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Instability of Viscoelastic Curved Liquid Jets with

Surfactants

Abdullah Madhi Alsharifa, Jamal Uddina,∗,

aSchool of Mathematics, The University of Birmingham.
Edgbaston, Birmingham. B15 2TT. UK

Abstract

The prilling process is a common technique utilised in different applications
in many industrial and engineering processes. Typically in such a process a
liquid jet emerges from an orifice and thereafter breaks up into small spherical
droplets of various sizes due to interfacial instabilities. As is common in many
industrial applications the fluid used is often a mixture of various fluids and
will typically contain polymers or other additives which will cause the fluid to
behave like a non-Newtonian fluid. Furthermore, surfactants may be used in
such processes to manipulate the size of the resulting droplets. In this paper,
we model the fluid as a viscoelastic liquid and use the Oldroyd-B constitutive
equation. We reduce the governing equations into a set of one-dimensional
equations by using an asymptotic analysis and then we examine steady state
solutions for viscoelastic rotating liquid jets with surfactants. We thereafter
examine small perturbations to this steady state to investigate both linear
and non-linear instability of the liquid jet.

Keywords:
Viscoelastic jets, break-up, rotation, surfactants

1. Introduction

The fragmentation of viscoelastic liquid jets into droplets has many in-
dustrial applications such as sprays, fertilizers, ink jets and roll coating (see
Eggers et al. [15], Middleman et al. [24], Basaran [5] and Mckinley [22] for
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reviews of the various applications). The widespread use of devices which
utilise a liquid jet at ever decreasing length scales and with a need for greater
accuracy motivates the need to understand the mechanisms of the capillary
instability and break-up of non-Newtonian liquid jets. Rayleigh [30], who is
credited with being the first to examine theoretically the instability of incom-
pressible inviscid liquid jets, identified that liquid jets are unstable to waves
which have a wavelength greater than their circumference. Moreover, it was
shown that a most unstable wave exists, typically now referred to as the
Rayleigh mode, which was responsible for breakup and droplet formation.
The presence of viscosity within the fluid was considered by Weber [42], who
found that the wavelength of the most unstable mode is increased by viscos-
ity. Since these two pioneering works there has been a wealth of publications
examining various features associated with instability of straight liquid jets
including variations associated with jet structure, different liquids and linear
and nonlinear growth (see Eggers [14]).

However, despite the abundance of literature on straight liquid jets rela-
tively little has been developed in terms of liquid jets that are curved either by
the action of some body force such a gravity or an electric field or by the ap-
plication of a solid body rotation to the container from which the jet emerges.
The latter case is particularly relevant to the industrial prilling process where
curved jets are produced due to centrifugal instabilities. The work of Wall-
work et al. [41] was the first to examine such a scenario and in that work
the governing equations and linear stability of small disturbances along an
inviscid curved liquid jet was considered. The authors also conducted some
experiments for inviscid rotating liquid jets to complement their theoretical
works and found agreement between the two. Wong et al. [44] conducted a
series of experiments of viscous liquid jets to see the effect of different pa-
rameters on trajectory and droplet formation of the jet. Decent et al. [12]
extended the analysis to include gravity in the examination of linear stability
by Wallwork [40]. Moreover, the influence of viscosity on the trajectory and
stability of the break-up of rotating liquid jets has been examined by Decent
et al. [13]. Non-Newtonian fluids have been investigated by Uddin et al. [39]
who used the power-law model to examine the linear instability of a rotating
liquid. Uddin [38] examined non-linear temporal solutions of the governing
equations for a rotating liquid jet by solving numerically, using a finite dif-
ference scheme based on the Lax Wendroff method, the governing equations
based on the slender jet assumption.
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Surfactants, which have a tendency to reduce the surface tension of a
free surface, have been used in many free surface flows to alter the dynamics
near the locality of breakup or rupture (see Xue et al. [45]). A numerical
study has been used by Renardy [31] to find the break-up of Newtonian
case and viscoelastic liquid jets for the Giesekus model and upper convected
Maxwell model. The stability of viscoelastic jets has been discussed by Mid-
dleman [24]. Goldin et al. [17] compared the linear stability between invis-
cid, Newtonian and viscoelastic liquid jets. Mageda & Larson [21] used the
Oldroyd-B model for ideal elastic liquids (called Boger fluids) for investi-
gating the rheological behavior of polyisobutylene and polystyrene when the
shear rates are low. Yildirim and Basaran [50] studied the threads of shear-
thinning jets without surfactants and they found that shear-thinning plays
an important role in determining the shape of the interface near breakup.
They also investigated the break-up dynamics of liquid jets by using the
Carrea model and compared the results with one-and two-dimensional mod-
els. The beads-on-string structure was studied by Clasen et al. [9] using the
Oldroyd-B model. Ardekani et al. [4] investigated the dynamics of beads-
on-string structure and filament thread for weakly viscoelastic jets by using
the Giesekus constitutive equation and they compared the results to those
of the Oldroyd-B model. Bhat et al. [6] examined formation of beads-on-a-
string structures and found that there are sub-satellite beads in their exper-
iments. Mckinley and Tripathi [23] and Anna and Mckinley [2] conducted
experiments to observe various stages of the capillary break-up of viscoelas-
tic liquid jets. An experimental study has been conducted by Zhang and
Basaran [47] to investigate the effects of viscosity and surface tension. The
majority of these studies of either Newtonian or non-Newtonian fluids has
been examined without surfactants. However, many authors have studied
the effects of adding small amounts of surfactants on straight liquid jets. For
example, Whitaker [43] examined the instability of inviscid liquid jets with
surfactants. The linear instability of viscous liquid jets and a surfactant has
been carried out by Hansen et al. [18]. They have found that the growth rate
decreases with including surfactants. Anshus [3] investigated theoretically
the effect of surfactants on liquid jets in two cases which are compressible
and incompressible. He found that the surfactants decrease the growth rate,
especially in the case of incompressible liquid jets. Craster et al. [11] studied
Newtonian liquid jets with surfactants by using a one-dimensional model.
The case of weakly viscoelastic jets with surfactants has been examined by
Zhang et al. [48] in a study in which they discussed the influence of the viscos-
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ity ratio, using the Oldroyd-B model. Timmermans & Lister [35] have used
a nonlinear analysis to study a surfactant laden thread in inviscid liquid jets.
They used a one-dimensional nonlinear model to examine the effect of the
surfactant on the change of surface tension gradients. Ambravaneswaran &
Basaran [1] also used a one-dimensional approximation model to investigate
the nonlinear effects of insoluble surfactants on the break-up of stretching
liquid bridges. Uddin [38] investigated the effects of surfactants on the in-
stability of rotating liquid jets. He discovered that surfactants reduce the
growth rate of liquid curved jets and hight rotation rates enhance the role of
surfactants on break-up lengths. Stone & Leal [34] examined the break-up
of liquid jets with surfactants by extending the work of Stone et al. [32] to
include insoluble surfactants. Viscous liquid jets and soluble surfactants have
been studied by Milliken et al. [25] and Milliken & Leal [26]. They observed
that Marangoni stress decreased with increasing the viscosity and surfactant
solubility.

