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ABSTRACT 24 

Cadherins are mediators of cell-cell adhesion in epithelial tissues. E-cadherin is a known tumour suppressor and 25 

plays a central role in suppressing the invasive phenotype of cancer cells. However, the abnormal expression of N- 26 

and P-cadherin (“cadherin switching”) has been shown to promote a more invasive and malignant phenotype of 27 

cancer, with P-cadherin possibly acting as a key mediator of invasion and metastasis in bladder cancer. Cadherins are 28 

also implicated in numerous signalling events related to embryonic development, tissue morphogenesis, and 29 

homeostasis. It is these wide-ranging effects and the serious implications of cadherin switching that make the 30 

cadherin cell adhesion molecules and their related pathways strong candidate targets for the inhibition of cancer 31 

progression, including bladder cancer. This review will focus on cadherin switching in the context of bladder cancer 32 

and in particular the switch to P-cadherin expression, and will discuss other related molecules and phenomena, 33 

including EpCAM and the development of the cancer stem cell phenotype. 34 

 35 

MEDIA SUMMARY 36 

 Cadherins are mediators of cell-cell adhesion in epithelial tissues. E-cadherin is a tumour suppressor and plays a 37 

central role in suppressing the invasive phenotype of cancer cells. However, the abnormal expression of other 38 

cadherins (“cadherin switching”) has been shown to promote a more invasive and malignant phenotype of cancer. 39 

Cadherins are also implicated in numerous signalling events related to embryonic development, tissue 40 

morphogenesis, and homeostasis. It is these wide-ranging effects and the serious implications of cadherin switching 41 

that make the cadherin cell adhesion molecules and related pathways attractive targets for the inhibition of cancer 42 

progression, including bladder cancer.43 
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BLADDER CANCER 44 

Introduction 45 

Urothelial bladder cancer (UBC) is the fifth most common cancer in Western society, with a global incidence of over 46 

356,000 and a prevalence estimated at 2.7milion [1;2]. The burden of the disease is predicted to increase 47 

significantly in the foreseeable future as a result of population aging and the increasing world population, together 48 

with the progression of the tobacco epidemic and increasing exposure to occupational carcinogens in developing 49 

countries [2]. In the UK there are approximately 10,200 new cases and 5,000 deaths attributed to bladder cancer per 50 

year [3]. In Western populations over 90% of bladder cancers are transitional cell carcinomas of urothelial origin 51 

(urothelial cancers, UCs), and at presentation 75-85% will be non-muscle-invasive tumours (NMIBC, stages 52 

Ta/T1/Tis), with the remainder being muscle-invasive (MIBC, stages T2-4) [1;4-6]. 53 

NMIBC is a heterogeneous disease typified by a high rate of recurrence (15-61% at one year, depending upon risk 54 

category [7]) and so long-term, even lifelong, surveillance with outpatient flexible cystoscopy is the mainstay of 55 

subsequent management [6;8]. Progression to MIBC is also a concern for high-risk NMIBC patients, occurring in up to 56 

17% of patients at one year [7]. However, the overall prognosis is good with 65-85% of patients surviving for 5 years 57 

or more [5].  58 

Progression to (or presentation with) MIBC represents the critical step in the disease course, necessitating more 59 

radical therapies and carrying a 5-year survival rate of only 25-50% [5;9]. For curative intent, patients who present 60 

with or progress to MIBC are treated by radiotherapy [6;10], chemoradiotherapy [11], radical cystectomy, or 61 

neoadjuvant chemotherapy followed by radical cystectomy [6;9;10].  62 

The cumulative cost of treating UBC exceeds all other forms of human cancer, the majority of which is attributable to 63 

the long-term treatment and surveillance of NMIBC [12-14]. Despite this, there is only modest research funding for 64 

UBC compared to other malignancies [15], and as a result there has been a lack of scientific advancement in the field 65 

[15-17], with no major new drugs approved for UBC in over 10-years [17;18].  66 

Cadherins are mediators of cell-cell adhesion in epithelial tissues [19;20]. We have previously demonstrated that the 67 

abnormal expression of P-cadherin (an example of “cadherin swithching”) is associated with an invasive and 68 
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aggressive phenotype of UBC [21], and have hypothesized that P-cadherin may act as a key effector of muscle-69 

invasion [22]. The cadherins are involved in a number of important phenomena related to cancer progression, 70 

including epithelial-to-mesenchymal transition (EMT) and the development of a cancer stem cell phenotype [22;23]. 71 

