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Abstract

Introduction: Hypothermic machine perfusion offers great promise in kidney

transplantation and experimental studies are needed to establish the optimal

conditions for this to occur. Pig kidneys are considered to be a good model for this

purpose and share many properties with human organs. However it is not

established whether the metabolism of pig kidneys in such hypothermic hypoxic

conditions is comparable to human organs.

Methods: Standard criteria human (n512) and porcine (n510) kidneys

underwent HMP using the LifePort Kidney Transporter 1.0 (Organ Recovery

Systems) using KPS-1 solution. Perfusate was sampled at 45 minutes and

4 hours of perfusion and metabolomic analysis performed using 1-D 1H-NMR

spectroscopy.

Results: There was no inter-species difference in the number of metabolites

identified. Of the 30 metabolites analysed, 16 (53.3%) were present in comparable

concentrations in the pig and human kidney perfusates. The rate of change of

concentration for 3-Hydroxybutyrate was greater for human kidneys (p,0.001). For

the other 29 metabolites (96.7%), there was no difference in the rate of change of

concentration between pig and human samples.
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Conclusions: Whilst there are some differences between pig and human kidneys

during HMP they appear to be metabolically similar and the pig seems to be a valid

model for human studies.

Introduction

The use of Hypothermic Machine Perfusion (HMP) in the period between kidney

retrieval and implantation is supported by robust clinical evidence with improved

early graft outcome [1–9]. Flow dynamics during perfusion is likely to account for

some of the benefits of HMP, with reduced intra-renal resistance (and therefore

increased flow) a marker of good graft function [10–12]. However, the exact

mechanism by which HMP improves outcome remains unclear and there is likely

to be a metabolic component underlying these beneficial effects [13, 14].

Accordingly, improved metabolic support during perfusion becomes a target for

graft optimisation. Experimental studies are needed to clarify these mechanisms

and optimisation of preservation may lead to improved transplant outcomes,

especially in marginal kidneys. However the metabolic activity in this ex vivo,

hypoxic, hypothermic environment is poorly understood.

Metabolomic analysis using 1H NMR spectroscopy permits identification and

quantification of a large number of metabolites within a biological sample and is

the subject of great interest. Easy access to perfusate during HMP and ability to

perform serial measurements render this an attractive technique with which to

establish a reliable biomarker and may even provide the option to improve the

metabolic function of organs with obvious potential benefits. We have shown that

perfusate analysis of human cadaveric kidneys is feasible and can be used to

reliably predict post transplant graft function [15]

Porcine kidneys are a convenient and accessible animal model for experimental

studies. They are readily available and have comparable size and physiological

properties to human organs [16–19]. Within transplantation, porcine models

have been studied extensively and normothermic perfusion is a good example of

how this has translated into clinical practice [20]. On a functional level, analysis

using 1H-NMR spectroscopy of perfusate from autotransplanted pig kidneys has

demonstrated that metabolite concentrations do correspond to graft outcome

indicating that there is a strong correlation between pre-transplant metabolism

and graft function [21].

Under normal physiological conditions, the metabolic profiles of porcine

blood, kidney tissue, urine and serum have been shown to be comparable to

humans [22, 23]. As of yet, this has not been validated in the ex vivo hypothermic

environment as encountered during HMP. The aim of this study is to compare the

metabolic profile of human and porcine kidneys using 1H-NMR spectroscopy of

HMP-derived perfusate to determine whether the porcine model is a valid

surrogate for human studies.

The Porcine Kidney Model Reflects Human Kidney Metabolism under HMP
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Methods

Human subject research

Ethical approval was obtained from the West of Scotland Research Ethics Service

for collection of human perfusate samples and subsequent NMR analysis (REC

reference number: 12/WS/0166). Written consent for research purposes was

granted from donor next of kin and from prospective kidney recipients to allow

for collection and publication of postoperative transplant function information.

Animal Research

Abattoir/slaughterhouse pig kidneys were used in this study, acquired through

F.A. Gill, Wolverhampton. No animals were sacrificed solely for the purposes of

this study and therefore no ethical board approval was necessary.