In this paper, we will extend the work of Decent et al. [13] to investigate
the break-up of viscoelastic liquid curved jets with surfactants by using the
Oldroyd-B model. Furthermore, we reduce the governing equations into a
set of non-dimensional equations to captures the dynamics of the break-up
of low viscosity elastic solutions with insoluble surfactants. We also use an
asymptotic approach to find steady state solutions and then examine a linear
instability analysis on these solutions. In this study, we numerically solve
these equations using a finite difference scheme based on the Lax Wendroff
method to determine the break-up lengths and main and satellite droplet
sizes.

2. Problem Formulation

In this section we develop the governing equations which govern the dy-
namics of a liquid jet emerging from a rotating orifice with applications to the
industrial prilling process. Since the derivation has been explained in length
elsewhere (see Părău et al. [28, 29] ) we will not motivate the equations in
great detail. In this regards, we assume that we have a large cylindrical con-
tainer which has radius s0 and rotates with angular velocity Ω. The liquid
emerges from an orifice which is made in the side of this container. The ra-
dius of the orifice, a, is very small compared with the radius of the container.
This problem is examined by choosing a coordinate system (X,Y, Z) rotat-
ing with the container, having an origin at the axis of the container. The
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position of the orifice is at (s0, 0, 0). Due to the rotation of the container, the
liquid leaves the orifice following a curved trajectory. In this problem, which
is the prilling process, we consider that the centripetal acceleration of the jet
is very large compared with the force of gravity. Under this assumption one
may assume the jet moves in the (X,Z) plane, so that the centerline can be
described by coordinates (X(s, t), 0, Z(s, t)), where s is the arc-length along
the middle of the jet which emerges from the orifice and t is the time (see
Wallwork [40]). In any cross-section of the jet we also have plane polar co-
ordinates (n, φ), which are the radial and azimuthal direction and have unit
vectors which are es, en, eφ (see Decent et al. [12]). The velocity components
for this problem are (u,v,w), where u is the tangential velocity, v is the
radial velocity and w is the azimuthal velocity.

Initially, we outline the continuity, momentum and constitutive equa-
tions of motion. Due to the surfactant concentration, we have a convection-
diffusion equation along the liquid interface. We use the Oldroyd-B model
for viscoelastic term. These equations therefore take the form

∇ · u = 0,

ρ
(∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · τ − 2 w × u − w × (w × r),

τ = μs(∇u + (∇u)T ) + T ,

∂T

∂t
+ (u · ∇)T − T · ∇u · T − (∇u)T · T =

1

λ

(
μpγ − T

)
, (1)

where u is the velocity in the form u = ues+ven+weφ , ρ is the density of the
fluid, p is the pressure, the angular velocity of the container is w = (0, w, 0),
μs is the viscosity of the solvent, T is the extra stress tensor that denotes to
the term of viscoelastic, and μp is the viscosity of the polymer. The surfactant
concentration along the jet is given by (see Stone & Leal [34] and Blyth &
Pozrikidis [7])

Γt + ∇s · (Γus) + Γ(∇s · n)(u · n) = S(Γ, Bs) + Ds∇2
sΓ, (2)

where ∇s = (I − nn) · ∇ is the surface gradient operator, Ds is the surface
diffusivity of surfactant, us = (I−nn)·u is the surface or tangential velocity,
and ∇s · n = 2κ where κ is the mean curvature of the free surface. The
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surfactant source term, S, takes absorption from the free surface into account,
and acts as a function of surfactant concentration on the surface Γ and the
bulk Bs. The third term on the left of (2) relates to the effect of normal
forces on dilatation by expansion (see Blyth and Pozrikidis [7]). We consider
in this study that the diffusivity of surfactant is small (Ds = 0) and the
surfactant is insoluble (i.e., S = 0). For example, if surfactant with typical
diffusivity 10−10−10−9 mm2 s−1 (Tricot [36]) were added to the liquid-bridge
experiments of Zhang, Padgett & Basaran [49] , so that the Peclet number
would be at least 103 − 104. This approach has been taken by Timmermans
& Lister [35] for investigating the linear stability of a liquid thread with
surfactants. Uddin [38] examined linear and nonlinear instability of non-
Newtonian liquid curved jets with surfactants by using this approach

Γt + u · ∇Γ − Γn · ((n · ∇)u) = 0. (3)

The boundary conditions are

∂R

∂t
+ u · ∇R = 0, (4)

normal and tangential conditions are

p + n · P · n = σ∇ · n, (5)

and

ti · P · n = ti · ∇σ, (6)

where
P = −pI + μ

(
∇u + (∇u)T

)
+ T,

the normal vector is

n =
1

E

(
−∂R

∂s

1

hs

es + en − ∂R

∂φ

1

R
eφ

)
, (7)

tangential vectors are

t1 = es +
1

hs

∂R

∂s
en and t2 =

1

R

∂R

∂φ
en + eφ,

and the arc-length condition is

X2
s + Z2

s = 1. (8)
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Moreover, there is an another equation, which is the Szyskowski equation
that is given by

σ = σ̃ + Γ∞RgT log
[Γ∞ − Γ

Γ∞

]
, (9)

which is a special case from the Frumkin equation of state σ = σ̃+Γ∞RgT (log(1−
Γ∞
Γ

)+ AΓ2∞
2Γ2 ), where σ̃ is the surface tension of the liquid in the absence (Γ = 0)

of any surfactant, Γ∞ is the maximum packing concentration of surfactant,
Rg is the universal gas constant, T is the temperature, A is the molecular
interaction parameter and Γ is the critical micelles concentration (CMC).
This equation gives the relation between the surfactant concentration Γ and
the surface tension of the liquid-gas interface. We can express our equations
in dimensionless terms by using the following transformations