It is these wide-ranging effects and the serious implications of cadherin switching that make the cadherins and their 72 

related pathways strong candidate targets for the inhibition of cancer progression, including UBC. This review will 73 

focus on cadherin-based cell adhesion in the context of UBC and the switch to P-cadherin expression, and will discuss 74 

other related molecules and phenomena, including EpCAM and the development of the cancer stem cell phenotype.  75 

 76 

METHODS 77 

Our group has been working in the field of cadherin biology for a number of years [24;25], and we regularly review 78 

the literature on these molecules and their associated pathways [22]. Specifically, this review was written utilising 79 

papers obtained following PubMed searches and with the following structure: bladder cancer background, 80 

epidemiology and molecular pathogenesis; cadherin background and biology; cadherins in epithelial malignancies, 81 

cadherin switching, and cadherins in bladder cancer. The background to cadherins and cadherin biology presented 82 

here has been derived from key papers by workers who initially characterised and described these molecules, and 83 

then who subsequently investigated cadherin expression and function in various epithelial malignancies and model 84 

systems. We updated the field for cadherin switching to describe this process in the context of malignancy and 85 

related phenomena (eg. epithelial-to-mesenchymal transition, cell migration, metastasis, cancer stem cells, EpCAM 86 

signalling), utilising papers written by significant workers in this field. The data, findings and information contained 87 

within these publications were then assimilated to create a review of cadherin switching in bladder cancer and 88 

including some of our own interpretations.  89 

 90 

MOLECULAR PATHWAYS TO NON-MUSCLE-INVASIVE & MUSCLE-INVASIVE BLADDER CANCER 91 

Different approaches have been taken to describe the molecular alterations involved in bladder tumorigenesis [26-92 

31]. We have previously described such pathways based upon the six “hallmarks of cancer” described by Hanahan 93 
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and Weinberg in 2000 [32-35]. In 2011 Hanahan and Weinberg updated their original landmark review, describing 94 

genome instability and inflammation as underlying these hallmark changes, and proposed “reprogramming of 95 

energy metabolism” and “evading immune destruction” as two emerging hallmarks with potential for generality 96 

[35]. In addition, they described that tumors exhibit another dimension of complexity by containing a repertoire of 97 

recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor 98 

microenvironment" [35], and our own research has demonstrated the apparent importance of the immunological 99 

milieu of the bladder tumour microenvironment [RT Bryan et al - unpublished data]. In their 2011 update, Hanahan 100 

and Weinberg also introduced the concept of “cancer stem cells” [35], a concept that has existed for a number of 101 

years in haematopoietic malignancies [36;37]. Cancer stem cells (CSCs) are a subset of tumor cells that have the 102 

ability to self-renew and to generate all of the heterogeneous cells that comprise a tumor (properties that are 103 

analogous to a stem cell, the original cell of an organ and responsible for organogenesis and organ maintenance) 104 

[23;36;38-40]. In the setting of UBC, CSCs appear to play a role in a subset of tumors, but their true significance is yet 105 

to be clarified [23].  106 

Other authors have reviewed the field of UBC molecular pathogenesis in detail [26-31], and there has been general 107 

consensus on a divergent pathway for the development of Ta/T1 disease and Tis/T2+ disease [29;41-46]. However, 108 

Dancik et al recently identified a cell of origin gene signature for basal cells and umbrella cells of the urothelium [47]. 109 

By utilising this cell of origin signature in UBCs from 874 patients, it appeared that NMIBCs and MIBCs developed 110 

from distinct progenitor cells [47], possibly shifting our understanding of urothelial carcinogenesis away from the 111 

classical two pathway model. Further detailed genomic and epigenomic studies of both MIBCs and NMIBCs are thus 112 

required to clarify our understanding of the pathogenesis of these tumours [48].  113 

Although a detailed examination of these pathways is beyond the scope of this review, this is a rapidly changing field 114 

and new developments appear frequently with the advent of high-throughput experimental platforms including 115 

“deep sequencing” [49], proteomics [50-52] and metabolomics [53]. Most recently, The Cancer Genome Atlas (TCGA) 116 

Research Network undertook the comprehensive molecular characterization of 131 MIBCs [49]. With regard to 117 

somatic DNA mutations, a notable finding was the significant enrichment of non-silent mutations in chromatin 118 

regulatory genes compared to other epithelial cancers studied: 76% of the tumours (MIBCs) had an inactivating 119 
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mutation in one or more of these genes, and 41% had at least two such mutations [49]. TP53 mutations were also 120 

common (49%), as were amplification and overexpression of MDM2, suggesting that TP53 function was inactivated 121 

in 76% of tumours [49]. There were a large number of previously undescribed mutations, and viral DNAs and 122 

transcripts were also indentified [49]. RNA-seq data identified 4 tumour clusters and pathway analysis demonstrated 123 