Human studies

Standard criteria (e.g. donor age ,60) adult cadaveric kidneys (n512) accepted

for transplantation and undergoing HMP at the Queen Elizabeth Hospital,

Birmingham between July 2012 and August 2013 were included, subject to

consent and resource availability. Kidneys from DCD (Donation after Cardiac

Death) donors and those fulfilling standard criteria definitions but with predicted

delayed graft function (e.g. Cold ischaemia time .16 hours) were excluded to

enable valid comparison with the pig group.

Organs were cold stored at 4 C̊ in the period following retrieval according to

local retrieval team protocols and transferred to the perfusion machine at the host

centre. Decision to preserve organs with HMP was determined by centre policy.

Pig studies

Experiments were performed on 22–26 week old ‘bacon weight’ pigs, weighing

80–85 kg (n510). All experiments were performed following the principles of

laboratory animal care according to NIH standards. Animal were sacrificed by

electrical stunning and exsanguination. Cold perfusion was performed ex-vivo

following laparotomy and retrieval and occurred within 14 minutes of death.

Kidneys were initially cold flushed (4 C̊) with 1L Soltran solution under aseptic

conditions at pressure of 150 mmHg. Organs were then cold stored in KPS-1

solution for two hours prior to machine perfusion to replicate human organ cold

storage conditions.

Hypothermic Machine Perfusion

Perfusion pressure for both animal and human organs was set at 30 mmHg and

kidneys were perfused with 1 L of KPS-1 at 4 C̊ using LifePort Kidney Transporter

1.0 (Organ Recovery Systems). Separate devices were used for human and animal

studies. 2 mL of perfusate was sampled at 45 minutes and 4 hours for each

The Porcine Kidney Model Reflects Human Kidney Metabolism under HMP

PLOS ONE | DOI:10.1371/journal.pone.0114818 December 12, 2014 3 / 12



kidney. Perfusate was transferred to a cryogenic vial and stored at 220 C̊ until

thawed at room temperature, prepared and processed.

Sample preparation

NMR samples were prepared by mixing 150 mL of 400 mM (pH 7.0) phosphate

buffer containing 2 mM TMSP [(3-trimethylsilyl)propionic-(2,2,3,3-d4)-acid

sodium salt] with 390 mL of each perfusate sample and 60 mL of deuterium oxide

(D2O) to reach a final phosphate buffer concentration of 100 mM and a final

TMSP concentration of 500 mM. After mixing, the 600 mL samples were pipetted

into NMR tubes and centrifuged to remove any air bubbles.
1H-NMR spectra were acquired using a Bruker AVII 500 MHz spectrometer

equipped with a 5 mm inverse Cryoprobe. The sample temperature was set to

300 K, excitation sculpting was used to suppress the water resonance [24]. One-

dimensional spectra were acquired using a 6 kHz spectral width, 32768 data

points, 4 s relaxation delay and 128 transients. Matching was manual prior to

acquisition of first sample and each sample was automatically shimmed (1D-

TopShim) to a TMSP line width of less than 1 Hz prior to acquisition. Samples

with a TMSP line width .1 Hz were acquired again after manual shimming

where the TMSP half height line width was shimmed below 1 Hz. Total

experimental time was approximately 15 minutes per sample.

All data sets were processed using the MATLAB based MetaboLab software

[25]. Data sets were zero filled to 65536 data points. An exponential line

broadening of 0.3 Hz was applied before Fourier transformation. The chemical

shift axis was calibrated by referencing the TMSP signal to 0 ppm. Spectra were

manually phase corrected and baseline correction using a spline before segmental

alignment of all resonances using Icoshift [26]. Spectra were then exported into

Bruker format.

Resultant spectra were examined using Chenomx 7.0 (ChenomxInc) profiling

to identify metabolites and their concentrations, as illustrated in Fig. 1.

Concentrations were corrected to compensate for the dilutional effect of the

buffer.

Statistical Methodology

Prior to analysis, the distribution of metabolites was examined. Where non-

normality was detected, Log10-transformations were applied, after adding 1 to

remove zero values. Repeated measures ANOVA models were then used to

compare metabolite concentrations, both between pig and human samples, and

between 45 minute and 4 hour timepoints. In addition to the main effect terms in

the models, interactions were also included, in order to compare the rate of

change over time in the metabolite concentrations between pig and human

samples.