ū =
u

U
, v̄ =

v

U
, w̄ =

w

U
, n̄ =

n

a
, ε =

a

s0

,

R̄ =
R

a
, T̄ =

s0

Uμ0

T, s̄ =
s

s0

, t̄ =
U

s0

t, p̄ =
p

ρU2
,

X̄ =
X

s0

, Z̄ =
Z

s0

, σ̄ =
σ

σ̃
, Γ̄ =

Γ

Γ∞
, (10)

where u, v and w are the tangential, radial and azimuthal velocity compo-
nents, U is the exit speed of the jet in the rotating frame, s0 is the radius of
the cylindrical drum, a is radius of the orifice, ε is the aspect ratio of the jet,
T is the extra stress tensor, μ0 is the total viscosity of the solvent and the
polymer and σ and Γ are dimensionless with respect to the surface tension
and the surfactant concentration, then dropping over bars. The equation of
motion is the same which is found in Părău et al. [29], but there are extra
terms related to viscoelastic terms as follows

εn
∂u

∂s
+ hs

(
v + n

∂v

∂n
+

∂w

∂φ

)
+ εn (v cos φ − w sin φ) (XsZss − ZsXss) = 0,(11)

(N.S)(s) +
1

hs Re

[
ε
∂Tss

∂s
+ 2ε(v cos φ − w sin φ)(XsZss − ZsXss)Tss +

∂Tsn

∂n
hs +

hs

n

∂Tsφ

∂φ
+

hsv

n
Tsφ

]
, (12)

7



  

(N.S)(n) +
1

hsRe

[
ε
∂Tsn

∂s
+ ε(v cos φ − w sin φ)(XsZss − XssZs) Tsn −

εu cos φTsn +
∂Tnn

∂n
hs +

hs

n

∂Tnφ

∂φ
+

hsv

n
Tnφ − w

n
hsTnφ

]
, (13)

(N.S)(φ) +
1

hs Re

[
ε
∂Tsφ

∂s
+ ε(v cos φ − w sin φ)(XsZss − XssZs) Tsφ −

εu

hs

Tsφ sin φ(XsZss − XssZs) +
∂Tnφ

∂n
hs +

hs

n

∂Tφφ

∂φ
+

2hsv

n
Tφφ

]
, (14)

where (N.S)(s), (N.S)(n) and (N.S)(φ) are the Navier-Stokes equations in the
axial, radial and azimuthal direction respectively as found in Părău et al. [29]
in which Re

αs
= Re, the dimensionless parameters here are the Rossby number

Rb = U
s0Ω

, the Weber number We = ρU2a
σ

, the Reynolds number Re = ρUa
μ0

,

the Deborah number De = λ U
s0

and the ratio between the viscosity of the
solvent and the total of the viscosity is αs = μs

μ0
= μs

μs+μp
. Using typical

parameter values encountered in prilling (see Wong et al. [44]) of U ∼ 0.3−1
ms−1 and s0 ∼ 0.04 m and typical relaxation times of elastic fluids λ ∼
10−3 − 10 (see Entov & Hinch [16]) we can estimate the range of Deborah
number values as De ∼ 250 − 0.008. The equations of the extra stress
tensor are in the appendix. The surfactant concentration equation is (see
Uddin [38])

Γt = − u

hs

∂Γ

∂s
− v

ε

∂Γ

∂n
− w

εn

∂Γ

∂φ
+

Γ

E

( ε2

h2
s

(∂R

∂s

)2 ∂u

∂s
− 1

hs

(∂R

∂s

)∂u

∂n
+

1

nRhs

∂R

∂φ

∂R

∂s

∂u

∂φ
− ε

h2
s

(∂R

∂s

)∂v

∂s
+

1

ε

∂v

∂n
− 1

εnR

∂R

∂φ

∂v

∂φ
+

ε

Rh2
s

∂R

∂φ

∂R

∂s

∂w

∂s
− 1

R

∂R

∂φ

∂w

∂n
+

1

εnR2

(∂R

∂φ

)2∂w

∂φ

)
.

(15)

3. The Non-dimensionalisation of Boundary Conditions

It can be found that the normal stress condition is

p − 2αs

Re

1

E2

(
ε2

(
∂R

∂s

)2
1

h3
s

(
∂u

∂s
+ (v cosφ − sin φ)(XsZss − ZsXss) +

hs

2αs

Tss

)
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+
1

ε

∂v

∂n
+

1

2αs

Tnn +
1

εR3

(
∂R

∂φ

)2 (
∂w

∂φ
+ v + RTφφ

)
−

ε

hs

∂R

∂s

(
1

hs

∂v

∂s
+

1

ε

∂u

∂n
− u

hs

cosφ(XsZss − ZsXss) +
1

2αs

Tsn

)
+

ε

Rhs

∂R

∂s

∂R

∂φ

(
1

εR

∂u

∂φ
+

u

hs

sin φ(XsZss − ZsXss) +
1

hs

∂u

∂s
+

1

2αs

Tsφs

)

− 1

R

∂R

∂φ
(R

ε∂w

∂n
− εw

R
+

ε

R

∂v

∂φ

)
=

σ κ

We
on n = R(s, t), (16)

where

κ =
1

hs

(
−ε2 ∂

∂s

(
n

Ehs

∂R

∂s

)
+

∂

∂n

(
nhs

E

)
− ∂

∂φ

(
hs

En

∂R

∂φ

))
.

E =

(
1 +

ε2

h2
s

(
∂R

∂s

)2

+
1

R2

(
∂R

∂φ

)2
) 1

2

.

hs = 1 + εn cos φ(XsZss − XssZs).