three frequently dysregulated pathways [49]: cell-cycle regulation (altered in 93% of cases); kinase and 124 

phosphatidylinositol-3-OH kinase (PI(3)K) signaling (72%); and chromatin remodelling (89%). A number of the 125 

genomic alterations indentified are theoretically amenable to therapeutic targeting [49], and such new therapeutics 126 

are desperately needed for UBC [17;18;54].  127 

Choi et al also utilised whole genome mRNA expression profiling to cluster MIBCs into 3 distinct groups, based upon 128 

the established molecular subtypes of breast cancer [55]: basal MIBCs shared biomarkers with basal breast cancers 129 

and were characterized by p63 activation, squamous differentiation, and more aggressive disease; luminal MIBCs 130 

contained features of active PPARγ and oestrogen receptor transcription and were enriched with activating FGFR3 131 

mutations and potential FGFR inhibitor sensitivity; p53-like MIBCs were consistently resistant to a number of 132 

chemotherapeutics, including cisplatin; and all chemoresistant tumours adopted a p53-like phenotype after therapy 133 

[55]. These findings have important implications for the clinical management of MIBC: they include not only 134 

prognostic information, but also suggestions for subtype-directed targeted therapy and potential to predict response 135 

to cisplatin-based chemotherapy (although further work is needed to elucidate other biomarkers of resistance) [56]. 136 

It is, however, disappointing that NMIBCs were not analysed in the same way by either the TCGA Research Network 137 

or Choi et al [48], especially as these tumours represent the vast majority (>75%) of bladder cancer patients [57;58].  138 

 139 

CADHERINS 140 

The classical cadherins are calcium-dependent transmembrane glycoproteins found at the adherens junction and are 141 

mediators of cell-cell adhesion in epithelial tissues [19;20]. E-cadherin is a tumour suppressor, playing a central role 142 

in suppressing the invasive phenotype of UBC cells [59]. The abnormal expression of other “classical” cadherins (P- 143 

and N-cadherin) has been shown to promote a more invasive and malignant phenotype of UBC [24], possibly acting 144 
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as key mediators of invasion and metastasis. With such a large difference in UBC outcomes between early stage 145 

disease (stage Ta) versus MIBC (stages T2+) it is reasonable to assume that cell adhesion molecules, and in particular 146 

cadherins, play a fundamental role in the spread of bladder tumours, initially from the urothelium into the lamina 147 

propria (through the basement membrane) and subsequently into the detrusor muscle [22]. Therefore, the classical 148 

cadherins and their related molecular pathways represent attractive therapeutic targets for the inhibition of 149 

progression in bladder cancer patients [19;59-61]. 150 

Cadherins comprise of extracellular (EC1-5), transmembranous, and cytoplasmic domains, with the cytoplasmic 151 

domain anchored to the cell cytoskeleton by catenin family members (α-, β-, γ-catenin and p120) [19;61-65]. P21-152 

activated kinase 5 (PAK5) also appears to associate with β-catenin and p120 to stabilise the adherens junction in 153 

order to maintain normal cell-cell adhesion [66]. Traditionally, cell-cell adhesion is described as being achieved by 154 

the symmetric interactions of the first extracellular domains (EC1) of cadherins on neighbouring cells (trans-155 

interaction) [64;67]; cadherins on the same cell also interact with each other (cis-interaction) through the EC1 156 

domain of one and the EC2 domain of the other [64;67;68]. More recently, it has been described that optimal cell-157 

cell adhesion (50-70pN) is achieved by all 5 EC domains of E-cadherin, and with a cell-cell separation of 5-11nm [65]. 158 

See Figure 1. E-, P- and N-cadherin were the first cadherins identified, and can all mediate cell-cell adhesion in this 159 

fashion [63;69]: 160 

• E-cadherin (CDH1, 120kDa): the main mediator of cell-cell adhesion in epithelial tissues and expressed by 161 

most normal epithelial cells [19;61;62;69-71].  162 

• N-cadherin (CDH2, 130kDa): expressed by neural, endothelial, and muscle cells, but not normally by 163 

epithelial cells [62;69].  164 

• P-cadherin (CDH3, 118kDa): normally only weakly expressed in the basal layers of stratified epithelia such as 165 

oesophagus, bronchus and bladder [24;69;71].  166 

Epithelial malignancies, including bladder cancer, typically show loss of E-cadherin expression as grade and stage 167 

progress, and this is often accompanied by increased expression of N- or P-cadherin. This phenomenon is described 168 

as “cadherin switching” [19;61;69;71-73], illustrated in the bladder cancer setting in Figure 2. Excellent reviews of 169 
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the field have been published recently [74;75], and we have previously reviewed this field for bladder cancer [22]; 170 

