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Abstract 

This study reports concentrations and human dietary intake of hexabromocyclododecanes 

(HBCDs), polychlorinated biphenyls (PCBs) as well as selected “novel” brominated flame 

retardants (NBFRs) and organochlorine pesticides, in ten staple food categories. Samples were 

sourced from areas in Taizhou City, Eastern China, where rudimentary recycling and disposal of 

e-waste is commonplace, as well as from nearby non-e-waste impacted control areas. In most 

instances, concentrations in foods from e-waste recycling areas exceeded those from control 

locations. Concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis-(2-

ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-TBP) in samples from e-waste sites were 3.09 – 

62.2 ng/g and 0.81 – 16.3 ng/g lipid weight (lw), respectively; exceeding consistently those in 

foods acquired from control sites by an order of magnitude in many cases. In contrast, while 

concentrations of HBCD in some foods from e-waste impacted areas exceed those from control 

locations; concentrations in pork, shrimp, and duck liver are higher in control samples. This 

highlights the potential significance of non-e-waste sources of HBCD (e.g. building insulation 

foam) in our study areas. While concentrations of DDT in all foods examined except pork were 

higher in e-waste impacted samples than controls; our exposure estimates were well below the 

provisional tolerable daily intake of 0.01 mg/kg bw/day derived by the Joint FAO/WHO Meeting 

on Pesticide Residues. Concentrations of PCBs resulted in exposures (650 and 2340 ng/kg 

bw/day for adults and children respectively) that exceed substantially the Minimal Risk Levels 

(MRLs) for PCBs of 20 ng/kg bw/day derived by the Agency for Toxic Substances & Disease 

Registry. Moreover, when expressed in terms of dioxin-like toxicity equivalency based on the 

four dioxin-like PCBs monitored in this study (DL-PCBs) (PCB-105, 118, 156, and 167); 

concentrations in e-waste impacted foods exceed limits set by the European Union in 6 of the 8 
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food groups studied and result in dietary exposures for children (10.2 pg TEQ/kg bw/day) that 

exceed the WHO  tolerable daily intake of 1-4 pg TEQ/kg bw/day.   

 

Keywords 

Novel brominated flame retardants (NBFRs); hexabromocyclododecanes (HBCDs), 

polychlorinated biphenyls (PCBs); organochlorine pesticides; e-waste recycling in China; human 

dietary intake. 

 

1 Introduction  

Electrical and electronic waste (e-waste) can contain a wide range of hazardous chemicals, 

including brominated flame retardants (BFRs), and polychlorinated biphenyls (PCBs) (Robinson 

2009). Moreover, improper e-waste treatment techniques, such as open burning of plastics to 

recover metals, introduce additional chemicals as by-products, including an additional source of  

dioxin-like PCBs (DL PCBs) (Frazzoli et al. 2010), over and above their presence in commercial 

PCB formulations. Such rudimentary recycling and disposal practices can result in high 

occupational and incidental exposure to a range of hazardous substances, and generate locally 

severe environmental contamination. Once released to the environment surrounding e-waste 

treatment facilities, BFRs and PCBs may accumulate in soils and sediments (Tang et al. 2010; 

Zhang et al. 2012; Labunska et al. 2013a; Liu et al. 2013) and become available for uptake by 

both terrestrial and aquatic organisms (Fu et al. 2010; Shang et al. 2013). Consequently, 

contaminants may enter the food chain with resultant pervasive and prolonged exposure to 

people residing in the vicinity of e-waste recycling areas. 
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A range of health effects has been reported in association with e-waste recycling activities in 

China, including decreased child height (Zheng et al. 2008), increases in adverse birth outcomes 

(Xu et al. 2012)  and increased cancer risk in e-waste dismantling workers.  Exposure to high 

concentrations of polychlorinated dibenzodioxins/furans (PCDDs/Fs), polybrominated diphenyl 

ethers (PBDEs) and PCBs may well play a contributing role in the incidence of these conditions 

(Wen et al. 2008). It has also been suggested that PBDE exposure through e-waste recycling 

operations may interfere with the thyroid hormonal system and cause genotoxic damage (Yuan et 

al. 2008).  

Food has been reported as one of the main routes of human exposure to organohalogen 

chemicals (OHCs), including exposure to PCBs (Xing et al. 2009; Song et al. 2011), PBDEs (Ni 

et al. 2012, 2013; Chan et al. 2013), hexabromocyclododecane (HBCD) (Zheng et al. 2012; He et 

al. 2013) and “novel” BFRs (NBFRs) (Zheng et al. 2012). Despite this, data on human dietary 

exposure to BFRs and PCBs associated with e-waste recycling are still limited or – in the case of 

HBCD and NBFRs - are non-existent.  

Relatively few studies exist that report human dietary exposure to multiple classes of OHCs, 

with even fewer addressing such exposures arising as a consequence of e-waste treatment. Some 

of those studies focus on exposure via a single type of food for multiple contaminants, e.g. 

monitoring a range of BFRs via consumption of domestic eggs originating from e-waste sites in 

South China (Zheng et al. 2012), while others assess exposure to a single class of contaminant 

(e.g. PBDEs), via consumption of a number of different food items, for example, chicken muscle 

and eggs from e-waste sites in Southeast China (e.g. Qin et al. (2011). Our study estimates 

cumulative dietary exposures to selected OHCs via consumption of a range of animal-derived 

foodstuffs produced in an area in which rudimentary e-waste treatment is commonplace. 
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We have reported previously on human dietary exposure to PBDEs via consumption of duck 

eggs (Labunska et al. 2013b), and nine other staple foodstuff categories (Labunska et al. 2014) 

originating from e-waste recycling areas in Taizhou, eastern China. The current study was 

designed to investigate human dietary exposure to NBFRs and PCBs arising through 

consumption of the same foodstuffs, as well as to selected organochlorine pesticides (OCPs). 

While we did not expect e-waste treatment to be a source of OCPs, information on dietary 

exposure to these legacy contaminants permits better understanding of overall cumulative 

exposure to OHCs – many of which can exert toxicological effects. Moreover, the presence of 

NBFRs in food samples is of interest. Firstly, no regulations on the production or use of these 

alternative BFRs exist, so it is likely that their use as replacements for regulated BFRs will be 

increasing. Secondly, some NBFRs appear to be bioaccumulative, with bioaccumulation factors 

(Log BAFs) for 1,2 bis(2,4,6-tribromophenoxy)ethane (BTBPE) and hexabromobenzene (HBB) 

reported to range from 3.32 to 6.08 and from 3.31 to 5.04 respectively in aquatic species from a 

natural pond in an electronic waste recycling site in South China (Wu et al. 2011). Combined, 

these factors suggest that concentrations of NBFRs in food will likely rise substantially in the 

future. This is concerning, because although relatively little is known about their toxicity (Covaci 

et al. 2011; Stieger et al. 2014), a recent study has reported in vitro endocrine disruptive 

properties for both 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis-(2-ethylhexyl)-

3,4,5,6-tetrabromo-phthalate (BEH-TBP) (Saunders et al. 2013).  

The specific OHCs investigated in the current study were: α-, β- and γ- HBCD, tri- to deca-

chlorinated PCBs (33 congeners), dichlorodiphenyltrichloroethane (DDT) and its metabolites, 

hexachlorobenzene (HCB), and a range of NBFRs, comprising: pentabromoethylbenzene 

(PBEB), HBB, EH-TBB, BEH-TBP, BTBPE, and decabromodiphenyl ethane (DBDPE). 
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2 Methodology 

2.1 Sample collection and preparation 

A full description of the study area and sampling sites is provided in our earlier publications 

(Labunska et al. 2013b, 2014). Briefly, 127 samples of foodstuffs, comprising: fish, shrimps, 

meat, liver and eggs from chickens and ducks, and pork were purchased in Wenling and Luqiao 

districts located within Taizhou City, one of the largest e-waste recycling areas in Eastern China 

(Fig. S1). Control samples (n=62) were also procured, along with culinary vegetable oils (n=10) 

which were not directly impacted by e-waste treatment. While most control samples were 

purchased from supermarkets and local markets in Shanghai City and Nanjing City; chicken and 

duck liver control samples were obtained from a local market in Taizhou City, but were reported 

by vendors to originate from locations around the city that were not involved in any e-waste 

recycling.  