Data were reported as arithmetic means and 95% confidence intervals for the

normally-distributed data. Where Log-transformations were used, the resulting

The Porcine Kidney Model Reflects Human Kidney Metabolism under HMP

PLOS ONE | DOI:10.1371/journal.pone.0114818 December 12, 2014 4 / 12



summary statistics were back transformed, and reported as geometric means and

95% confidence intervals.

All analysis was performed using IBM SPSS 19 (IBM Corp. Armonk, NY), with

p,0.05 deemed to be indicative of statistical significance.

Results

Metabolic support may be an important factor in the observed benefit of HMP

compared with cold storage for preserving kidneys prior to transplantation.

Experimental studies are needed to detail the metabolic activity of kidneys under

various storage conditions, but the usage of healthy human kidneys for such

research purposes is not justified.

This study seeks to ascertain whether the abundant and accessible porcine

kidney can provide a reliable metabolic model for the human kidney during

HMP.

Fig. 1. Example metabolic quantification using Chenomx database. Localised spectral plots for
metabolites of interest with shaded figures illustrating metabolite quantification via best fit analysis using
Chenomx metabolite database.

doi:10.1371/journal.pone.0114818.g001
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Metabolite concentrations as determined from 1H-NMR spectra from 10

porcine kidneys were compared with 12 standard criteria cadaveric human

kidneys, all of which were successfully transplanted with immediate graft function.

A spectral overlay analysis was performed for the mean spectra for pig and

human samples at 45 minutes and 4 hours. There were similar profiles for both

pig and human groups (Fig. 2). There were no metabolites consistently present in

significant quantities that were not detected in the other group.

In total, 30 metabolites were identified in the perfusate of both pig and human

kidneys during hypothermic machine perfusion. Of these, 6 (gluconate, mannitol,

glucose, adenine, ribose and glutathione) were constituents of the original KPS-1

perfusion fluid. There was consumption of glutathione in both pig and human

groups but no other significant interspecies or time effect differences for the other

five metabolites present.

For the 24 metabolites present de novo (therefore likely produced by the

kidney), there was an overall change over time for 12, with production of lactate,

glycine, glutamate, hypoxanthine, alanine, 3-hydroxybutryate, inosine, N-

phenylacetylglycine, leucine, valine, isoleucine and fumarate.

When concentrations were analysed according to species, there was no

difference during HMP between pig and human kidneys for 16 metabolites as

assessed using a repeated measures analysis. The rate of change of concentration

for 3-hydroxybutyrate was greater in human kidneys compared to pig kidneys

(0.017 to 0.040 mM vs 0.012 to 0.013 mM) (p,0.001). The vast majority of

metabolites detected (29/30) demonstrated no difference in the rate of change

between pig and human samples (Table 1, Fig. 3).

Discussion

The aim of this study was to determine whether or not the porcine kidney

provides a reliable metabolic model for the human kidney, as assessed by 1H-

NMR.

Whilst it is recognized that 1H-NMR can be used to detect metabolic changes

present within the perfusates during HMP, this paper demonstrates that in both

human and pig studies a significant amount of metabolic activity occurs. Some

interspecies metabolite differences are evident but nevertheless, the similarity

between the two groups is striking. This appears to validate porcine HMP as a

valid metabolic model for human studies and would suggest that a defined

optimal metabolic support protocol for HMP in a pig model would be

translatable into clinical practice.

The majority of metabolites were present in similar concentrations in both

species. For metabolites where concentration differences were observed, all but 3-

hydroxybutryate had comparable rates of change in concentration for pig and

human samples. This would imply that the active metabolic pathways during

HMP in both human and pig kidneys are broadly comparable. The kidney cannot

synthesise the ketone body 3-hydroxybutyrate to any significant extent but can

The Porcine Kidney Model Reflects Human Kidney Metabolism under HMP
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consume it as an energy source and is likely to be more pronounced in stressful

conditions such as hypothermia [27, 28]. Interspecies differences in the levels of

the enzyme responsible for metabolising 3-hydroxybutyrate, 3-hydroxybutyrate

dehydrogenase within the renal cortex and in plasma levels of 3-hydroxybutyrate

have been reported and may account for this finding [29].

The pig kidneys were subjected to a warm ischaemia time of 14 minutes which

is more prolonged than many Donation after Brain Death (DBD) human kidneys.