we provide an overview below. 171 

 172 

CADHERIN SWITCHING 173 

Cadherin switching (CS) is a hallmark of epithelial-to-mesenchymal transition (EMT) [76], the process by which 174 

epithelial cells lose their characteristic polarity, disassemble cell junctions, and become more migratory as a 175 

precursor to invasion and metastasis (they acquire properties analagous to mesenchymal cells) [19;25;61;77-82]. In 176 

this setting, CS typically describes a process where the normal expression of E-cadherin is replaced by the abnormal 177 

expression of N-cadherin, or where N-cadherin expression is increased and E-cadherin levels remain unchanged 178 

[19;61;76]. CS appears to play a role late in many malignancies (including breast, prostate, pancreas, ovarian, 179 

bladder and melanoma), resulting in a more invasive and malignant phenotype of disease with a worse outcome 180 

[19;24;61;74-76;83-89]. The regulation of CS is yet to be fully elucidated, but most likely involves transcriptional and 181 

post-transcriptional events, possibly influenced by cytokines or growth factors [19;61]. Recently, Slug (SNAI2, a 182 

member of the Snail family of zinc-finger transcription factors) has been identified to play a critical role in EMT by 183 

control of the E-cadherin to N-cadherin switch in UBC [90]. 184 

In UBC, ourselves and others have described CS, demonstrating increased expression of both P- and N-cadherin in 185 

late stage high-grade disease (Figure 2) [24;69;89;91;92]. We studied 153 bladder tumours and utilised a variety of 186 

cell lines and functional in vitro models [24]: increased membranous P-cadherin expression was observed in almost 187 

half of all MIBCs and almost 40% of grade 3 UBCs, accompanied by significantly reduced expression of E-cadherin 188 

[24]. Increased P-cadherin expression was associated with worse bladder cancer-specific survival, and P-cadherin 189 

status was an independent prognostic factor (alongside grade and stage) [24]. Functional in vitro experiments 190 

showed that altering the balance of E- and P-cadherin in favour of P-cadherin expression enhanced anchorage-191 

independent growth, and that P-cadherin alone was unable to mediate normal cell-cell adhesion [24]. We concluded 192 

that P-cadherin expression promoted a more malignant and invasive phenotype of bladder cancer (even in the 193 

presence of E-cadherin), and appeared to have a novel role late in the disease process [24].  194 
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Mandeville et al also demonstrated similar findings [92]. In their in vitro studies, utilising P-cadherin transfection and 195 

knockdown, they demonstrated that P-cadherin induced a significant increase in migratory capacity (although with 196 

no accompanying change in invasive potential) [92]. The authors suggested that P-cadherin may have a role in 197 

regulating the migration of basal cells to the intermediate cell layer in normal urothelium, as well as a role in 198 

neoplastic progression [92].  More recently, Wang et al have demonstrated similar findings [89].  199 

Ourselves and others have postulated that a subgroup of aggressive P-cadherin-expressing tumours may be derived 200 

from the normally weakly P-cadherin-expressing basal layer of the urothelium [22]. In support of this hypothesis, 201 

Van Batavia et al recently demonstrated that papillary and CIS lesions were derived from different urothelial 202 

populations, with intermediate cells contributing to non-invasive papillary lesions and basal cells representing the 203 

origin of CIS (which ultimately leads to MIBC) [93]. These findings support a model in which the heterogeneity 204 

observed in bladder cancers is determined both by genetic changes and the cell lineage from which the tumour 205 

originates [93].   206 

However, despite P-cadherin expression being associated with a more aggressive phenotype in many cancers, such 207 

behaviour is not ubiquitous and is context dependent [75]. For example, in malignant melanoma, which commonly 208 

demonstrates a cadherin switch to N-cadherin expression [22], P-cadherin promotes adhesion and inhibits invasion 209 

in a similar fashion to E-cadherin [75], and E-cadherin negative breast cancer cells show many similarities when 210 

subsequently transfected with E- or P-cadherin [74;94]. Ribeiro et al investigated these phenomena in detail in a 211 

breast cancer model, demonstrating that P-cadherin co-localizes with E-cadherin, and promotes cell invasion by 212 

disrupting E-cadherin/catenin interactions [95]. E- and P-cadherin co-expressing tumour cells showed enhanced in 213 

vivo tumour growth compared with those expressing only E- or only P-cadherin, and co-expression of E- and P-214 

cadherin in breast tumours correlated with high-grade biologically aggressive tumours accompanied by poor patient 215 

survival [95]. It is therefore feasible that P-cadherin only promotes invasion in tissues that endogenously express E-216 

cadherin [74], with heterodimerisation between E- and P-cadherin disrupting the formation of functional cadherin-217 

catenin complexes [75]. 218 

It is likely that the key mechanisms involved in P-cadherin’s deregulation largely occur in the promoter region of 219 