Our earlier estimates of exposure to PBDEs were based on analysis of 189 individual food 

samples from e-waste and non-e-waste impacted areas. The wider range of contaminants 

measured in this study, necessitated the preparation of composite or ‘pooled’ samples in order to 

reduce the number of samples requiring analysis. To achieve this, portions of homogenised 

individual samples were combined according to food category (e.g. chicken eggs, duck meat 

etc.) and whether they originated from e-waste or non-e-waste impacted areas. 

Treatment of the individual food samples used here for preparation of pooled samples, has been 

described previously (Labunska et al. 2014). In short, samples of meat, fish, shrimps and liver 

were cooked to reflect the condition of the foodstuffs as the point of consumption, then freeze 

dried, homogenised and stored at -20oC. Fat and liquids formed during cooking were discarded. 
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Chicken eggs were heat treated as has been described previously for duck eggs (Labunska et al. 

2013b), and only yolks were subject to analysis. Pooled samples were then prepared by mixing 

equal amounts of each sample from each product type (2 g per sample for shrimps, 3 mL per 

sample for vegetable oils and 1 g per sample for all others). Pooled samples were then 

homogenised thoroughly using a Waring 32BL80 commercial blender, followed by further 

homogenisation using a mortar and pestle. Each homogenised pooled sample was sub-sampled 

into pre-cleaned extraction vials and stored at -20oC until analysis. Descriptions of the origins of 

these pooled samples are presented in Table S1. Pooled samples of meat, fish, shrimps and liver 

were prepared using individual samples from both Wenling and Luqiao districts combined. For 

chickens’ eggs, separate pooled samples were prepared for Wenling and Luqiao district 

respectively using individual yolks from each site. In the case of duck egg yolk, one pooled 

sample was prepared per location for each of the five e-waste locations monitored in Wenling 

and Luqiao (Labunska et al. 2013b). One pooled control sample was prepared for each food 

category examined. 

In addition to obtaining information on human exposure to a wide range of OHCs, we also took 

the opportunity to enhance understanding of how diastereomer and enantiomeric profiles of 

HBCDs vary between fish species, as well as how such profiles vary between muscle and liver in 

chickens and ducks. To do so, we analysed individual samples of 5 fish species - common carp 

(Cyprinus carpio), loach (Misgurnus angullicaudatus), snakehead (Channa argus), Chinese 

bream (Megalobrama amblycephala) and Chinese perch (Siniperca chuatsi) - as well as three 

paired samples (i.e. muscle and liver from the same three animals) for both chickens and ducks. 
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2.2 Sample extraction, clean up and analysis 

2.2.1 HBCDs 

Extraction was carried out using a pressurised liquid extraction technique utilising an 

Accelerated Solvent Extractor ASE 350 (Dionex). Diatomaceous earth (30/40 mesh) and Florisil 

(60/100 mesh) were purchased from Thames Restek (UK); anhydrous Na2SO4 - from Fisher 

Scientific (UK). Native α-, β-, and γ-HBCD standards (50 µg/mL in toluene) were obtained from 

Cambridge Isotope Laboratories (Andover, MA, USA), while isotope-labelled 13C α-, β-, γ-

HBCDs and α-HBCD-d18 were purchased from Wellington Laboratories (Guelph, ON, Canada). 

Pentane (Rathburn Chemicals, UK) was HPLC grade; acetone and concentrated sulfuric acid 

(Fisher Scientific, UK) were AR grade.  

An accurately weighed aliquot (~0.5 g) of each dried pooled sample was mixed with 5 g of 

anhydrous Na2SO4, transferred into a 33 mL stainless steel extraction cell half-filled with 

diatomaceous earth, spiked with 20 ng of each of 13C-labelled α-, β-, and γ- HBCD as internal 

(surrogate) standards, topped with diatomaceous earth, and extracted using the ASE 350 

(temperature 90°C, pressure 1500 psi, heating time 5 min, static time 4 min, purge time 90 s, 

flush volume 50%, 3 static cycles, solvent pentane/acetone 3:1). A 2 mL aliquot of the resultant 

extract was used for gravimetric determination of lipid content. The remainder of the extract was 

evaporated to incipient dryness using a Turbovap system and reconstituted with 2 mL pentane. 

Extracts were cleaned with 3 mL of concentrated sulfuric acid. After separation of phases, each 

extract was transferred to a glass column containing 2 g of Florisil topped with 0.5 g of 

anhydrous Na2SO4 and eluted with 25 mL of pentane/acetone (3:1 v/v). Cleaned extracts were 

evaporated to complete dryness using a gentle stream of nitrogen and reconstituted in 100 µL of 

α-HBCD-d18 (25 pg/µL in methanol) used as recovery determination (or syringe) standard for 
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QA/QC purposes. Sample analysis was carried out using an LC-MS/MS system composed of a 

dual pump Shimadzu LC-20AB Prominence liquid chromatograph equipped with a SIL-20A 

autosampler and a DGU-20A3 vacuum degasser, coupled to a Sciex API 2000 triple quadrupole 

mass spectrometer. Details of the methodology, LC columns and mass spectrometric conditions 

for both chiral and achiral separation and quantification of HBCDs can be found elsewhere 

(Abdallah and Harrad 2011). Regular analysis of method blanks (1 blank for every 5 samples) 

revealed no detectable interferences from target compounds. Method limits of detection (LOD) 

and quantification (LOQ) were estimated based on 3:1 and 10:1 signal:noise (S:N) ratios 

respectively (Table S2). Good recoveries (60 - 109 %) of the 13C-labelled internal standards were 

obtained for α-, β-, and γ-HBCDs. The accuracy and precision of the analytical method for 

HBCDs was assessed via replicate analysis (n=4) of NIST SRM 2794A (Organics in Freeze-

Dried Muscle Tissue). The results obtained compared favourably with the reference values.  

 

2.2.2 NBFRs 

An accurately weighed aliquot (~0.5 g) of pooled sample was loaded into an ASE cell (half-filled 

with pre-extracted Hydromatrix), spiked with internal standards (15 ng of each of BDE 77, BDE 

128, 13C12-BTBPE and 30 ng of 13C12-BDE 209), and extracted with hexane:acetone (3:1 v/v) 

using an ASE 350. After concentration to ~1 mL using the Turbovap system, extracts were 

eluted through activated Florisil (2 g) using 18 mL hexane (fraction 1) and 12 mL of DCM 

(fraction 2).  Following evaporation to ~1 mL, fraction 1 was eluted through 44% acidified silica 

(3 g) with 20 mL hexane:DCM (1:1). Fraction 2 was reduced to 0.5 mL and solvent exchanged 

to hexane, prior to loading onto an isolute NH2 cartridge and elution with hexane:DCM (1:1 v/v, 

15 mL). The eluate from this cartridge was combined with that obtained by passing fraction 1 
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through Florisil. This combined eluate was concentrated under a gentle stream of nitrogen and 

solvent exchanged to iso-octane (200 µL) containing PCB 129 as recovery determination (or 

syringe) standard. Target analytes were quantified using a TRACE™ 1310 Gas Chromatograph  

coupled to ISQ™ single quadrupole mass spectrometer (ThermoScientific, Austin, TX, USA) 

operated in negative ion chemical ionisation mode. Chromatographic resolution of NBFRs was 

achieved on a HP5-MS capillary column (15 m x 0.25 mm x 0.1 μm; Agilent, CA, USA) 

according to a previously described method (Van den Eede et al. 2012). Recoveries of the 

internal standards ranged from 74 to 102 % in all samples. LOQs for the method are presented in 

Table S2. 