However the cold ischaemic time for the pig organs (2 hours) was shorter than

the human group in this study (mean 8 hr 40 min). There was also a significant

age discrepancy between the pig and human organs, with the older human

kidneys also likely subject to the global metabolic changes associated with brain

death prior to retrieval including thyroid, catecholamine and glycaemic effects

[30–35]. Such difference in retrieval conditions is likely to account for many of

the interspecies differences found such as the trend towards higher levels of lactate

in the human kidneys.

The authors acknowledge that the good quality standard criteria human

kidneys in this study are not representative of many of the organs used in clinical

practice. Indeed extended criteria organs may have most to gain from metabolic

optimistion during machine perfusion and further studies would be of value.

Fig. 2. 1H-NMR spectral overlay plot demonstrating the similarity of HMP perfused pig (red) and human (blue) kidneys after 4 hours of perfusion.

doi:10.1371/journal.pone.0114818.g002
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Table 1. Concentration of metabolites present after 45 minutes and 4 hours of perfusion in pig and human kidneys.

Time point p-Values

Species 45 Minutes 4 Hours Time Species Int.

Gluconate Human 92.9 (85.3–100.4) 96.6 (84.1–109.2) 0.799 0.342 0.616

Pig 89.6 (78.4–100.7) 88.3 (76.4–100.3)

Mannitol Human 48.8 (45.6–52.1) 52.3 (46.0–58.5) 0.543 0.368 0.667

Pig 53.3 (45.8–60.7) 53.9 (45.0–62.7)

Glucose Human 9.8 (9.0–10.6) 10.7 (9.6–11.7) 0.158 0.088 0.709

Pig 11.4 (9.3–13.5) 12.9 (9.7–16.1)

Adenine Human 7.0 (5.8–8.1) 7.1 (5.7–8.5) 0.924 0.681 0.816

Pig 6.7 (5.7–7.7) 6.7 (5.4–7.9)

Ribose Human 3.0 (2.8–3.3) 3.0 (2.4–3.6) 0.548 0.147 0.718

Pig 3.7 (2.9–4.5) 3.4 (2.6–4.3)

Glutathione Human 1.3 (1.2–1.4) 0.8 (0.6–0.9) ,0.001* 0.731 0.1

Pig 1.4 (1.2–1.7) 0.6 (0.4–0.8)

Malonate Human 2.36 (2.04–2.67) 2.42 (1.90–2.95) 0.778 0.855 0.91

Pig 2.26 (1.26–3.26) 2.41 (1.58–3.23)

Citrate# Human 1.0 (0.6–1.6) 1.1 (0.5–1.8) 0.478 0.005* 0.672

Pig 2.8 (1.7–4.5) 3.1 (1.9–4.8)

Lactate# Human 0.94 (0.80–1.09) 1.88 (1.49–2.33) 0.002* 0.005* 0.057

Pig 0.73 (0.37–1.17) 0.93 (0.69–1.22)

Glycine# Human 0.58 (0.47–0.70) 1.86 (1.40–2.41) ,0.001* 0.086 0.683

Pig 0.87 (0.67–1.09) 2.20 (1.65–2.85)

Glutamate# Human 0.26 (0.22–0.30) 1.05 (0.80–1.34) ,0.001* 0.013* 0.545

Pig 0.63 (0.34–0.99) 1.48 (1.07–1.96)

Hypoxanthine# Human 0.17 (0.12–0.22) 0.29 (0.22–0.36) 0.005* 0.782 0.888

Pig 0.19 (0.10–0.28) 0.30 (0.16–0.45)

Acetate# Human 0.13 (0.11–0.15) 0.13 (0.09–0.17) 0.507 ,0.001* 0.462

Pig 0.31 (0.20–0.43) 0.34 (0.23–0.47)

Formate# Human 0.10 (0.07–0.13) 0.11 (0.08–0.15) 0.594 0.306 0.411

Pig 0.13 (0.09–0.18) 0.13 (0.09–0.18)

Alanine# Human 0.08 (0.07–0.09) 0.20 (0.16–0.24) ,0.001* 0.961 0.133

Pig 0.10 (0.08–0.12) 0.18 (0.13–0.23)

Creatinine# Human 0.031 (0.020–0.043) 0.057 (0.049–0.065) 0.084 0.031* 0.558

Pig 0.080 (0.029–0.133) 0.133 (0.040–0.233)