CDH3 and not by structural alterations of its coding sequences [74]: in 2005, Paredes at al demonstrated 220 
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hypomethylation of the CDH3 gene promoter correlated with P-cadherin overexpression in breast cancer [74;96], 221 

and other workers have described this phenomenon in pancreatic [74;97] and colorectal cancers [74;98]. Our own 222 

data suggest differential CDH3 promoter methylation between bladder cancer cell lines and tumours, and normal 223 

urothelium [RT Bryan - unpublished data]. Furthermore, the balance of E- and P-cadherin expression impacts the 224 

overall genetic programme [74], altering the expression of genes involved in signal transduction and growth factors, 225 

cell cycle, cell adhesion and the extracellular matrix, cytokines and inflammation [74;94]. In addition, P-cadherin can 226 

provoke the secretion of pro-invasive factors such as the matrix metalloproteinases MMP1 and MMP2 [74;75;99]. 227 

The role of p120 also appears important, with P-cadherin probably interfering with the normal binding of p120 to E-228 

cadherin at the adherens junction [74;100]. In a pancreatic cancer model, accumulation of p120 in the cytoplasm 229 

(and not bound to E-cadherin at the membrane) appeared to induce the increased cell migration seen following P-230 

cadherin expression via the Rho GTPases, Rac1 and Cdc42 [74;101]. P-cadherin-induced increase in Rac1 and Cdc42 231 

activity (mediated via p120) has also been observed in ovarian cancer [74;102]. Specifically, insulin-like growth factor 232 

1 receptor (IGF1R) can seemingly form a complex with P-cadherin, resulting in the tyrosine phosphorylation and 233 

activation of cytoplasmic p120 to promote invasion [75;102;103]; this pathway appears specific to P-cadherin and 234 

not the other classical cadherins [75;103].  235 

Taken together, all of the data above emphasise that P-cadherin represents a very attractive target for novel anti-236 

cancer therapeutics [74], and phase I trials of a P-cadherin inhibitor (PF-03732010, a human monoclonal antibody 237 

against P-cadherin) have been undertaken [104], although its development now seems to have stalled.  238 

 239 

CADHERINS AND CANCER STEM CELLS 240 

Although solid tumours can be reduced in size or eradicated by chemotherapy, radiotherapy or surgery (alone or in 241 

combinations), disease relapse or progression often occurs [105;106]. Such relapse or progression may be explained 242 

by the persistence of residual tumour-initiating cells and tumour-maintaining cells, and such cells have been 243 

reported in a variety of malignancies (breast, brain, prostate, lung, pancreas, etc) since they were first identified in 244 

leukaemia [79;105;107]. Such “cancer stem cells” (CSCs) theoretically have the ability to self-renew and to generate 245 
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the heterogeneous cells that comprise a tumour [105-110], and thus need to be eradicated to provide long-term 246 

disease-free survival (although it appears that CSCs are more resistant to conventional therapies) [108;110-112]. 247 

CSCs may either develop following genetic or epigenetic events in normal stem cells or from differentiated tumour 248 

cells that develop the capability for unlimited growth [23;82]. Cellular markers of “stemness” are still under debate, 249 

but include CD44, CD24, CD133 and EpCAM [82]: in breast, prostate and oral squamous carcinomas, CSCs are likely 250 

identified as CD44+/CD24-, whereas CD133 appears to be a CSC marker in gliomas and in colon and pancreatic 251 

carcinomas [82]. 252 

In a previous review we suggested that the evidence supports the CSC paradigm for UBC, as in other epithelial 253 

malignancies [23]. As discussed above, in normal urothelium P-cadherin is only expressed in the basal cell layer (the 254 

assumed urothelial stem cell niche) and in a subset of more aggressive UBCs [21-23;92;113]. It is therefore tempting 255 

to assume that P-cadherin is a marker of urothelial stem cells and UBC CSCs. Although E-cadherin intercellular 256 

adhesion is considered important for the survival of human embryonic stem cells (hESCs) and induced pluripotent 257 

stem cells (iPSCs) [82], Kolle et al recently identified CDH3 (P-cadherin) and TACSTD1 (EpCAM) as genes encoding 258 

hESC markers (antibodies for EpCAM were also able to enrich for pluripotent hESCs) [114]. Vieira et al have also 259 

demonstrated that P-cadherin mediates stem cell properties in basal-like breast cancer [115]. P-cadherin therefore 260 

appears promising as a potential marker of CSCs in UBC, and similar work is required to confirm these findings in 261 