 

2.2.3 PCBs and OCPs  

Pooled samples (typically 0.5 g) were weighed accurately, homogenised, mixed with anhydrous 

Na2SO4, and spiked with PCB-143 as internal standard, prior to automated hot Soxhlet extraction 

for 2 h with hexane:acetone (3:1, v:v). Sample lipid content was determined gravimetrically by 

drying 10% of the crude extract for 1 h at 100 °C. The remaining extract was purified by elution 

through acidified silica (8 g; 44% H2SO4) with 20 mL of hexane followed by 15 mL of 

dichloromethane. Eluates were concentrated to incipient dryness under a gentle nitrogen flow 

and reconstituted in 150 µL iso-octane. Analytes were quantified using a mass spectrometer 

(Agilent MS 5973, Palo Alto, CA, USA) coupled to a gas chromatograph (Agilent GC 6890, 

Palo Alto, CA, USA) equipped with a HT-8 capillary column (30 m x 0.22 mm x 0.25 μm; SGE 

Analytical Science, Zulte, Belgium) operated in electron ionisation mode. Recoveries of the 

internal standard ranged from 81 to 106% (RSD =10%) in all samples. For every tenth sample, a 

procedural blank and certified reference material (SRM 1945 whale blubber) were analysed. The 
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LOQ (see Table S2) was defined either as three times the standard deviation of the procedural 

blanks, or for analytes not detectable in blanks, as S:N = 10:1. 

 

2.3 Statistical analysis & daily intake calculations 

Statistical analysis was performed using Microsoft Office Excel 2013. Exposure estimates were 

calculated using daily consumption rates for various food products derived from a number of 

publications, as described previously (Labunska et al. 2014). Adult body weights (BWs; kg) 

employed in our calculations were the average Chinese male body weight of 63 kg (Zhou et al. 

2012), with that for children equal to that for a standard Chinese 3 year old boy living in a rural 

area of 14.65 kg (MHC 2012). The total dietary intake (TDI; ng/kg bw/day) was calculated 

according to: 

 

Where Ci is the concentration (ng/g ww) of OHC in a food sample and CRi is the daily 

consumption rate of the foodstuff concerned (g/day) (see Table S5 for consumption rates of 

individual foodstuffs). 

 

3 Results and discussion 

3.1 Concentrations and patterns of contaminants in food  

3.1.1 NBFRs 

Concentrations of NBFRs in e-waste related samples in this study generally exceeded 

concentrations in the corresponding control samples by substantial margins (Table 1), indicating 
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a discernible influence of e-waste treatment on concentrations of these contaminants in locally 

produced foods. EH-TBB and BEH-TBP were detected in all e-waste related samples, with 

BTBPE detected in 86% of samples.  Less frequently detected were PBEB and HBB (>LOQ in 

36% of e-waste related samples) while DBDPE was detected only in shrimps. The highest 

concentration among NBFRs was found for EH-TBB (fish: 62.2 ng/g lw) followed by DBDPE 

(shrimps: 45.3 ng/g lw). Consistent with previous findings for waterbirds from e-waste recycling 

sites in South China (Zhang et al. 2011), concentrations of EH-TBB, BEH-TBP, BTBPE and 

PBEB in avian livers in this study (chicken: 35.0, 10.6, 15.0, and 2.3 ng/g lw; duck: 38.4, 13.7, 

11.7, and 3.4 ng/g lw, respectively) exceeded those in corresponding muscle samples (chicken: 

24.7, 9.0, 1.5, and <0.17 ng/g lw; duck: 24.2,7.2, 4.6, and 0.9 ng/g lw, respectively). In contrast, 

in both chickens and ducks, HBB was detected in muscle but not liver. Finally, while 

concentrations of PBEB, HBB, and DBDPE were all <LOQ in chicken and duck eggs, EH-TBB 

and BEH-TBP were detected in all e-waste related egg samples (average: 4.3 and 1.1 ng/g lw, 

respectively). No information related to the concentrations of BEH-TEBP, EH-TBB, BTBPE, 

DBDPE, PBEB and HBB in food samples has been identified in a meta-analysis conducted by 

the European Food Safety Authority (EFSA 2012). However, we are aware of one study of 

chicken eggs from e-waste recycling sites in South China which reported concentrations of 

NBFRs exceeding those in our study (Zheng et al. 2012). Specifically, this earlier study reported 

BTBPE, DBDPE, HBB and PBEB to be present at mean concentrations of 37.2–264, 5.97–37.9, 

7.32–25.7, and 0.63–0.78, ng/g lw, respectively, compared to those in eggs in our study (range: 

<0.35 – 3.84 ng/g lw) (see Table 1). Another study (Fernandes et al. 2009) reported 

concentrations of three of our target NBFRs (HBB, BTBPE and DBDPE) in a wide range of 

foodstuffs in the UK, with BTBPE being the only NBFR detected above LODs and ranging from 
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Table 1. Concentrations of OHCs in composite food samples from e-waste recycling (Taizhou) and control sites in Eastern 1 

China. 2 

Sample type 
Site Category 

(Control/E-waste) 
Lipid% 

Concentration, ng/g lipid weight 
∑HBCDs ∑PCBs ∑DDTs HCB PBEB HBB EH-TBB BEH-TBP BTBPE DBDPE 

Vegetable oil Control 100 0.1  <1 <2 <1 <0.17 <0.15 <0.20 <0.25 <0.35 <0.45 

Muscle 

Fish 
Control 23.4 5.9  79 100 8.3 <0.17 <0.15 4.00 1.90 2.10 <0.45 
E-waste 5.7 310  75400 820 89.2 <0.17 6.49 62.2 15.5 6.83 <0.45 

Shrimp 
Control 4.5 5.7  240 54 5.4 <0.17 0.97 11.7 9.32 <0.35 9.19 
E-waste 4.5 <0.06 1170 170 11.5 6.81 <0.15 36.8 16.3 9.07 45.3 

Chicken 
Control 19.0 0.09  <1 <2 6.3 <0.17 <0.15 2.66 1.78 <0.35 <0.45 
E-waste 38.6 78.7  500 51 54 <0.17 0.41 24.7 8.97 1.46 <0.45 

Duck 
Control 18.2 2.4  33 <2 9.6 1.16 <0.15 2.74 <0.25 1.87 <0.45 
E-waste 48.1 26.4 1320 70 18 0.87 0.56 24.2 7.23 4.57 <0.45 

Pork 
Control 24.6 3.1 <1 <2 2.4 <0.17 <0.15 2.14 1.37 2.69 <0.45 
E-waste 18.4 <0.06 <1 <2 <1 <0.17 0.41 38.2 12.4 5.40 <0.45 

Liver 
Chicken 

Control 38.6 78.7  500 51 54 <0.17 0.41 24.7 8.97 1.46 <0.45 
E-waste 20.9 42.5 410 200 49.9 2.30 <0.15 35.0 10.6 15.0 <0.45 

Duck 
Control 21.5 29.9  3  6 11.2 <0.17 <0.15 8.20 1.69 3.27 <0.45 
E-waste 14.5 5.7 570  43 15.5 3.37 <0.15 38.4 13.7 11.7 <0.45 

Egg 

Chicken 
Control 29.6 1.7 <1 3 4.8 <0.17 <0.15 1.73 <0.25 <0.35 <0.45 
E-waste 28.5 47.5 740 61 200 <0.17 <0.15 4.86 0.94 2.02 <0.45 
E-waste 26.5 37.7 1180 32 37.4 <0.17 <0.15 4.73 1.37 3.84 <0.45 