Ethanol# Human 0.024 (0.021–0.027) 0.036 (0.010–0.063) 0.385 0.018* 0.573

Pig 0.076 (0.040–0.114) 0.079 (0.037–0.123)

Isopropanol# Human 0.023 (0.017–0.030) 0.025 (0.018–0.032) 0.792 0.063 0.167

Pig 0.017 (0.015–0.019) 0.016 (0.014–0.018)

3-Methylxanthine Human 0.020 (0.016–0.025) 0.024 (0.019–0.028) 0.361 0.118 0.44

Pig 0.017 (0.010–0.023) 0.017 (0.010–0.023)

3-Hydroxybutyrate Human 0.017 (0.013–0.021) 0.040 (0.031–0.048) ,0.001* ,0.001* ,0.001*

Pig 0.012 (0.006–0.017) 0.013 (0.005–0.020)

Inosine# Human 0.017 (0.008–0.025) 0.023 (0.011–0.035) 0.038* 0.008* 0.241

Pig 0.003 (0.001–0.004) 0.005 (0.002–0.007)

Uracil Human 0.011 (0.010–0.012) 0.018 (0.013–0.023) 0.05 0.020* 0.258

The Porcine Kidney Model Reflects Human Kidney Metabolism under HMP
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Whilst the number and concentration change of the metabolites in pig and human

perfusates are comparable in this study, it lacks the power to detect small

interspecies differences. Furthermore in 1-D spectra, metabolites with small single

peaks can be obscured by more dominant signals from other metabolites with

similar chemical shifts.

Perfusate analysis determines the concentration of metabolites in the

extracellular environment of the kidney. Whilst the intracellular activity of many

metabolites can be inferred from this, metabolomic analysis of kidney tissue

would provide a more detailed account of the intracellular milieu and is a

limitation of this study.

This study demonstrates that 1H-NMR spectroscopy profiles of perfusate

samples for porcine and human kidneys during HMP are similar and implies that

similar metabolic processes occur during preservation in the two species. This

further validates the pig as a model for human transplantation and for HMP in

particular.

Table 1. Cont.

Time point p-Values

Species 45 Minutes 4 Hours Time Species Int.

Pig 0.007 (0.005–0.008) 0.009 (0.000–0.017)

N-Phenylacetyl glycine# Human 0.011 (0.005–0.016) 0.022 (0.010–0.034) 0.041* 0.18 0.094

Pig 0.009 (0.003–0.014) 0.010 (0.004–0.016)

Pyruvate# Human 0.011 (0.006–0.016) 0.010 (0.005–0.015) 0.371 0.112 0.24

Pig 0.012 (0.005–0.019) 0.020 (0.010–0.030)

Leucine# Human 0.008 (0.006–0.010) 0.017 (0.009–0.025) 0.020* ,0.001* 0.787

Pig 0.027 (0.016–0.037) 0.038 (0.025–0.052)

Valine# Human 0.008 (0.006–0.010) 0.013 (0.010–0.016) 0.002* ,0.001* 0.082

Pig 0.024 (0.018–0.029) 0.041 (0.025–0.057)

Tyrosine# Human 0.007 (0.001–0.012) 0.006 (0.005–0.008) 0.132 0.001* 0.083

Pig 0.014 (0.010–0.017) 0.020 (0.014–0.026)

Hippurate# Human 0.005 (0.002–0.007) 0.027 (0.000–0.067) 0.298 0.198 0.337

Pig 0.001 (0.000–0.002) 0.002 (0.000–0.004)

Isoleucine# Human 0.004 (0.004–0.005) 0.008 (0.006–0.010) 0.001* ,0.001* 0.074

Pig 0.014 (0.010–0.017) 0.024 (0.016–0.032)

Fumarate# Human 0.003 (0.002–0.004) 0.004 (0.002–0.006) 0.012* 0.002* 0.295

Pig 0.007 (0.004–0.009) 0.010 (0.007–0.013)

Data reported as ‘‘Arithmetic Mean (95% Confidence Interval), unless stated otherwise.
#Analyses were log-transformed in the analysis, hence are reported as ‘‘Geometric mean (95% CI).
p-values: Time – Main effect of measurement time; Species – Main effect of species; Int. – Interaction between measurement time and species.
*Significant at p,0.05.

doi:10.1371/journal.pone.0114818.t001
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