The first tangential stress condition is(
1 − ε2

(
∂R

∂s

)2
1

h2
s

){
ε
∂v

∂s
+ hs

∂u

∂n
− εu cos φ(ZsZss − XssZs) +

ε

αs

Tsn

}
+ 2ε

∂R

∂s{
∂v

∂n
− ε

∂u

∂s

1

hs

− ε

hs

v cos φ − w sin φ(XsZss − XssZs) − ε

2αs

(Tss − Tnn)

}
=

εRe

We

( ε

hs

∂σ

∂s
+

1

hs

∂R

∂s

∂σ

∂n

)
, (17)

and the second tangential stress condition is(
1 − (

∂R

∂φ
)2 1

R2

)(
∂w

∂n
− w

R
+

1

R

∂v

∂φ
+

ε

αs

Tnφ

)
+

2

R

∂R

∂φ

(
∂v

∂n
− 1

R
(
∂w

∂φ
+ v) +

ε

αs

(Tnn − Tφφ)

)
=

εRe

We

( 1

R

∂R

∂φ
+

1

n

∂σ

∂φ

)
.

(18)
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Another boundary condition is the arc-length condition X2
s + Z2

s = 1 and
also the kinematic condition is

hs

(
ε
∂R

∂t
+ (cos φ +

1

n

∂R

∂t
sin φ(XtZs − XsZt) − v +

∂R

∂φ

w

n

)

+εu
∂R

∂s
− ε

∂R

∂s
(XtZs − XsZt + εn cos φ(XsZss − ZsXss)) = 0. (19)

4. Asymptotic Analysis

We will consider that u, v, w and p in Taylor’s series are expanded in εn
(see Eggers [14] and Hohman et al. [19] ) and R,X,Z, Tss, Tnn, Tφφ in asymp-
totic series in ε. We suppose that the leading order of the axial component of
the velocity is independent on φ. It is also assumed that small perturbations
do not affect the centerline. Therefore, we have

[u, v, w, p] = [u0(s, t), 0, 0, 0] + (εn)[u1(s, φ, t), v1(s, φ, t), w1(s, φ, t), p1(s, φ, t)] + O(ε2)(20)

[R,X,Z, Tss, Tnn, Tij] = [R0(s, t), X0(s, t), Z0(s, t), T
0
ss(s, t), T

0
nn(s, t), εT 0

ij(s, t)] +

(ε)[R1(s, t), X1(s, t), Z1(s, t), T
1
ss(s, t), T

1
nn(s, t), εT 1

ii(s, t)] + · · · ,(21)

where the subscript {ij} covers the remaining components. The following
expansions have been used for the surfactant concentration Γ and the surface
tension σ as

[Γ, σ] = [Γ0(s), σ0(s)+] + ε[Γ1(s), σ1(s)] + O(ε2), (22)

Substitution of the above expansions into the governing equations and col-
lecting terms of similar order yields a set of equations which is tedious and
for that reason we do not repeat it here. Instead we simply sate that the
resulting analysis will result in the following set of equations

(XsZss − XssZs)

(
u2

0 −
3αs

Re
u0s − σ

WeR0

)
− 2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0,(23)

u0t + u0u0s = − 1

We

∂

∂s

(
σ0

R0

)
+

(X + 1)Xs + ZZs

Rb2

+
3αs

Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

( 1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)
)

+
2σ0s

WeR0

,(24)
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along with

R0t +
u0s

2
R0 + u0R0s = 0. (25)

These equations are similar to those found in Părău et al. [29] except there
now appears a few extra terms due to the extra stress tensor. From the extra
stress tensor, which is Tss, Tsn, Tsφ, Tnn, Tnφ, Tφφ,we have at leading order as
follows

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0

ss =
1

De

(
2(1 − αs)

∂u0

∂s
− T 0

ss

)
, (26)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+

∂u0

∂s
T 0

nn =
−1

De

(
(1 − αs)

∂u0

∂s
+ T 0

nn

)
. (27)

We have the arc-length at order ε

X2
s + Z2

s = 1. (28)

The last equation which is the surfactant transport equation at leading order
is

Γ0t + u0Γ0s +
u0s

2
Γ0 = 0. (29)

There is another equation related to the surfactant concentration Γ to the
surface tension of the liquid-gas interface, which is Szyskowski equation

σ = 1 + βlog(1 − Γ), (30)

where the parameter β = Γ∞RgT/σ̃ is a measure of the effectiveness of
surfactants. In general the centreline of the jet is unsteady however Părău
et al. [29] has examined the resulting terms produced in the set of equations
above when an unsteady centreline is assumed which in turn leads to terms
involving E = ZsXt−ZtXs. In the analysis of Părău et al. [29] the difference
between and steady and unsteady centreline had a maximum deviation of
order 10−2 of the perturbation of the steady state centerline. Since this
value is very small compared to the O(1) values of X0(s) and Z0(s) we may
therefore use E ≈ 0 which is a very accurate assumption to be taken from the
orifice to the break-up point. Experimentally Wong et al. [44] have observed
that the centerline of the jet, to leading order, is steady, which means Xst ≈ 0,
Zst ≈ 0 and E ≈ 0.
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5. Steady State Solutions

In this section we search for steady state solutions of the set of equations
obtained in the previous section. In total we have six equations in the six
variables which are u0, R0, X, Z, T 0

ss and T 0
nn and making use of (25) and

(29), we can find R2
0u0 and Γ2

0u0 are constants. Now, we use the initial
conditions R(0) = 1 = u(0) and Γ0(0) = ζ, where ζ is the initial surfactant
concentration (0 ≤ ζ ≤ 1), we therefore obtain R2u = 1 and Γ2

0u0 = ζ2. We
then have

u0u0s = −(1 + βlog(1 − ζu
−1
2

0 ))

We

u0s

2
√

u0

+
βζ

2u0We

uos

(1 − ζu
−1
2

0 )
+

(X + 1)Xs + ZZs

Rb2

+
3αs

Re

(
u0ss − u2

0s

u0

)
+

1

Re

( ∂

∂s
(T 0

ss − T 0
nn) − u0s

u0

(T 0
ss − T 0

nn)
)
, (31)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0

ss =
1

De

(
2(1 − αs)

∂u0

∂s
− T 0

ss

)
, (32)

u0
∂T 0

nn

∂s
+

∂u0

∂s
T 0

nn =
−1

De

(
(1 − αs)

∂u0

∂s
+ T 0

nn

)
, (33)

(XsZss − XssZs)

(
u2

0 −
3αs

Re
u0s − 1

We

(
1 + βlog(1 − ζu

−1
2

0 )
)√

u0

)
−

2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (34)

and

X2
s + Z2

s = 1. (35)