UBC [23]. The fact that CDH3 (P-cadherin) did not appear in Dancik et al’s cell of origin signature described earlier is 262 

somewhat surprising since it is normally expressed by basal urothelial cells and in a subset of aggressive UBCs that 263 

may also harbour CSCs; however, as described above, P-cadherin’s deregulation is most likely governed by 264 

epigenetic phenomena rather than structural alterations in its coding sequences [74]. Characterisation of the UBC 265 

epigenome/methylome may thus be required to elucidate P-cadherin’s role in these UBC subtypes. 266 

It is highly feasible that treatment-resistant cells develop via other mechanisms and pathways, with CSCs being 267 

responsible only for a minority [105;116]. Heterogeneity within some tumours may result from selective pressure 268 

during tumorigenesis [35;112]. See Figure 3. It has been suggested that UBCs arise from more differentiated cells, 269 

and self-renewal capacity may be acquired secondarily by inactivation of p53 and RB1 function [105;116]. The 270 

tumour microenvironment may also play an important role [108], potentially inducing a transitory or reversible CSC-271 
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like state [117]: although EMT may drive the development of CSCs [35], EMT itself is reversible with mesenchymal-272 

to-epithelial transition (MET) favouring a cell’s colonisation of distant sites to generate metastases [35]. Whether the 273 

CSC state reverses in a similar setting and fashion remains unknown, but such interactions highlight the importance 274 

of the tumour microenvironment for all cancer cells, not just CSCs [35]. 275 

 276 

CADHERINS AND EPCAM 277 

EpCAM is a type-1 membrane protein that functions as a cell adhesion molecule [118]. It is overexpressed in many 278 

epithelial malignancies, including bladder CIS [119] and high grade and advanced stage UBCs [120]. The tumour-279 

specific expression of EpCAM has led to its use for capturing circulating tumour cells by the FDA-approved 280 

CELLSEARCH system [121], and also for directing therapies to bladder tumours [122]. High tissue levels of EpCAM are 281 

associated with a poor prognosis in UBC [120]. However, the role of EpCAM remains elusive: both tumour 282 

suppressor and oncogenic properties have been reported. In 2009, Maetzel et al demonstrated that EpCAM could be 283 

sequentially cleaved to release extracellular and intracellular domains, ‘EpEX’ and ‘EpICD’, respectively [123]; EpICD 284 

diffuses into the nucleus and activates oncogenic signalling events by associating with FHL2, β-catenin and Lef-1 285 

[123;124]. See Figure 4. 286 

In 2014, as part of our de novo urinary biomarker discovery programme [125], we demonstrated that elevated 287 

urinary EpCAM was observed in patients with grade 3 NMIBCs and MIBCs [51;52]. EpCAM was a significant 288 

independent prognostic factor for UBC-specific survival, with elevated urinary levels resulting in an increased risk of 289 

dying from bladder cancer (hazard ratio 1.76). The predominant form of EpCAM in the urine was a soluble and stable 290 

form comprised of the entire extracellular domain, and not the intact protein [52]. Our data therefore suggested 291 

that the cleavage of EpCAM into EpEX and EpICD could also occur in UBC [52;123], and further evidence supports 292 

this: Ralhan et al recently demonstrated that 9 out of 10 cases of UBC were positive for EpICD [126]. However, our 293 

work demonstrated that the extracellular domain of EpCAM was released by cleavage immediately adjacent to the 294 

cell membrane [52]; the exact location of cleavage was not described by Maetzel et al [123], but the protease 295 
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involved (TACE or ADAM 17) usually cleaves membrane proteins 10-15 residues away from the membrane surface 296 

[127], suggesting atypical cleavage or an alternative mechanism of extracellular domain release in UBC [52].  297 

Notably, there are important relationships between EpCAM and classical cadherins, although this relationship 298 

appears to be tissue- and tumour-specific [128]. In 1997, Litvinov et al suggested that EpCAM has a role in the 299 

development of a proliferative and malignant phenotype of epithelial cell [129]: increasing the expression of EpCAM 300 

in cadherin-positive cells led to the gradual abrogation of adherens junctions [129]. Although EpCAM had no 301 

influence on the total amount of cellular cadherin, it affected the interaction of the cadherins with the cytoskeleton 302 

and, as cadherin-mediated cell-cell adhesion diminished, EpCAM-mediated intercellular connections predominated 303 

[129]. In a murine fibroblast model, Winter et al subsequently demonstrated that this may occur by disruption of the 304 

link between α-catenin and F-actin, probably by EpCAM’s disruption of the actin cytoskeleton or possibly via p120 305 