Duck 

Control 32.7 0.5 <1 6 5.2 <0.17 <0.15 1.21 <0.25 <0.35 <0.45 
E-waste 32.0 9.3  740 560 68.6 <0.17 <0.15 3.09 0.97 1.11 <0.45 
E-waste 27.0 3.0  62 75.9 40.3 <0.17 <0.15 5.42 1.65 3.07 <0.45 
E-waste 31.0 17.5 140 14 5.9 <0.17 <0.15 3.67 1.24 2.15 <0.45 
E-waste 28.8 2.2  59  140 15.6 <0.17 <0.15 4.40 0.81 <0.35 <0.45 
E-waste 29.6 14.7 2860 110 21.9 <0.17 <0.15 3.56 0.88 <0.35 <0.45 

 3 
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0.1 ng/g lw (in beef burger) to 3.33 ng/g lw (in lemon sole). As well as the presence of a much 4 

wider range of NBFRs; concentrations of BTBPE in our study exceeded those in UK foods. For 5 

example, BTBPE was detected in our pooled chicken liver sample at 15.0 ng/g lw, compared to 6 

0.75 ng/g lw in the UK study, while it was present at 6.83 and 9.07 ng/g lw in our fish and 7 

shrimp samples respectively, exceeding the concentrations reported in UK fish (range: 0.26 – 8 

3.33 ng/g lw). 9 

  10 

3.1.2 HBCD 11 

Amongst pooled samples, the highest concentration of ∑HBCD was detected in fish muscle (310 12 

ng/g lw) followed by chicken muscle, chicken egg, and chicken liver (79, 47 and 43 ng/g lw, 13 

respectively) (Table 1). Concentrations of HBCD in all analysed samples are provided in Table 14 

S4. Those in most of the e-waste related samples exceeded those in corresponding controls by 1-15 

3 orders of magnitude. However, HBCDs were <0.06 ng/g lw in e-waste related pork and shrimp 16 

samples, while the corresponding control samples contained 3.1 and 5.7 ng/g lw ∑HBCDs, 17 

respectively. Moreover, concentrations of HBCDs in the duck liver control sample, exceeded 18 

five-fold that detected in duck livers from e-waste-impacted locations. A previous study from the 19 

Pearl River Delta in South China (Sun et al. 2012) reported higher concentrations of HBCDs in 20 

the muscle and stomach of three species of passerine birds collected from urban sites than in 21 

those from e-waste recycling sites. That difference was attributed to higher releases of HBCD 22 

from textile and construction applications in urban areas. This may also help explain the higher 23 

concentrations of ∑HBCDs in our control samples, which were all obtained from urban areas 24 

which were not in the vicinity of e-waste recycling operations. Furthermore, as the main 25 

application of HBCDs is in thermal insulation boards and construction materials (Covaci et al. 26 



15 
 

2006), a more widespread presence of this compound may be expected in urban areas, with no 27 

particular association expected with proximity to e-waste recycling sites. Nevertheless, e-waste-28 

impacted samples of duck muscle, as well as of chicken muscle and liver displayed significantly 29 

higher concentrations of ∑HBCDs than corresponding controls. We hypothesise this occurs 30 

because chicken and duck housing at the Taizhou e-waste sites are often constructed from 31 

potentially HBCD-containing recycled construction materials, as well as containing old furniture  32 

and textiles that may also be treated with HBCD. This might also explain the higher 33 

concentration of ∑HBCDs in chickens than in ducks from e-waste sites in our study as chickens 34 

spend more time in their housing, though a significant contribution to the patterns from 35 

differences in feeding habits between ducks and chickens cannot be ruled out. A similar 36 

combination of factors may account for our observation that e-waste-impacted chicken eggs 37 

contained higher concentrations of ∑HBCDs (47.4 and 37.7 ng/g lw for Wenling and Luqiao e-38 

waste sites respectively) than duck eggs from the same locations (range: 3.0 – 17.5 ng/g lw; 39 

average: 9.35 ng/g lw). To the authors’ knowledge, there are no previously reported data on 40 

HBCD concentrations in domestic duck eggs. Interestingly, while the lowest ∑HBCD 41 

concentration was detected in a pooled duck egg sample from a site in the Wenling district at 42 

which e-waste activity has decreased substantially recently, the highest concentration was found 43 

in a sample from a site in the same district where e-waste recycling had only recently ceased. 44 

The farm on this former e-waste recycling area was the largest in our study with 2200 ducks 45 

onsite, and which contained several large duck shelters thickly covered with recycled textile and 46 

construction materials that potentially may contain substantial amounts of HBCDs (Alaee et al. 47 

2003). This highlights the importance of sources of HBCDs other than e-waste treatment to our 48 

samples.  49 
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Fig. 1. α-, β- and γ-HBCD diastereomer profiles in composite food samples containing 50 

concentrations above LOQ.  51 

52 
 53 

Diastereomer profiles of HBCDs in pooled samples are presented in Fig. 1. In general, α-HBCD 54 

was the predominant HBCD congener contributing on average 77±31% ∑HBCDs in all our 55 

samples (from e-waste areas and controls). This accords with previous reports of the 56 

predominance of α-HBCD in biota as opposed to the higher contribution of γ-HBCD found in 57 

commercial formulations and abiotic matrices (Marvin et al. 2011). This has been attributed to 58 

several factors, including preferential biotransformation of the β- and γ-isomers (Abdallah and 59 
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Uchea 2014) in addition to higher bioavailability and higher bioaccumulation potential of α-60 

HBCD (Szabo et al. 2011a; Abdallah et al. 2012; Fournier et al. 2012). Interestingly, while γ-61 

HBCD comprised only 22% and 36% HBCDs respectively in chicken and duck livers from e-62 

waste related sites, in control samples of the same matrices, γ-HBCD contributed 53% and 67% 63 

of HBCDs respectively. This suggests exposure of the control birds to a comparatively “fresh” 64 

HBCD source. 65 

 66 

Table 2. Concentrations of HBCDs (ng/g lw) in individual samples of fish, and paired 67 

samples (muscle and liver) of chickens and ducks.  68 

a full description of sampling sites including assignment of sample codes is reported in Labunska et al. 69 
(2014) 70 

  71 

Sample Type Locationa α-HBCD β-HBCD γ-HBCD ΣHBCDs 

Fish 

carp Wenling, Taizhou, Site 4 1530 56.0 350 1940 

loach Luqiao, Taizhou, Site 5 490 30.0 190 710 

snakehead Luqiao, Taizhou, Site 7 620 14.6 39.4 670 

bream Shanghai supermarket, control sample 1.2 2.2 7.4 10.8 

perch Nanjing supermarket, control sample 20.1 3.3 11.9 35.3 

 

 

Duck 

 

meat 
Wenling, Taizhou, Site 1 

19.2 0.5 5.6 25.3 

liver 3.1 3.5 11.9 18.5 

meat 
Wenling, Taizhou, Site 2 

1.6 0.1 0.9 2.6 

liver 0.2 0.4 2.5 3.1 

meat 
Wenling, Taizhou, Site 2 

1.7 0.2 0.9 2.8 

liver 0.7 0.2 2.7 3.7 

Chicken 

meat 
Wenling, Taizhou, Site 2 

7.6 1.2 5.1 14.0 

liver 1.9 3.5 12.8 18.3 

meat 
Wenling, Taizhou, Site 1 

490 9.0 150 640 

liver 190 4.4 190 390 

meat 
Wenling, Taizhou, Site 2 

14.4 1.4 5.4 21.1 

liver 5.4 1.8 5.7 12.9 
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Analyses also revealed different HBCD diastereomer profiles in liver and muscle tissues taken 72 

from individual birds (Table 2), similar to those reported recently for predatory birds in Belgium 73 