From the equations (31)-(35), we have five unknowns which are X,Z, u0, T
0
ss

and T 0
nn. This system of non-linear differential equations, which is stiff due

to the presence of the viscous term, can be solved by using an implicit finite
difference scheme as done by Părău et al. [28, 29] who solved the resulting
set of equations using the Newtonian methods. However, the same authors
were able to show that the presence of the viscous term did not significantly
affect the steady state obtained in the inviscid limit which then resulted in a
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simple set of ordinary differential equations. We show, formally, below that
the viscous term does not contribute to leading order steady state solutions
and we henceforth will solve the above set of equations in the limit Re → ∞.
In order to show that the centerline is independent of viscosity to leading
order, let us consider the expansions of the form

u = u0(s) + εu1(s, n, φ) + O(ε2), v = v0(s) + εv1(s, n, φ) + O(ε2),

Tss = T 0
ss(s) + εT 1

ss(s, n, φ) + O(ε2), Tnn = T 0
nn(s) + εT 1

nn(s, n, φ) + O(ε2),

R = R0(s) + εR1(s, n, φ) + O(ε2), p = p0(s) + εp1(s, n, φ) + O(ε2),

σ = σ0(s) + εσ1(s, n, φ) + O(ε2), Γ = Γ0(s) + εΓ1(s, n, φ) + O(ε2),

and set w = 0 which means there is no azimuthal velocity. We substitute
these into the the governing equation, and therefore obtain at leading order

v1 = −n

2

du0

ds
, (36)

∂u0

∂t
+ u0

∂u0

∂s
= −∂p0

∂s
+

1

Rb2

(
(X + 1)Xs + ZZs

)
+

αsOh√
We

( 1

n

∂u1

∂n
+

∂2u1

∂n2
+

1

n2

∂2u1

∂φ2

)
+

Oh√
We

(∂T 0
ss

∂s

)
, (37)

∂p0

∂n
= 0 and

∂p0

∂φ
= 0,

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0

ss =
1

De

(
2(1 − αs)

∂u0

∂s
− T 0

ss

)
, (38)

u0
∂T 0

nn

∂s
+

∂u0

∂s
T 0

nn =
−1

De

(
(1 − αs)

∂u0

∂s
+ T 0

nn

)
, (39)

− cos φ(XsZss − XssZs)u
2
0 = −∂p1

∂n
− 2u0 cos φ

Rb
+

cos φ

Rb2

(
(X + 1)Zs − ZXs

)
,(40)

sin φ(XsZss − XssZs)u
2
0 = −∂p1

∂n
− 2u0 sin φ

Rb
− sin φ

Rb2

(
(X + 1)Zs − ZXs

)
,(41)

u0
∂R0

∂s
= v1 on n = R0
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p1 − 2Oh√
We

∂v1

∂n
=

σ0

We

(
− 1

R2
0

(
R1 +

∂2R1

∂φ2

)
+ cos φ(XsZss − XssZs)

)
on n = R0(42)

and

∂u1

∂n
= u0 cos φ(XsZss − XssZs) +

Oh−1

We
1
2

∂σ0

∂s
. (43)

We have

u0
∂u0

∂s
+

∂p0

∂s
− (X + 1)Xs + ZZs

Rb2
=

αsOh√
We

(
∇2

n,φu1

)
+

Oh√
We

∂Tss

∂s
, (44)

where

∇2
n,φ =

1

n

∂

∂n
+

∂2

∂n2
+

1

n2

∂2

∂φ2
.

Suppose that

f(s) =

√
(We)

αsOh

(
u0

∂u0

∂s
+

∂p0

∂s
− ((X + 1)Xs + ZZss)/Rb2)

)
− 1

αs

∂T 0
ss

∂s
,

so that f(s) = ∇2
n,φu1, which is a Neumann problem on a circular domain,

where s is a parameter. We determine the solvability condition by mul-
tiplying the above equation by û(s, n, φ) and integer over the domain S
(0 ≤ n ≤ R0, 0 ≤ φ ≤ 2π) then we have∫ ∫

S

(
û∇2

nφu1

)
dS =

∫ ∫
S

ûf(s) dS,

where û satisfies the homogeneous Neumann problem such that

∇2
nφu = 0 with

∂û

∂n
= 0 on n = R0.

Greens identity gives∫ ∫
S

(
û∇2

nφu1

)
dS =

∫ ∫
S

û
∂u1

∂n
dΩS,

where ΩS is the boundary of S. Then we get

2π∫
0

R0∫
0

ûnf(s)dndφ =

∫ 2π∫
0

[
u
∂u1

∂n

]
n=R0

R0dφ
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=

2π∫
0

[û]n=R0

(
u0 cos φ(XsZss − XssZs) +

Oh−1

√
We

∂σ0

∂s

)
R0dφ

=

2φ∫
0

[û]n=R0(g(s) cos φ + h(s))R0dφ, (45)

where g(s) = u0(XsZss − XssZs) and h(s) = Oh−1√
We

∂σ0

∂s
. The general solution

to the homogeneous Neumann problem which is bounded in 0 ≤ n ≤ R0 and
is periodic in φ with period 2π is û = γ(s). which means that this result
cannot be a function of the radial or azimuthal direction. Then we have

γ(s)R0g(s)[sin φ]2π
0 + γ(s)R0h(s)[φ]2π

0 = γ(s)f(s)[
n2

2
]R0
0 [φ]2π

0

where R0 	= 0, we thus have f(s) = 2h(s)
R0

so that

f(s) =
1

Oh
√

We

2

R0

∂σ0

∂s
.

Then we have

∂u0

∂t
+ u0

∂u0

∂s
− (X + 1)Xs + ZZs

Rb2
= −∂p0

∂s
+

2

R0We

∂σ0

∂s
. (46)

To obtain p1, we solve the equations (40),(41) and (42),

p1 =
σ0n

R0We
cos φ(XsZss − XssZs) − Oh√

We

∂u0

∂s
+ h1(s), (47)

where h1(s) is an arbitrary function of s. We can see that there is no viscous
terms in the equation (46), which means that we obtain the same leading
order equations for the trajectory in the inviscid case.

