suspension was sufficiently high; the opposite of what was required. In addition, the process 

relied on the manual brushing of the suspension onto the fabric disks; a process that led to a 

degree of variability despite attempts to control it. Much more uniform, controllable and 

reproducible deposition was achieved with the EPI process, with the intertow porosity being filled 

particularly densely but relatively little penetration of the particles into the intratow porosity, 

particularly when larger SiC particles were used. To avoid non-uniform distribution of the 

particles across the SiC fabric layers, a horizontal electrode arrangement was developed. This 

actually yielded slightly superior preforms when the electric field was turned off and gravity alone 

used to achieve deposition, although the time required obviously increased. 

 

The main problem with the EPI process was that the resulting preforms were particularly weak 

and delaminated easily during handling. In contrast, the VB-formed preforms were relatively 
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strong. The combination of EPI using a horizontal electrode, with or without the electric field 

switched on, followed by VB yielded strong preforms with a high degree of powder loading but 

which also retained a high level of gas permeability, a major requirement for the subsequent CVI 

stage. 
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Captions 

 

Fig. 1: SEM images of SiCf/SiC composites processed by CVI (a) low magnification showing 

large intertow voids and (b) high magnification showing fine intratow porosity. 72 x 72 dpi 

 

Fig. 2: Schematic diagrams showing (a) the vacuum bagging equipment and (b) the 

electrophoretic impregnation system. 72 x 72 dpi 

 

Fig. 3: Design variations for the anode used for EPI of SiC powder from suspension onto SiC 

fabric layers. 72 x 72 dpi 

 

Fig. 4a: Reduction in porosity observed in the VB preforms as a function of the solids loading in 

the SiC slurries. 72 x 72 dpi 

 

Fig. 4b: Reduction in porosity observed in the VB preforms as a function of the particle size in 

the SiC slurries. 72 x 72 dpi 

 

Fig. 5: SEM cross sectional micrographs of preforms prepared by VB at two different 

magnifications (a) and (c) V/30/6, (b) and (d) V/20/6. 72 x 72 dpi 

 

Fig. 6: Colour enhanced DEXA scans for samples prepared by a) VB, b) EPI using the vertical 

electrode and c) combined VB and EPI using the horizontal electrode. 72 x 72 dpi 

 

Fig. 7: Reduction in porosity versus (voltage×time) applied during the EPI process using the 

vertical electrode. 72 x 72 dpi 
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Fig. 8: Low and high magnification SEM images of cross sections of preforms formed by EPI (a) 

and (b) E/5/6-50/90† and (c) E/5/6-100/45. 72 x 72 dpi 

 

Fig. 9: Reduction in porosity versus deposition time for EPI using the vertical (V) and horizontal 

(H) electrodes and different SiC particle sizes. 72 x 72 dpi 

 

Fig. 10: Low and high magnification SEM images of cross sections of preforms formed by 

combined VB and EPI (a) and (b) EV/5/25-50/60; (c) and (d) EV/5/67-50/60 and (e) and (f) 

EV/5/100-50/60. 72 x 72 dpi 

 

 

 

Table I: Mean particle size and source of SiC particles used. 

 

Table II: Impregnation results achieved by the VB process. 

 

Table III: Impregnation results achieved by the EPI process. 

 

Table IV: Impregnation results achieved by the combined horizontal EPI and VB processes and 

the combined horizontal GS and VB processes. 
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Table I: Mean particle size and source of SiC particles used.  

 
 

Mean particle 
size / µm 

Source 

0.6 UF15, HC Starck, Goslar, Germany 

2.5 ESK1500F, ESK, Kempten, Germany 

6.7 Reliable Techniques, Newcastle-under-Lyme, UK 

10.0 
Carborex BW Micro F 600 PV, Washington Mills Electro Minerals, 
Manchester, UK 

12.8 
Silkaride CS F1200, Washington Mills Electro Minerals, 
Manchester, UK 

 
 
 
 
 
 
 

Table II: Impregnation results achieved by the VB process. 

Sample 
Slurry 
type 

Solid 
loading 

/ % 

Particle size
/ m 

Vf 
/ % 

Vp 
/ % 

V.R. 
/ % 

Relative 
density 

/ % 

Gas 
permeability#

/ 10-12 m2 

V/20/6 A 20 0.6 25 9 12 34 * 

V/20/25 A 20 2.5 23 6 10 29 * 

V/20/128 A 20 12.8 21 8 11 29 * 

V/30/6 A 30 0.6 35 15 23 50 * 

V/30/100 A 30 10.0 14 15 17 29 1.3 

V/35/6 A 35 0.6 21 18 23 39 2.0 

V/35/25 A 35 2.5 19 16 28 35 1.9 

V/35/67 A 35 6.7 16 19 23 35 1.8 

V/35/100 A 35 10.0 18 21 26 39 1.1 

V/40/100 A 40 10.0 16 21 25 37 1.0 
 

#1610-12 m2 for a powderless preform 
*Technique not available at the time 
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Table III: Impregnation results achieved by the EPI process. 
 