(Eulaers et al. 2014). Moreover, such intra-bird variation was exceeded still further by the 74 

variation in profiles between duck and chicken tissues.  75 

Notably, γ-HBCD was the dominant diastereomer in some avian liver samples compared to the 76 

predominance of α-HBCD in muscle tissue from the same birds. We hypothesise this 77 

predominance of -HBCD in some avian liver samples reflects the profile to which the bird is 78 

exposed, as the liver is the first organ exposed after the gastrointestinal tract.  79 

In contrast, the diastereomer profile in muscle tissue reflects more the chronic exposure after 80 

metabolism and is thereby skewed towards -HBCD, due to the latter’s enhanced 81 

bioaccumulation potential and resistance to enzymatic metabolism (Szabo et al. 2011b; Fournier 82 

et al. 2012).  83 

HBCD enantiomer fractions (EFs) are presented in Fig. 2. Generally, muscle and eggs from 84 

ducks and chickens displayed significant enrichment of the (-)-α-HBCD and (+)-γ-HBCD 85 

enantiomers. This is in agreement with previous reports for terrestrial bird samples from e-waste, 86 

urban and rural locations in South China (He et al. 2010; Sun et al. 2012) and eggs of predatory 87 

birds from Northern Europe (Janak et al. 2008). 88 

Fish samples showed variable EF values with enrichment of (+)-α-HBCD in loach, carp and 89 

bream, (-)-γ-HBCD in loach, and (+)-γ-HBCD in bream. Our results are consistent with previous 90 

studies reporting species-specific variation in EFs in fish (Janak et al. 2005; Köppen et al. 2010; 91 

He et al. 2013). These findings indicate potential enantioselective processes associated with 92 
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absorption, biotransformation and/or excretion of HBCDs in the fish and bird species studied, 93 

and that such processes are species-specific.   94 

 95 

Fig 2.  Enantiomer fractions (EF) of α-HBCD and γ-HBCD in pooled food samples 96 

containing concentrations above LOQ. Error bar – SD for a racemic standard.  97 

 98 

 99 
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3.1.3 PCBs  100 

With the exception of pork and chicken liver, concentrations of ∑PCB concentrations in our e-101 

waste related food samples were all higher than in corresponding control samples (see Table 1). 102 

Results for individual PCB congeners in all samples are presented in Table S3. PCBs can arise in 103 

environmental samples from both primary and secondary sources and, because of their 104 

persistence and long-range transport, are widely distributed environmental contaminants. 105 

The relatively high levels in many of the pooled food samples from e-waste areas are, however, 106 

suggestive of primary contributions from local point sources, such as recycling and disposal of 107 

obsolete transformers, an activity widely practised in Luqiao (Xing et al. 2011; Zhanz et al. 108 

2012) as well as handling of other electrical and electronic waste.   109 

In view of the history of transformer treatment at Luqiao, it is thus unsurprising that 110 

concentrations of ∑PCB from samples obtained from this site were the highest in this study. Of 111 

the species considered, concentrations were highest in fish (75416 ng/g lw or 1168 ng/g ww), 112 

followed by those in duck eggs (site 5, 2857 and 846 ng/g ww), duck muscle (1322 and 276 ng/g 113 

ww) and chicken eggs (1179 and 312 ng/g ww). Consistent with previous studies (Rajaei et al. 114 

2010; Xing et al. 2010)  and possibly attributable to higher metabolic activity in liver than 115 

muscle, concentrations of ∑PCB in livers of both ducks and chickens were lower than in the 116 

corresponding muscle samples. It is also interesting to note that, while the concentration of 117 

∑PCB in duck muscle exceeded approximately three-fold that in chicken muscle (276 and 88 118 

ng/g ww, respectively), concentrations were similar in both duck and chicken livers at ~30 ng 119 

PCB/g ww. This may reflect species-specific differences in metabolism.  120 

Concentrations of ∑PCB in duck meat (276 ng/g ww), duck liver (32 ng/g ww) and eggs 121 

(average in chicken and duck eggs was 109 and 91.2 ng/g ww respectively) substantially 122 
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exceeded those reported previously for e-waste-related sites in Taizhou (13.8, 2.1 and 7.9 ng/g 123 

ww, respectively) (Xing et al. 2010).  124 

 125 

Table 3. Concentrations of indicator PCBs, ∑NDL-PCBs and ∑DL-PCBs in food 126 

originating from Taizhou, China; and maximum levels (ML) for these contaminants in 127 

foodstuffs (EU 2011). 128 

  

∑PCBs, 
indicatorc 

∑NDL-
PCBsd 

ML, 
∑NDL-PCBse 

∑DL-PCBs-
TEQf 

ML,∑DL-
PCBs-TEQg 

ng/g pg/g TEQ 

Fish 34456 a 441b 
125 b 

4.32 b 
3.0 b 

Shrimps 569 a 5.82 b 0.09 b 

Chicken muscle 270 a 206 a 
40 a 

3.07 a 
1.25 a 

Duck muscle 698 a 530 a 7.74 a 

Chicken liver 180 a 137 a 
40 a 

2.09 a 
5.5 a 

Duck liver 288 a 225 a 3.15 a 

Chicken egg 518 a 388 a 
40 a 

6.41 a 
2.5 a 

Duck egg 428 a 336 a 5.38 a 
a expressed on a lipid weight basis; 129 
b expressed on a wet weight basis; 130 
c sum of PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180; 131 
d sum of PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180; 132 
e maximum levels for sum of PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180; 133 
f sum of PCB105, PCB118, PCB156 and PCB167; 134 
g maximum levels for sum of twelve dioxin-like PCBs derived by subtraction of value for the 135 
sum of dioxins (WHO-PCDD/F-TEQ) from the sum of dioxins and DL-PCBs  (WHO-PCDD/F-136 

PCB-TEQ). 137 

 138 

The homologue pattern of PCBs in avian-related samples originating from our e-waste sites (see 139 

Fig. S4) were dominated by hexa-PCBs (from 28% PCBs in duck meat to 41% PCBs in duck 140 

eggs), followed closely by penta-PCBs. In contrast, tetra- and penta-PCBs were more prominent 141 
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in aquatic species. Penta-PCBs comprised 36%PCBs in fish and 26%PCBs in shrimps, with 142 

tetra-PCBs contributing 27%PCBs in fish and 29% PCBs in shrimps. While these homologue 143 

patterns are consistent with previous observations for Taizhou (Xing et al. 2010); those in our e-144 

waste impacted fish samples differed from patterns observed in Europe, in which hexa-PCBs 145 

(mostly PCB-153 and PCB-138) are dominant in fish (Roosens et al. 2008; Malarvannan et al. 146 

2014). The different patterns seen in our e-waste-associated samples may reflect influences from 147 

multiple local sources at e-waste recycling sites. These include releases from PCB-containing 148 

transformers and/or capacitors as well as unintentional formation of some PCBs during poorly-149 

controlled combustion processes (Shen et al. 2009).  150 

Concentrations of non-dioxin-like (NDL-) and dioxin-like (DL-) PCBs in comparison to 151 

maximum levels (ML) promulgated by the European Commission for certain contaminants in 152 

foodstuffs (EU 2011) are presented in Table 3.The sum of seven indicator PCBs (PCB-28, 52, 153 

101, 118, 138, 153 and 180) in fish (534 ng/g ww) in our study exceeded the Chinese maximum 154 

residue limit of 500 ng/g ww for aquatic organisms and aquatic products (MOH 2012). 155 

Additionally, with the exception of chicken liver, all samples of avian origin from e-waste sites 156 

in our study (Table 3) exceeded the maximum level of 200 ng/g lw set by the European 157 