We solve this system of nonlinear PDEs as we have mentioned earlier by
using the Runge-Kutta method with the boundary conditions at the nozzle
are X(0) = Z(0) = Zs(0) = T 0

ss(0) = T 0
nn(0) = 0 and u(0) = Xs(0) = 1. In

Figs. 5.1-5.5, we find the jet trajectory, the extra stress tensor (T 0
ss, T

0
nn) and

the jet radius for different values of Rossby and Weber numbers.
In Fig. 1, we show the effects of different values of the initial surfactant

concentration ζ on trajectories of the liquid jet. From this figure, it can be
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Figure 1: The trajectory of rotating liquid jets with the effect of surfactants, which is solved
by using the Runge-Kutta method and emerging from an orifice placed at (0,0). The jet
curves increase when the initial surfactant concentration increases. The parameters here
are We = 8, Rb = 2, De = 20, αs = 0.2 and β = 0.4.
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Figure 2: The radius of rotating liquid jets with changing the initial surfactant concen-
tration versus the arc-length s. Here we have We = 8, Rb = 2, De = 20, αs = 0.2 and
β = 0.4. It can be seen that increasing the initial surfactant concentration increases the
radius of the jet along the jet.

observed that when ζ is increased, which corresponds to an increase in the
initial surfactant concentration, the liquid jets coil less progressively. We also
the influence of increasing the initial surfactant concentration ζ on the radius
of the jet against arc-length s in Fig. 2. We observe that greater values of
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Figure 3: The effect of changing the parameter β of a rotating liquid jet on the extra stress
tensor T 0

ss along the jet.Here we use We = 8, De = 20, β = 0.4, αs = 0.2 and Rb = 2.
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Figure 4: The effect of changing the parameter β of a rotating liquid jet on the extra stress
tensor T 0

nn along the jet.Here we use We = 8, De = 20, β = 0.4, αs = 0.2 and Rb = 2.

this parameter leads to an decrease in the radius of the jet which means that
the jet becomes thin when the arc-length s is increased. Moreover, on Figs. 3
and 4 we find the relationship between the extra stress tensors, which are T 0

ss

and T 0
nn and the arc-length for different values of the parameter β, and these

graphs show that when this parameter increases the extra stress tensors have
more effect on the jet.
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6. Temporal Instability

In this section we consider small temporal perturbations of the steady
state. Since the resulting set of equations must be linearized in terms of the
small disturbances we are required to form a simplified expression for the
surface tension, which we do through a Taylor expansion as

σ = (1 + βlog(1 − ζ)) + σ
′
(ζ)(Γ − ζ)

= (1 + βlog(1 − ζ)) − β

(1 − ζ)
(Γ − ζ)

= σe − EΓ, (48)

where σe = (1+βlog(1− ζ))+ βζ
(1−ζ)

is the surface tension of the undisturbed

liquid jet and E = β/(1 − ζ) is the Gibbs elasticity.
The radius of the jet is of order a, which is comparable to ε when s = O(1),
when we make perturbations along the jet and so we consider the travelling
wave modes of the form

(u,R, Tss, Tnn, Γ) = (u0, R0, T
0
ss, T

0
nn, Γ0) + δ(û, R̂, T̂ss, T̂nn, Γ̂) exp(iκs̄ + ωt̄),(49)

where s̄ = s/ε is small length scales, t̄ = t/ε is small time scales, k = k(s)
and ω = ω(s) are the wavenumber and frequency of the disturbances and δ
is a small constant which is 0 
 δ 
 ε2 (see Uddin [38]). Whilst the leading
order steady state is dependent on the coordinate s the perturbations are
functions of the small length scale s̄. On this smaller length the steady state
is weakly varying and to leading order in s̄ is a constant. It is necessary to
use the full expression for the mean curvature to prevent instability to waves
with zero wavelength which is

1

We

(
1

R(1 + ε2 R2
s)

1
2

− ε2 Rss

(1 + ε2 R2
s)

3
2

)
.

Despite being ad hoc in terms of including higher order terms a number of
authors have adopted this approach such as Lee [20] and Eggers [14]. The
axial equation of motion becomes

ut + u0u0s = − 1

We

∂

∂s

(
1

R(1 + ε2 R2
s)

1
2

− ε2 Rss

(1 + ε2 R2
s)

3
2

)
+

(X + 1)Xs + ZZs

Rb2

+
3αs

Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

( 1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)
)
, (50)
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∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0

ss =
1

De

(
2(1 − αs)

∂u0

∂s
− T 0

ss

)
, (51)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+

∂u0

∂s
T 0

nn = − 1

De

(
(1 − αs)

∂u0

∂s
+ T 0

nn

)
. (52)

There is a new scaling for the viscosity ratio which is α̃s = αs

ε
. Without

this new scaling, we cannot bring the viscous term into the equations which
derived the dispersion relation. We mentioned earlier, αs + αp = 1, where
αs and αp are the solvent viscosity and the polymeric viscosity respectively.
After substituting the new scaling, the last equation becomes εα̃s + αp = 1,
which means that αp � αs. However, both the solvent viscosity and the
polymeric viscosity are very small μs, μp 
 1. Now we obtain the eigenvalue
relation at leading order which has the form

ωr =
−3k2α̃s

2Re
+

k

2

√
2σ0

R0We

(
1 − (kR0)2 − 2We

R0Re

)
+

4

Re

(
2T 0

ss + T 0
nn +

3

De

)
+
(3kα̃s

Re

)2

− 2EΓ0

WeR0

,

(53)

where ωr is the growth rate of disturbances and k is the wavenumber,
we differentiate the last equation to find the most unstable wavenumber for
which ωr is a maximum (which we refer to as k∗) and from this relation we
can find the maximum growth rate

k∗ =

√
R0GWe

2
− 2B + (σ0 − Γ0E)√√

2R3
0σ0

(
3α̃s

√
We
Re

+
√

2σ0R0

) , (54)

where B = T 0
ss − T 0

nn, G = 4
α̃sRe

(
2T 0

ss + T 0
nn + 3

De

)
. For temporal instability,

the growth rate ωr is positive which occurs when 0 < kR0 < 1 where
k = k∗, and R0 found from the steady state solutions. When De = 0 and
T 0

ss = T 0
nn = 0 the most unstable wavenumber of a curved viscous jet is

k∗ =
(σ0 − Γ0E)

1
2√√

2R3
0σ0

(
3Oh +

√
2σ0R0

) , (55)
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Figure 5: Graph showing the growth rate versus the wavenumber of viscoelastic liquid
curved jets with surfactants from a nozzle at s = 0 to s = 0.5 along the jet. The other
parameters here are We = 10, Re = 1000, Rb = 2, ζ = 0.2, β = 0.5, De = 20 and
α̃s = 20.
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Figure 6: Graph showing the growth rate versus the wavenumber of viscoelastic liquid
curved jets with surfactants at the nozzle for different values of the initial surfactant
concentration. The other parameters here are We = 10, Re = 1000, Rb = 2, ζ = 0.2, β =
0.5, De = 20 and α̃s = 20.

where Oh =
√

We
Re

which is the same as for Newtonian liquid jets with surfac-
tant, as found by Uddin [38].