[130]. In later work on human breast epithelial cells, the same authors demonstrated that EpCAM cross-signaling 306 

with N-cadherin resulted in the abrogation of cadherin adhesion complexes, mediated by PI(3)K [131]. In breast 307 

cancer cell lines, Martowicz et al showed that epithelial cells need EpCAM to promote growth and invasion, yet 308 

mesenchymal tumour cells are independent of EpCAM for invasion and progression [132]; the same authors also 309 

demonstrated that overexpression of EpCAM in human mammary epithelial cells led to a more proliferative 310 

phenotype and downregulation of E-cadherin [133]. 311 

Conversely, in a zebrafish model, Slanchev et al demonstrated that EpCAM was indispensible for skin epithelial 312 

integrity, and that epcam mutant embryos displayed reduced levels of membranous E-cadherin [134]. Guerra et al 313 

also postulated an important role for EpCAM in the maintenance of normal intestinal architecture and function in 314 

congenital tufting enteropathy, utilising an mTrop1/Epcam knockout mouse model of the disease [135]. Other model 315 

systems have also demonstrated a direct association between loss of EpCAM expression and loss of cadherin-316 

mediated adhesion [136]. 317 

Seemingly, EpCAM has dual functions in normal and cancerous cells with regard to cadherin regulation, cell-cell 318 

adhesion and epithelial integrity: EpCAM may be essential for normal epithelial tissue integrity and cell-cell 319 

adhesion, but there also appears to be a role for EpCAM in the disruption of normal cell-cell adhesion to initiate 320 

EMT, with the subsequent transformed cells acting independently of EpCAM signaling for invasion and progression. 321 
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Interestingly, Zeb1 (a known transcription factor inducing EMT) represses both E-cadherin and EpCAM by binding to 322 

the EpCAM promoter [137], yet the expression of E-cadherin and EpCAM is related to a stem cell-like phenotype 323 

[138;139]; in basal-like breast cancer EpCAM and P-cadherin both appear to be associated with the CSC phenotype 324 

[115]. As described for the hallmarks of cancer [34], the timing and ordering of these events appears to differ 325 

between normal and tumerous tissues, between different tissue and tumour types, and most likely within the same 326 

tumour. It is feasible that during EMT in some malignancies, EpCAM may stimulate the dissolution of E-327 

cadherin/catenin complexes and so permit P- and N-cadherin complexes to predominate (cadherin switching) and β-328 

catenin-mediated oncogene transcription to be upregulated; yet in other tumour types, EpCAM and E-cadherin may 329 

be downregulated in parallel, with EMT being driven by alternate pathways. Conversely, EpCAM may stabilise E-330 

cadherin/catenin complexes in some tumours, possibly providing a "stable" and less chaotic cellular milieu 331 

unaffected by EMT, in which the development of a CSC phenotype can be "nurtured" by alternative pathways (as 332 

described above, EpCAM is a cell surface marker of hESCs, and can be used to isolate a pluripotent subpopulation 333 

from hESC culture [114]). If the latter model is correct, then the corollary would potentially be the normalisation of 334 

β-catenin-mediated transcription in CSCs; evidence to date in other malignancies suggests that this is not the case 335 

[140-142]. However, these are dynamic processes, and even within the same tumour all of these proposed 336 

phenomena may be unfolding simultaneously; in the future, single cell genomics may resolve these issues [143;144]. 337 

It is important to note that CSC-like treatment-resistant disease may develop via alternate pathways (Figure 3), and 338 

there is likely to be considerable plasticity [142], with cells reverting to a less aggressive state by mesenchymal-to-339 

epithelial transition (MET) or by the reversal of the CSC phenotype. Furthermore, the influence of EpCAM on P-340 

cadherin is yet to be elucidated. Our current research is attempting to resolve some of these mechanisms. 341 

 342 

343 
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DISCUSSION & CONCLUSION 344 

P-cadherin seemingly has a number of fundamental roles in bladder cancer and other malignancies, including 345 

mediating the development of CSCs and EMT, both of which lead to more aggressive disease and worse survival. The 346 

mechanisms of these phenomena have been well-described in other malignancies, but remain to be elucidated in 347 

UBC. Although we have assumed some crossover of P-cadherin’s function between tumour and tissue types, we 348 

know that many of P-cadherin’s actions are tumour- and tissue-specific. Therefore, such findings from other 349 

malignancies need to be reproduced in UBC if we are to genuinely understand P-cadherin’s role in this setting. 350 