Commission (EC 1999), for the sum of these seven indicator PCBs in products including eggs 158 

and poultry.  159 

Another EC Regulation No. 1881/2006 (EC 2006) established maximum levels (ML) for dioxins 160 

and DL-PCBs in a range of foodstuffs. This was amended recently (EU 2011) to include limits 161 

for the sum of six marker NDL-PCBs (see Table 3). This ML for ∑NDL-PCBs was exceeded by 162 

at least an order of magnitude for foodstuffs of avian origin in our study and 3.5 times in case of 163 

fish. Moreover, while only four DL-PCBs were measured in this study (PCB-105, 118, 156, and 164 
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167), Table 3 shows that based on the contribution of these four congeners alone, the 165 

corresponding EU ML was exceeded for all foodstuffs studied except for livers.  166 

 167 

3.1.4 Organochlorine pesticides 168 

Table 1 shows that concentrations of ∑DDTs in our e-waste related food samples were all higher 169 

than in the corresponding control samples, with the exception of pork. Concentrations of DDT 170 

and its metabolites are presented in Table S3. DDT is a significant contaminant group in food 171 

samples from Taizhou, despite the ban on most uses of this pesticide in China in 1983 (Fu et al. 172 

2003). However, an exemption was made for the use of DDT as an intermediate for dicofol 173 

production, which has been shown to be a major source of DDT to the Chinese environment over 174 

recent decades (Qiu et al. 2005). Concentrations of ∑DDT in our study were highest in fish (823 175 

ng/g lw), followed by duck eggs from Wenling site 1 (558 ng/g lw) and chicken liver (201 ng/g 176 

lw). On a fresh weight basis, duck eggs contained the highest ∑DDT concentrations (range 1.7 - 177 

70.2 ng/g), followed by chicken liver (15.0 ng/g ww) and duck muscle (14.6 ng/g ww). 178 

Interestingly, while duck muscle contained a higher fresh weight concentration of ∑DDTs than 179 

duck liver, the concentration in chicken liver was almost twice that in chicken muscle. Neither 180 

control nor e-waste related pork samples contained any DDT above detection limits. This is 181 

consistent with earlier findings that pork accumulates relatively low loadings of DDT (range: 182 

0.09 – 0.89 ng/g ww) in comparison to other animal-based food products (Yu et al. 2012).  Most 183 

of the duck eggs in our study contained higher ∑DDT concentrations than reported previously 184 

for chicken eggs (5.62 and 5.09 ng/g ww for Taizhou and Guiyu respectively) (Man et al. 2013). 185 

This was particularly evident for duck eggs from Wenling, site 1, which, at 70.2 ng/g (ww) 186 

∑DDT was close to the Chinese maximum residue limit in eggs of 100 ng/g ww (MOH 2012). 187 
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To the authors’ knowledge, there are no previously published data on concentrations of DDT and 188 

its metabolites in Chinese duck eggs, with exception of one study which included duck eggs as 189 

part of a pooled sample of eggs that also comprised chicken eggs and egg products (Zhou et al. 190 

2012).  Our data suggest that these so-called “legacy” contaminants remain prevalent in our 191 

study area.  192 

The differences in the relative abundance of DDT and its metabolites between bird tissues, livers 193 

and eggs in our study compared to studies of other avian species, may be attributed to a variety 194 

of factors. Among other influences, these include: the composition of the birds’ diet, their age 195 

and weight, and the levels and pattern of DDT contamination in the areas they inhabit (Covaci 196 

et al. 2004). 197 

The principal contributor to concentrations of ∑DDT in all samples in our study, was p,p’-DDE 198 

(see Fig. S5). Concentrations of p,p’-DDE ranged from <2 ng/g lw in pork to 546 ng/g lw in fish. 199 

In contrast, o,p’-DDT was not present above detection limits in any of our samples, while p,p’-200 

DDT was present in 42% of samples. This predominance of p,p’-DDT over its o,p’-isomer is 201 

consistent with historical contamination of the investigated area by technical DDT which mostly 202 

comprises p,p’-DDT (up to 77% DDTs). In addition, the ratio of DDT/DDE+DDD (where it 203 

was possible to calculate), was always < 1 in our study, with o,p’-DDT undetected. This is also 204 

consistent with historical contamination by technical DDT, as o,p’-DDT is the primary 205 

contaminant in dicofol formulations accounting for 46% of the four DDTs (o,p′-DDT, o,p′-DDE, 206 

p,p′-DDT, and p,p′-Cl-DDT), while p,p’- DDT contributes only 7% to this sum (Qiu et al. 2005). 207 

In agreement with an earlier study on lake fish in China (Guo et al. 2012), p,p’-DDD contributed 208 

significantly to ∑DDTs in both control and e-waste related fish samples in our study (25 % and 209 

19% respectively). Similar DDT isomer patterns were observed for chicken and duck livers, 210 
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though they displayed slightly lower contributions of p,p’-DDD to ∑DDT than observed in fish 211 

(at 5% and 16% in avian liver and fish muscle respectively), while in chicken muscle and 212 

shrimps, only p,p’-DDE was detected. 213 

Control chicken and duck eggs similarly contained only p,p’-DDE, and then at relatively low 214 

concentrations, while those from e-waste related areas contained also p,p’-DDT (in chicken 215 

eggs) or both p,p’-DDT and p,p’-DDD (in duck eggs). Reassuringly, none of the muscle samples 216 

in our study exceeded either the Chinese maximum residue limit for DDTs of 2000 ng/g lw 217 

(MOH 2012) or the 1000 ng/g lw ML set by the EC (EEC 1986). 218 

Including controls, HCB was detected in 92% of the samples considered in this study, with the 219 

exception of vegetable oils and pork (see Table 1). All control samples showed lower 220 

concentrations of HCB than the corresponding e-waste related samples, with the exception of 221 

duck liver and pork. Concentrations of HCB (based on lipid weight) were also relatively high in 222 

fish (89.2 ng/g), chicken muscle and liver (54.0 ng/g and 49.9 ng/g respectively) and in duck 223 

eggs (up to 68.6 ng/g). Overall, food products of avian origin yielded the highest concentrations 224 

of HCB in our study, exceeding values reported in a previous total diet study conducted in China 225 

in 2007 (Zhou et al. 2012) for both muscle (mean:1.58 ng/g ww) and chicken eggs (mean: 0.59 226 

ng/g ww). 227 

   228 

3.2 Estimation of daily intakes  229 

Our estimated exposures of both adults and children to halogenated organic contaminants via the 230 

consumption of a range of frequently-consumed local foodstuffs in e-waste recycling sites of 231 

Taizhou are presented in Table 4. The contributions to total dietary exposures for organic 232 

contaminants from different types of food are presented in Fig. 3. Comparison of total dietary 233 
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exposures to HBCD, PCBs, DDT and metabolites, HCB, NBFRs, and our previously reported 234 

data for PBDEs (Labunska et al. 2014) are presented in Fig. 4.  235 

 236 

3.2.1 NBFRs 237 

Estimated total dietary exposure to NBFRs considered in our study decreased in the following 238 

order: EH-TBB > BEH-TBP > BTBPE > DBDPE > PBEB > HBB (Table 3).  239 

EH-TBB had the highest estimated exposures for both adults and children (8.03 and 18.9 ng/kg 240 

bw/day respectively) followed by BEH-TBP (2.6 and 6 ng/kg bw/day respectively). The main 241 

source of both EH-TBB and BEH-TBP to dietary exposure was via pork consumption (54 and 242 

34% for adults and children respectively). Consumption of pork was also the principal 243 

contributor to dietary exposure to BTBPE (44 and 23% for adults and children respectively). For 244 

HBB, fish was the main contributor for children (44%), while for adults, both pork and fish each 245 

contributed 36% of dietary exposure. Duck muscle and duck liver combined contributed over 246 