In Fig. 5 we plot the growth rate of a viscoelastic liquid jet with sur-
factant against the wavenumber for different distances from the nozzle. The
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Figure 7: The wavenumber of the most unstable mode k∗ versus the arc-length s for
different values of the Rossby number. The other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20, α̃s = 20 and β = 0.25.
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Figure 8: The maximum growth rate ω∗ versus the arc-length s for different values of
the Rossby number. The other parameters here are We = 15, Re = 1000, ζ = 0.5, De =
20, α̃s = 20 and β = 0.25.

presence of a maximum in the plots of the growth rates against wavenumber
are indicative of the most unstable wavenumber for this case. The effect
of surfactants on viscoelastic liquid curved jets has been examined in Fig.
6 where we can see that when we increase the initial surfactant concentra-
tion ζ the growth rate decreases. Consequently this observation agrees with
what one would expect given that surfactants lower the surface tension and
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Figure 9: Graph showing the relationship between the growth rate of the most unstable
mode ω∗

r and the arc-length s for viscoelastic liquid curved jets with surfactants for two
different values of the viscosity ratio α̃s , where the other parameters here are We =
15, Re = 1000, ζ = 0.5,De = 20 and β = 0.25.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

s

k
*

 

 

α~
s
 =10

α~
s
 =40

Figure 10: Graph showing the wavenumber of the most unstable mode k∗ and the arc-
length s of viscoelastic rotating liquid jets with surfactants for two different values of the
viscosity ratio α̃s, where the other parameters here are We = 15, Re = 1000, ζ = 0.5,De =
20 and β = 0.25.

that the growth of disturbances strongly depends on surface tension. When
ζ is increased that leads to a maximum reduction in surface tension (see
Chang & Franses [8]). In addition to this, Non-Newtonian liquids formed
by accumulation of the broad variety of molecules. It applies above the
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Figure 11: Graph showing the growth rate of the most unstable mode ω∗ and the arc-
length s of viscoelastic rotating liquid jets with surfactants for two different values of the
initial surfactant concentration ζ, where the other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20 and β = 0.5.
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Figure 12: Graph showing the wavenumber of the most unstable mode k∗ and the arc-
length s of viscoelastic rotating liquid jets with surfactants for two different values of the
initial surfactant concentration ζ, where the other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20 and β = 0.5.

Critical Micellar Concentration (CMC), where the surfactant molecules can
self-assemble to structure aggregates called Micelles. The volume and the
nature of the Micelles rely on the composition of the surfactant molecule,
on the surfactant absorption and the existence of preservatives like simple or
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organic salts. Figs. 7 and 8 show that the wavenumber of the most unstable
mode k∗ and the maximum growth rate ω∗ increase along the jet and that
when rotation rates are increased (or equivalently the Rossby number Rb is
decreased). Moreover, when we increase the viscosity ratio α̃s, which in turn
leads to a decrease in the polymeric viscosity, the maximum wavenumber and
the growth rate are increased which means the liquid is less elastic (see Figs.
9 and 10). In Figs. 11 and 12 we show that when we increase the initial
surfactant concentration ζ and the parameter β is fixed the growth rate and
the wavenumber of the most unstable mode are decreased which means the
liquid jet becomes longer before breakup occurs.

7. Nonlinear Temporal Solutions

Linear instability analysis predicts that liquid jets break-up and produce
uniform drop sizes along the axis of the jet of approximately the same wave-
length of the initial disturbances. However, in practice a number of smaller
satellite droplets appear which are an order of magnitude smaller than the
main droplets. This phenomena can only be captured using a nonlinear
approach and we therefore use nonlinear temporal analysis to examine the
break-up length and the formation of the satellite droplets. In this respects,
we replace the leading order pressure term p0 = σ

We
1

R0
in the equation (24)

with the expression for the full curvature term which contains only R0 and
is not φ-dependent, namely

p =
σ

We

[
1

R0(1 + ε2R2
0s)

1/2
− ε2R0ss

(1 + ε2R2
0s)

3/2

]
. (56)

This is done to correctly simulate the main droplet shapes and has some
justification given by Yarin [46]. For simplicity, we denote A = A(s, t), where
A(s, t) = R2(s, t) and G = Γ2

0; then we rewrite our equations (50)-(52), (25)
and (29) as

∂u

∂t
= −

(u2

2

)
s
− 1

We

∂

∂s

(
σ

4(2A + (εAs)
2 − ε2AAss)

(4A + (εAs)2)3/2

)
+

(X + 1)Xs + ZZs

Rb2
+

2σs

A
1
2 We

+
3αs

Re

(Aus)s

A
+

1

Re

(
A(Tss − Tnn)

)
s

A
, (57)

∂Tss

∂t
= − ∂

∂s
(uTss) + 3

∂u

∂s
Tss +

1

De

(
2(1 − αs)

∂u

∂s
− Tss

)
, (58)
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∂Tnn

∂t
= − ∂

∂s
(uTnn) − 1

De

(
(1 − αs)

∂u

∂s
+ Tnn

)
, (59)

∂A

∂t
= − ∂

∂s
(Au), (60)

∂G

∂t
= − ∂

∂s
(Gu). (61)

We solve this nonlinear system of equations as we did in section 5 for the
steady state by using the initial conditions at t = 0 which are A(s, t = 0) =
R2