However, given the genomic characterizations of MIBC described above [47;49;55], it is unlikley that P-cadherin 351 

represents a “driver” of urothelial carcinogenesis [145]; P-cadherin is more likely to represent an important 352 

downstream effector of such driver mutations, with multiple influences on important pathways and phenomena that 353 

determine outcomes in advanced disease (eg. EMT, CSCs), probably mediated by PI(3)K [49]. Moreover, it appears 354 

that P-cadherin plays a fundamental role in the cell surface and cell adhesion phenomena that permit tumour cells 355 

to migrate and invade, and possibly to metastasize. 356 

In conclusion, P-cadherin represents a highly attractive therapeutic target, alongside N-cadherin [146-148]. However, 357 

given P-cadherin’s complex interactions described above (and undoubtedly many yet to be discovered), P-cadherin 358 

inhibition may have far more wide-reaching effects than those directly related to tumour invasion and progression. 359 

The difficulties of taking an anti-P-cadherin agent through clinical trials and into clinical use should therefore not be 360 

underestimated. Furthermore, the association of classical cadherins with EpCAM is particularly fascinating and 361 

requires further elucidation in UBC, and our work in this area is ongoing.  362 

363 
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LEGENDS FOR FIGURES 706 

Figure 1: Cell-cell adhesion in epithelial tissues (taken from [22]). a) overview of cell-cell adhesion complexes; b) 707 

pictorial representation of cell-cell interactions on neighbouring cells; c) molecular structure of the adherens 708 

junction, showing the relationship between E-cadherin molecules on neighbouring cells, and between E-cadherin, 709 

the catenins (α, β, γ, p120) and the cell cytoskeleton. Traditionally, cadherins on neighbouring cells adhere via EC1 710 

domains, although more recent research suggests that all 5 EC domains are required for optimal adhesion [65].  711 

Figure 2: Cadherin switching in bladder UCs (taken from [22]). a) E-cadherin is strongly expressed at the cell 712 

membrane throughout the normal urothelium. Reduced expression is observed in a proportion of NMIBCs, and the 713 

majority of MIBCs demonstrate either reduced expression or a complete absence of E-cadherin; b) P-cadherin is 714 

expressed in the basal 1-2 layers of normal urothelium, and this pattern is preserved in the majority of NMIBCs. The 715 

majority of MIBCs demonstrate strong P-cadherin expression throughout the tumour mass; c) N-cadherin is not 716 

expressed in normal urothelium or the majority of NMIBCs. However, the majority of muscle-invasive UCs express N-717 

cadherin throughout the tumour mass.  718 

Figure 3: Proposed pathways for the development of a bladder cancer stem cell phenotype and the relationship 719 

with EpCAM (adapted from [23]). Cancer stem cells (CSCs) result in the development of treatment resistant disease 720 

in some cancer settings, and this diagram proposes potential pathways for their development in UBC. There is likely 721 

considerable plasticity in these pathways [142], with cells reverting to a less aggressive state by mesenchymal-to-722 

epithelial transition (MET) or by the reversal of the CSC phenotype, and most likely influenced by the tumour 723 

microenvironment [23]. We also propose a model whereby EpCAM modulates the development of EMT and/or CSCs 724 

(see text). 725 

Figure 4: EpCAM’s relationship with E-cadherin (adapted from [123;149]). The dual role of EPCAM in epithelial 726 

tissues is demonstrated. EpCAM can either disrupt the adherens junction, resulting in the release of β-catenin (a), or 727 

stabilise the adherens junction to maintain E-cadherin’s anchorage to the cell cytoskeleton (b). In (a), released β-728 

catenin subsequently forms a complex with EpICD and the transcriptional co-factor FHL2 [150], either at the cell 729 

membrane or in the cell nucleus. The EpICD/FHL2/β-catenin complex then interacts with the Lef-1 transcription 730 
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factor in the cell nucleus to activate the transcription of various target genes, including known oncogenes. In UBC we 731 

demonstrated that the extracellular domain of EpCAM is released by cleavage immediately adjacent to the cell 732 

membrane [52]. The exact location of cleavage was not described by Maetzel et al [123], but the protease involved 733 

(TACE or ADAM 17) usually cleaves membrane proteins 10-15 residues away from the membrane surface [127], 734 

suggesting atypical cleavage or an alternative mechanism of extracellular domain release in UBC. (α=α-catenin, β=β-735 

catenin). 736 

 737 

738 
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Figure 1: Cell-cell adhesion in epithelial tissues.  739 
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741 
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Figure 2: Cadherin switching in bladder UBCs.  742 
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Figure 3: Proposed pathways for the development of a bladder cancer stem cell phenotype and the relationship with EpCAM. 744 
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Figure 4: EpCAM’s relationship with E-cadherin.  747 
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