50% of PBEB dietary exposure for both adults and children, while shrimps were the only food 247 

type in our study found to result in exposure to DBDPE. To our knowledge, this study is the first 248 

report of dietary exposures to NBFRs in Eastern China. One study has reported daily intakes of 249 

several NBFRs via chicken eggs from e-waste sites in South China (Zheng et al. 2012), but 250 

reported their dietary estimates as the sum of all monitored NBFRs, in contrast to our compound-251 

specific approach. Moreover, the main contributor to exposure to NBFRs in the Zheng et al study 252 

was Dechlorane Plus (DP), which was not investigated in our study. Hence, it was not possible to 253 

make a direct comparison between the two studies. Moreover, to our knowledge - with the 254 

exception of HBB - no health based limit values (HBLVs) with legislative standing exist for the 255 
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Table 4. Estimated adult and child exposure to selected organohalogen contaminants (ng/kg bw/day) via different types of food 256 

at e-waste recycling sites in Taizhou, China. n/e – not estimated. 257 

  Meat  Liver Egg 
TDI 

Fish Shrimps Chicken Duck Pork Chicken Duck Chicken Duck 

∑HBCDs Adult 2.18 n/e 3.67 1.1 n/e 0.28 0.03 2.44 0.71 10.4 

Child 7.49 n/e 9.86 3.95 n/e 1.08 0.11 10.5 3.06 36.1 

∑PCBs Adult 460 1.23 22.3 52.6 n/e 2.7 2.76 51.9 53.5 650 

Child 1590 22.0 60 190 n/e 10.54 10.8 220 230 2340 

∑DDTs Adult 5.06 0.81 2.27 2.78 n/e 1.31 0.21 2.57 11.0 26.0 

Child 17.4 3.16 6.11 9.95 n/e 5.13 0.83 11.0 47.2 100 

HCB Adult 0.55 0.06 2.4 0.72 n/e 0.33 0.08 6.57 1.93 12.6 

Child 1.88 0.22 6.46 2.57 n/e 1.27 0.3 28.3 8.29 49.2 

PBEB Adult n/e 0.03 n/e 0.04 n/e 0.01 0.02 n/e n/e 0.10 

Child n/e 0.12 n/e 0.13 n/e 0.06 0.06 n/e n/e 0.37 

HBB Adult 0.05 n/e 0.02 0.02 0.05 n/e n/e n/e n/e 0.14 

Child 0.16 n/e 0.05 0.08 0.07 n/e n/e n/e n/e 0.36 

EH-TBB Adult 0.43 0.16 1.15 1.01 4.34 0.23 0.18 0.27 0.25 8.02 

Child 1.49 0.62 3.09 3.62 6.22 0.89 0.71 1.18 0.32 18.1 

BEH-TBP Adult 0.11 0.07 0.42 0.3 1.41 0.07 0.06 0.07 0.08 2.59 

Child 0.37 0.28 1.12 1.08 2.02 0.27 0.25 0.28 0.33 6.00 

BTBPE Adult 0.05 0.04 0.07 0.19 0.61 0.1 0.06 0.16 0.1 1.38 

Child 0.16 0.15 0.18 0.68 0.88 0.38 0.22 0.71 0.44 3.80 

DBDPE Adult n/e 0.2 n/e n/e n/e n/e n/e n/e n/e 0.20 

Child n/e 0.77 n/e n/e n/e n/e n/e n/e n/e 0.77 

 258 
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NBFRs considered in our study. For HBB, our exposure estimates are reassuringly well below 259 

the U.S. Environmental Protection Agency’s (US EPA 1988) reference dose (RfD) of 2000 260 

ng/kg bw/day. 261 

 262 

3.2.2 HBCD 263 

As with the NBFRs, we are unaware of any HBLV of legislative standing for HBCD. However, 264 

we were able to compare our dietary exposure estimate with those reported in other studies. 265 

Estimated dietary exposure of both adults and children to ∑HBCD in our study (10.4 and 36.1 266 

ng/kg bw/day) was significantly higher than reported previously for a Swedish market basket 267 

study (0.14 ng/kg bw/day) (Törnkvist et al. 2011), as well as for the Belgian population (0.37 268 

ng/kg bw/day) (Goscinny et al. 2011). Chicken muscle and eggs were the main contributors to 269 

∑HBCDs exposure for both adults and children at e-waste sites in Taizhou accounting for over 270 

50% of the dietary exposure combined (Fig. 3).  This contrasted with two studies from Sweden 271 

(Remberger et al. 2004; Törnkvist et al. 2011) in which fish was the main contributor to dietary 272 

intake of HBCD. Such differences likely reflect both differences in local dietary preferences and 273 

variations in environmental contamination of the study areas. Our estimate of daily ∑HBCD 274 

intake from chicken egg consumption (154 ng/day) was similar to that reported for chicken eggs 275 

at e-waste sites in South China (range: 80 – 490 ng/day) (Zheng et al. 2012), but exceeded 276 

significantly that reported in Romania (0.02 ng/day)  (Dirtu and Covaci 2010). 277 

Our exposure estimates for adults and children to ∑HBCD via consumption of chicken eggs 278 

(2.44 and 10.5 ng/kg bw/day respectively), exceeded significantly those reported for the Belgian 279 

population (0.004 ng/kg bw/day) (Goscinny et al. 2011). 280 
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Fig. 3. Contributions to total dietary exposures for organic contaminants from different 281 

types of food originating from Taizhou, China. 282 

 283 

 284 

Fish contributed a further 21% to our estimate of dietary exposure to ∑HBCD for both adults and 285 

children, at 2.18 and 7.49 ng/g bw/day, respectively; values that exceeded those reported for the 286 

populations of nine Chinese coastal cities (range: 0.004 – 1.00 ng/kg bw/day) (Xia et al. 2011). 287 

Interestingly, while chicken muscle and eggs were the main contributors to ∑HBCD exposure 288 

(adults: 35 and 23 % respectively), duck muscle and eggs contributed greatly to ∑PBDE 289 

exposure (adults: 56 and 3 % respectively) as was previously reported (Labunska et al. 2014).  290 

Our estimate also exceeded that of rural residents of Tianjin, China (1.64 ng/kg bw/day) but was 291 

similar to that reported for urban residents (6.16 ng/kg bw/day) (Zhang et al. 2013). In 292 

comparison to other countries, our estimate of exposure to ∑HBCDs via fish consumption was in 293 

line with the average estimate for Japanese adults (range: 1.3 – 3.7 ng/g bw/day) (Nakagawa et 294 
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al. 2010). The contribution of duck muscle and eggs to HBCDs exposure was lower than that 295 

from chicken muscle and eggs. Consistent with other studies (e.g. Goscinny et al. 2011), of the 296 

avian tissues studied, liver made the lowest contribution to our estimated dietary intake of 297 

HBCD.  298 

 299 

Fig. 4. Estimated total dietary exposures to PCBs, DDTs, HCB, HBCDs, NBFRs, and 300 

previously reported data on PBDEs (Labunska et al. 2014). 301 

 302 

 303 

3.2.3 PCBs 304 

Dietary exposure to PCBs (650 and 2340 ng/kg PCBs bw/day for adults and children 305 

respectively) was the highest of all of the contaminants considered in this study and exceeded 306 
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that for PBDEs in our previous study of the individual samples from which the pooled samples 307 

analysed here were taken (see Fig.4). Moreover, it exceeded substantially the Minimal Risk 308 

Levels (MRL) for PCBs of 20 ng/kg bw/day derived by the Agency for Toxic Substances & 309 

Disease Registry (ATSDR 2000).  Fish was the major contributor to total dietary exposure to 310 

PCBs (Fig. 3) followed by eggs (both duck and chicken) and duck muscle. Additionally, we 311 

estimated dietary intake of the four DL-PCBs measured in our study (i.e. PCB-105, 118, 156 and 312 

167) based on their dioxin-like toxicity equivalence (TEQ) (Van den Berg et al. 2006; EU 2011) 313 

(see Table 5). While adult intake (2.83 pg TEQ/kg bw/day) was within the range of tolerable 314 

daily intake (TDI) for dioxin-like chemicals of 1 – 4 pg TEQ/kg bw/day established by the 315 