0(s), u(s, t = 0) = u0(s), G(s, o) = Γ2
0(s), Tss(s, t = 0) = 0, Tnn(s, t = 0) =

0. At the nozzle, we use upstream boundary conditions

u(0, t) = 1 + δ sin

(
κt

ε

)
, Γ(0, t) = ζ, A(0, t) = 1,

where κ is a non-dimensional wavenumber of the perturbation of frequency
and δ ( of which we used a small size) is the amplitude of the initial non-
dimensional velocity disturbance. In the calculation, we have used the value
of ε (= a

s0
) which can be measured from experiments using ε = 0.01. This

value is the same as found in experiments and industrial problems (see Wong
et al. [44]).
Profiles have been plotted (Fig. 13) to show the effect of increasing the con-
centration of initial surfactants on the break-up of viscoelastic liquid curved
jets. From this profile we see that when we increase the initial surfactant
concentration, the liquid jet becomes longer. We can see from these profiles
that there is no beads-on-the string, because this study deals with weakly
viscoelastic curved jets. These results also agree with the experiments of
Cooper-White et al. [10] and Tritaatmadja et al. [37] in which show that no
beads-on-th string forms for weakly viscoelastic liquid jets. In Fig. 14 we
make a comparison between the jet radii against the arc length for the case
of liquid jets with and without surfactants. It can readily be observed that
adding surfactants on liquid jets delay the break-up of viscoelastic liquid jets
and that therefore break-up occurs further down the jet. These results are
similar to those found by Uddin [38] for spiralling Newtonian liquid jets with
surfactants.

In Fig. 15 we observe that increasing the viscosity ratio αs makes the
liquid jet have a longer break-up length both in the presence of surfactants
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Figure 13: Graph showing viscoelastic liquid curved jets with surfactants by changing the
initial surfactant concentration ζ. The parameters here are Re = 2000, We = 10, Rb =
2, k = 0.7, De = 20, δ = 0.01, β = 0.5 and αs = 0.20.
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Figure 14: Graph showing the relationship between the radius R0 and the distance along
the jet s with and without surfactants for viscoelastic liquid curved jets. The parameters
here are Re = 2000, We = 10, Rb = 2, k = 0.7, De = 20, δ = 0.01, β = 0.5 and αs = 0.20.
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Figure 15: Break-up lengths versus the viscosity ratio αs of viscoelastic liquid curved
jets with and without surfactants. The parameters here are Re = 2000, We = 10, Rb =
2, De = 20 and δ = 0.01.
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Figure 16: Graph showing the relationship between main droplet sizes and the viscosity
ratio αs with and without the effect of surfactants on viscoelastic liquid curved jets. The
parameters here are Re = 2000,We = 10, Rb = 2, k = 0.8,De = 20 and δ = 0.01.
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Figure 17: Graph showing the relationship between satellite droplet sizes and the viscosity
ratio αs with and without the effect of surfactants on viscoelastic liquid curved jets. The
parameters here are Re = 2000,We = 10, Rb = 2, k = 0.8,De = 20 and δ = 0.01.
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Figure 18: Graph showing the relationship between break-up lengths and the parameter
β for two different values of rotation rates Rb with and without the effect of surfactants
on viscoelastic liquid curved jets. The parameters here are Re = 2000, We = 10, k =
0.8, De = 20, ζ = 0.3, δ = 0.01 and αs = 0.20.
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Figure 19: Graph showing the relationship between main droplet sizes versus the parameter
β for two different values of rotation rates Rb with and without the effect of surfactants
on viscoelastic liquid curved jets. The parameters here are Re = 2000, We = 10, k =
0.8, De = 20, ζ = 0.3, δ = 0.01 and αs = 0.20.
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Figure 20: Graph showing the relationship between satellite droplet sizes versus the pa-
rameter β for two different values of rotation rates Rb with and without the effect of
surfactants on viscoelastic liquid curved jets. The parameters here are Re = 2000, We =
10, k = 0.8, De = 20, ζ = 0.3, δ = 0.01 and αs = 0.20.
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and without it. Moreover, we plot a graph (Fig. 16) to show main droplet
sizes when the viscosity ratio is varied and we see that main droplet sizes are
not affected significantly. However, in Fig. 17 it can be noticed that satellite
droplet sizes increase when the viscosity ratio is increased.
Now we turn our attention to study the effectiveness of surfactants β. In
order to do this, we see in Fig. 18 that increasing the parameter β leads to an
increase in the break-up length. In addition, the relationship between main
droplet sizes and the parameter β is shown in Fig. 19 and we see that high
rotation rates imply an increase the main droplet sizes. In Fig. 20 we show
that when the rotation rates are high, satellite droplet sizes decrease with
increasing the parameter β. These results are in agreement with Uddin [38].

8. Conclusions

In summary, the Oldroyd-B model has been used to model a viscoelastic
liquid curved jet having a layer of surfactants along its free surface. We have
used an asymptotic analysis to find the steady state solutions and we have
shown that trajectories of viscoelastic rotating liquid jets with surfactants do
not affect by the viscosity at leading order. We have also performed the lin-
ear instability analysis and examined the growth rate and the most unstable
mode for different values of the surfactant concentration. From the linear
instability, we have obtained that when we increase the surfactant concen-
tration ζ, the maximum growth rate and the most unstable mode decreases
(see Figs. 11 and 12) and this result agreed with Uddin [38]. We have also
found that when the viscosity ratio αs increases, the most unstable mode
and its associated the growth rate decreases (see Figs. 9 and 10).
A numerical method based on finite differences has been used to determine
break-up lengths, droplet sizes and satellite droplet sizes for viscoelastic liq-
uid curved jets with surfactants. From our results, we can see that break-up
lengths and main droplet sizes increase when we add surfactants. Whereas,
when we increase the effectiveness of surfactants, as measured by the pa-
rameter β, on viscoelastic rotating liquid jets, satellite droplet sizes decrease.
This work provides a framework to investigate the effects of variations in fluid
rheology and the use of surfactants (both of which are critical in the prilling
process) on the size of main and satellite droplets produced. An investigation
of the spatio-temporal behaviour of the resulting equations would provide ad-
ditional information including the occurrence of absolute instability and this
work is the object of current work.
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10. Appendix A

By using Eq. (1)4, the extra stress tensor equations become

∂Tss

∂t
+

u

hs

∂Tss

∂s
+

v

ε
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∂n
+

w ∂Tss

εn ∂φ
− 2

hs

(
∂u
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+ v cosφ − w sin φ
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(
∂v

∂s
+

∂u
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− u cos φ (XsZss − ZsXss)

)
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1
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∂u
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1
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,(62)
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Highlights 
 
 

1- We model viscoelastic rotating liquid jets with surfactants 
2- Increasing surfactants leads to different growth rates 
3- Altering rotation rates leads to differences in growth rates 
4- Steady state solutions are affected by surfactants and rotation 
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