Sample 
Slurry 
type 

Solid 
loading 

/ % 

Particle 
size 
/ m 

Electrode 
type 

Voltage
/ V 

Time
/ s 

Vf 
/ % 

Vp 
/ % 

V.R. 
/ % 

Relative 
density / 

% 

E/5/6-50/45† B 5 0.6 Vertical 50 45 21 7 9 28 

E/5/6-50/60 B 5 0.6 Vertical 50 60 17 15 18 32 

E/5/6-50/90 B 5 0.6 Vertical 50 90 16 18 21 34 

E/5/6-50/90† B 5 0.6 Vertical 50 90 22 12 15 34 

E/5/6-100/45 B 5 0.6 Vertical 100 45 20 19 24 39 

E/5/25-50/60 B 5 2.5 Vertical 50 60 20 11 14 31 

E/5/25-100/30 B 5 2.5 Vertical 100 30 22 13 17 35 

E/5/25-100/60 B 5 2.5 Vertical 100 60 19 21 26 40 

E/10/25-50/60 B 10 2.5 Vertical 50 60 18 26 32 44 

E/5/25-50/60 B 5 2.5 Horizontal 50 60 18 12 15 30 

 
† Alternate layers impregnated 

 
 
 
 

Table IV: Impregnation results achieved by the combined horizontal EPI and VB processes and 
the combined horizontal GS and VB processes. 

 

Sample 
Slurry 
type 

Solid 
loading 

/ % 

Particle 
size / 
m 

Vf 
/ % 

Vp 
/ % 

V.R. 
/ % 

Relative 
density 

/ % 

Gas 
permeability

/ 10-12 m2 

EV/5/25-50/60 C 5 2.5 18 17 21 35 6.9 

EV/5/67-50/60 C 5 6.7 21 18 23 39 6.8 

EV/5/100-50/60 C 5 10 21 19 24 40 6.3 

GV/5/67-B B 5 6.7 17 19 23 36 12.8 

GV/5/67-C C 5 6.7 19 22 27 41 6.8 

GV/5/100-B B 5 10 21 20 25 41 10.6 

GV/5/100-C C 5 10 20 20 25 40 6.0 
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Fig 1. SEM images of SiCf/SiC composites processed by CVI (a) low magnification showing large intertow 
voids and (b) high magnification showing fine intratow porosity. 72 x 72 dpi  
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Fig 3. Design variations for the anode used for EPI of SiC powder from suspension onto SiC fabric layers. 72 
x 72 dpi  
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Reduction in porosity observed in the VB preforms as a function of the solids loading in the SiC slurries. 72 x 
72 dpi  

287x201mm (300 x 300 DPI)  
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Reduction in porosity observed in the VB preforms as a function of the particle size in the SiC slurries. 72 x 

72 dpi  

287x201mm (300 x 300 DPI)  
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Fig 5. SEM cross sectional micrographs of preforms prepared by VB at two different magnifications (a) and 
(c) V/30/6, (b) and (d) V/20/6. 72 x 72 dpi  
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Fig 6. Colour enhanced XRA scans for samples prepared by a) VB, b) EPI using the vertical electrode and c) 
combined VB and EPI using the horizontal electrode. 72 x 72 dpi  
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Reduction in porosity versus (voltage×time) applied during the EPI process using the vertical electrode. 72 x 

72 dpi  

287x201mm (300 x 300 DPI)  
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Fig 8. Low and high magnification SEM images of cross sections of preforms formed by EPI (a) and (b) 
E/5/6-50/90† and (c) E/5/6-100/45. 72 x 72 dpi  
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Reduction in porosity versus deposition time for EPI using the vertical (V) and horizontal (H) electrodes and 
different SiC particle sizes. 72 x 72 dpi  

287x201mm (300 x 300 DPI)  
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Fig 10. Low and high magnification SEM images of cross sections of preforms formed by combined VB and 
EPI (a) and (b) EV/5/25-50/60; (c) and (d) EV/5/67-50/60 and (e) and (f) EV/5/100-50/60. 72 x 72 dpi  

 

 

Page 62 of 63

International Journal of Applied Ceramic Technology

International Journal of Applied Ceramic Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