World Health Organisation (WHO) (van Leeuwen et al. 2000); estimated intake for children at 316 

10.22 pg TEQ/kg bw/day was 2.5 times the WHO TDI upper limit for all 12 DL-PCBs 317 

combined. Moreover, DL-PCBs-TEQ monthly intakes in our study (84.9 and 307 pg TEQ/kg 318 

bw/month for adults and children respectively) exceeded the provisional tolerable monthly intake 319 

(PTMI) of 70 pg TEQ/kg bw, which was established by Joint FAO / WHO Expert Committee on 320 

Food Additives (JECFA 2002). 321 

We compared our estimates with those reported elsewhere. Specifically, a study at an e-waste 322 

recycling site in Luqiao, Eastern China (Song et al. 2011) reported the estimated dietary intake of 323 

adults to PCDD/Fs and DL-PCBs combined to be 402 pg TEQ/kg bw/month, via consumption of 324 

six types of local food (rice, vegetable, chicken, chicken eggs, duck, and crucian carp). Although 325 

this exceeded our exposure estimate, it is important to emphasise that our DL-PCB-TEQ 326 

exposure estimates are based on exposure to only 4 out of the 12 PCB congeners deemed to 327 

display dioxin-like toxicity. Moreover, the exposure estimates of Song et al (2011) are calculated 328 

using WHO-1988 TEFs (Van den Berg et al. 1998), compared to the current re-evaluated WHO-329 
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2005 TEFs (Van den Berg et al. 2006) used in our study. The use of the WHO-1998 TEFs to our 330 

data raises our estimated monthly dietary intake of DL-PCBs to 332 and 1197 pg TEQ/kg 331 

bw/month for adults and children respectively. Our data thus suggest dietary exposure to PCBs 332 

and, potentially, other related contaminants in the study area, is of substantial health concern, 333 

particularly for children. 334 

 335 

Table 5. Concentrations of four DL-PCBs (pg TEQ/g ww) and dietary intake (pg TEQ/kg 336 

bw/day) by adults and children from e-waste recycling sites in Eastern China. 337 

  Concentrations (pg TEQ/g ww)  Intake, pg TEQ/kg bw/day 

  PCB 105 PCB 118 PCB 156 PCB 167 ∑PCBs Child Adult 

Fish 1.16 2.79 0.24 0.13 4.32 5.89 1.71 

Shrimps 0.02 0.06 0.00 0.00 0.09 0.12 0.03 

Chicken meat 0.14 0.34 0.03 0.03 0.54 0.37 0.14 

Duck meat 0.41 1.05 0.10 0.05 1.62 1.10 0.31 

Chicken Liver 0.04 0.10 0.01 0.00 0.16 0.05 0.01 

Duck Liver 0.06 0.11 0.01 0.00 0.18 0.06 0.02 

Chicken Egg 0.45 0.20 0.03 0.06 0.74 1.51 0.35 

Duck Egg 0.34 0.14 0.02 0.03 0.54 1.11 0.26 

Total  10.22 2.83 

 338 

3.2.4 Organochlorine pesticides 339 

The highest exposure to ∑DDTs in our study was via consumption of duck eggs (11.0 and 47.2 340 

ng/kg bw/day for adults and children respectively) followed by fish (5.1 and 17.4 ng/kg bw/day 341 

for adults and children respectively) (Table 3). Consumption of these two products accounted for 342 

over 60% of dietary exposure to ∑DDTs for both adults and children (Fig. 3). Exposure to 343 

∑DDTs via fish in our study was similar to that reported for adults in South China (range: 5.74 – 344 

5.84 ng/kg bw/day) (Guo et al. 2010), higher than that reported in another recent study (Man et 345 
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al. 2013) around e-waste sites in Taizhou (3.39 ng/kg bw/day), but lower than that in Guiyu (6.88 346 

ng/kg bw/day).  347 

Exposure to ∑DDTs via consumption of chicken and duck muscle as well as chicken eggs in our 348 

study was between 2.27 and 2.78 ng/kg bw/day and 6.11 and 11.04 ng/kg bw/day for adults and 349 

children, respectively. Exposure of adults to ∑DDTs via eating chicken eggs in our study (2.57 350 

ng/kg bw/day) was similar to the 2.35 ng/kg bw/day reported for Taizhou previously (Man et al. 351 

2013). However, exposure to ∑DDTs via consumption of duck eggs in our study was over four-352 

fold that received via eating chicken eggs. Total dietary exposure to ∑DDTs in our study (11.0 353 

and 47.2 ng/kg bw/day for adults and children respectively) exceeded substantially that reported 354 

for 12 provinces in China (range: 0.008 – 0.13 ng/kg bw/day) (Zhou et al. 2012). In contrast, our 355 

exposure estimates fell well below both the provisional tolerable daily intake (PTDI) for DDT of 356 

0.01 mg/kg bw/day derived by the Joint FAO/WHO Meeting on Pesticide Residues (FAO/WHO 357 

2001), and the WHO’s proposed acceptable daily intake of 20000 ng DDTs/kg bw/day. While 358 

we did not expect e-waste treatment to represent an important source of DDTs to the local 359 

environment, our study nevertheless reveals exposures well above those reported elsewhere in 360 

China, and moreover demonstrates that duck eggs are an important pathway of human exposure 361 

to DDT and its metabolites. This is important as a recent study attributed elevated levels of 362 

DDTs in milk, placenta and hair of mothers from Taizhou to high seafood intake, but did not 363 

mention consumption of duck eggs (Man et al. 2014).  364 

Total dietary exposure to HCB (12.6 and 49.2 ng/kg bw/day for adults and children respectively) 365 

(Table 3) was well within the corresponding US EPA RfD of 800 ng/kg bw/day (IRIS 1991). 366 

However, as with DDTs, dietary exposures in our study exceeded substantially those reported 367 

elsewhere. For example, human adult exposures to HCB were: in Catalonia, Spain, 1.0 ng/kg 368 
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bw/day (Martí-Cid et al. 2008), in Northwest Russia, 3.1 ng/kg bw/day (Polder et al. 2010), and 369 

in 12 provinces in China, 9 ng/kg bw/day on average (Zhou et al. 2012). Consumption of chicken 370 

eggs (6.57 and 28.3 ng/kg bw/day for adults and children) and chicken muscle (2.4 and 6.46 371 

ng/kg bw/day for adults and children) combined contributed around 70% of our estimates of total 372 

dietary exposure to both adults and children (Fig. 3) followed by duck eggs and muscle (about 373 

20% total exposure). Chicken eggs from Wenling showed the highest HCB concentration on 374 

both a lipid (197.4 ng/g) and wet weight basis (23.5 ng/g), with the concentration detected falling 375 

just below the 200 ng/g lw maximum residue level promulgated by the EC (EEC 1986). 376 

This study reveals substantially elevated concentrations of a wide range of OHCs in foods 377 

originating from an area where unregulated e-waste treatment is practised. Even though only 4 of 378 

the 12 designated dioxin-like PCB congeners were measured in this study; concentrations of 379 

dioxin-like PCBs expressed as TEQ, exceeded the EU limit value in 6 out of the 8 food groups 380 

studied. Combined with our earlier report based on the same samples, of substantially elevated 381 

exposure of young children to PBDEs 47 and 99; the data reported here add to growing concerns 382 

about the adverse health impacts of unregulated e-waste treatment.  Efforts to discontinue such 383 

activities should be prioritised in order to minimise further release of toxic chemicals into the 384 

environment. Meanwhile, educational programs are recommended in areas where rudimentary e-385 

waste treatment is conducted, in order to help the local population to minimise their exposure to 386 

chemical contaminants – for example, by restricting access of their livestock to e-waste 387 

contaminated land.  388 

 389 
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