
 
 

A new self-adaptation scheme for differential
evolution
Lu, Xiaofen; Tang, Ke; Sendhoff, Bernhard; Yao, Xin

DOI:
10.1016/j.neucom.2014.04.071

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Lu, X, Tang, K, Sendhoff, B & Yao, X 2014, 'A new self-adaptation scheme for differential evolution',
Neurocomputing, vol. 146, pp. 2-16. https://doi.org/10.1016/j.neucom.2014.04.071

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently
published in Neurocomputing, Volume 146, 25 December 2014, Pages 2–16, DOI: 10.1016/j.neucom.2014.04.071
Checked for repository 30/10/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185481368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.neucom.2014.04.071
https://research.birmingham.ac.uk/portal/en/publications/a-new-selfadaptation-scheme-for-differential-evolution(f9be5e65-aec3-45e0-974c-f14e10d6a898).html


Author's Accepted Manuscript

A new self-adaptation scheme for differential
evolution

Xiaofen Lu, Ke Tang, Bernhard Sendhoff, Xin
Yao

PII: S0925-2312(14)00882-0
DOI: http://dx.doi.org/10.1016/j.neucom.2014.04.071
Reference: NEUCOM14423

To appear in: Neurocomputing

Received date: 15 November 2013
Revised date: 7 March 2014
Accepted date: 3 April 2014

Cite this article as: Xiaofen Lu, Ke Tang, Bernhard Sendhoff, Xin Yao, A new
self-adaptation scheme for differential evolution, Neurocomputing, http://dx.doi.
org/10.1016/j.neucom.2014.04.071

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/neucom

http://dx.doi.org/10.1016/j.neucom.2014.04.071
http://dx.doi.org/10.1016/j.neucom.2014.04.071
http://dx.doi.org/10.1016/j.neucom.2014.04.071
http://dx.doi.org/10.1016/j.neucom.2014.04.071
http://dx.doi.org/10.1016/j.neucom.2014.04.071
http://dx.doi.org/10.1016/j.neucom.2014.04.071
http://dx.doi.org/10.1016/j.neucom.2014.04.071


A New Self-adaptation Scheme for Differential Evolution

Xiaofen Lua,c,∗, Ke Tanga,∗, Bernhard Sendhoffb, Xin Yaoa,c

aUSTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications
School of Computer Science and Technology

University of Science and Technology of China (USTC), Hefei, Anhui 230027, China.
bHonda Research Institute Europe GmbH, Offenbach 63073, Germany.

cCenter of Excellence for Research in Computational Intelligence and Applications (CERCIA)
School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Abstract

The performance of Differential Evolution (DE) largely depends on the choice of trial
vector generation strategy and the values of its control parameters. In the past years,
quite a few DE variants have been developed to adaptively adjust the strategy and con-
trol parameters during the search process. However, these variants may not perform
satisfactorily when coping with computationally expensive problems (CEPs), for which
a satisfying solution needs to be obtained with very limited fitness evaluations (FEs).
In this paper, we demonstrate that not only can surrogate models be used to approxi-
mate the fitness function, they can also provide a good alternative method to adapt the
strategy and control parameters of DE, and thus propose a framework called DE with
Surrogate-assisted Self-Adaptation (DESSA). DESSA generates multiple trial vectors
using different trial vector generation strategies and parameter settings, and then em-
ploys a surrogate model to identify the potentially best trial vector to undergo real
fitness evaluation. As each trial vector corresponds to a unique combination of strat-
egy and parameter setting, the surrogate model acts like a strategy/parameter setting
selector that aims to identify the most suitable strategy and parameter setting for each
target vector. Since DESSA can be easily combined with different DE variants, three
concrete DE variants, namely DESSA-CoDE, DESSA-SaDE, and DESSA-CoDE*, are
proposed. Comprehensive empirical studies demonstrate that DESSA can lead to supe-
rior performance over the compared adaptive DE variants. More important, it is shown
that DESSA has the potential of accommodating more search strategies, which may
lead to novel DE variants with even more competitive performance.

Keywords: Differential Evolution, Self-adaptation, Computationally Expensive
Problems, Surrogate Model.

∗Corresponding author
Email addresses: xiaofen@mail.ustc.edu.cn (Xiaofen Lu), ketang@ustc.edu.cn

(Ke Tang), bernhard.sendhoff@honda-ri.de (Bernhard Sendhoff), x.yao@cs.bham.ac.uk
(Xin Yao)

Preprint submitted to Elsevier July 9, 2014



1. Introduction

Differential Evolution (DE), proposed by Storn and Price in 1995 [1], is well rec-
ognized as an Evolutionary Algorithm (EA) for solving real-parameter optimization
problems. Owing to its simplicity and powerful search ability, DE has got a wide vari-
ety of real-world applications and exhibited excellent performance on many problems
in diverse fields [2, 3, 4].

For DE, there exist many trial vector generation strategies and different problems
may prefer different strategies [5]. Moreover, the control parameter settings also have
great influence on DE’s performance [6]. Therefore, when using DE to solve a partic-
ular problem, it is generally necessary to try through various strategies and fine-tune
the control parameters. However, such a trial-and-error procedure is often very time-
consuming. To address this issue, researcher have proposed numerous DE variants in
the past years [7, 8, 9, 10, 5, 11, 4, 12, 13, 14].

The majority of these DE variants intended to design self-adaptation schemes that
can automatically find the suitable strategy or parameter setting during the search pro-
cess, such as jDE [9], self-adaptive differential evolution (SaDE) [8, 5], self-adaptive
differential evolution with neighborhood search (SaNSDE) [10], JADE [11], PM-AdapSS-
DE [15], generalized adaptive DE (GaDE) [12], DE with Fitness-based Area-Under-
Curve Bandit (F-AUC-Bandit) [16], and ensemble of mutation strategies and control
parameters in DE (EPSDE) [13]. Though they look different from one another, the
self-adaptation schemes of these DE variants can be considered designed with a simi-
lar methodology. That is, the strategy or control parameters are adjusted according to
the information accumulated during the search process, and those with better perfor-
mance in the previous generations are more likely to be used for generating new trial
vectors.

More recently, a novel DE variant, namely composite DE (CoDE), was proposed
in [14]. The underlying concept of CoDE is very different from the above-mentioned
DE variants. To be specific, CoDE does not make use of self-adaptation schemes but
relies on researchers’ experience [14]. It adopts three well-studied strategies and three
control parameter settings. For each individual (called target vector) in the current pop-
ulation, CoDE generates one trial vector using each strategy with a randomly selected
parameter setting. Then, the three generated trial vectors are evaluated with the fitness
function and the best one is reserved as the final trial vector. The empirical studies
in [14] showed that CoDE outperformed several well-known DE variants and non-DE
variants.

Although the above-mentioned efforts have significantly advanced the potential of
DE, those DE variants do not meet the requirements of computationally expensive
problems (CEPs), which broadly exist in complex engineering design fields [17, 18,
19, 20, 21]. In CEPs, one fitness evaluation can take many hours of computer time. For
example, one function evaluation involving the solution of the Navier-Stokes equations
can take many hours of computer time in aerodynamic wing design [20]. Therefore, for
such problems, a satisfactory solution is usually required to be obtained using very lim-
ited number of fitness evaluations (FEs). However, the aforementioned self-adaptation
schemes may require a lot of FEs to accumulate sufficient information for reliable self-
adaptation. The simulation results on low dimensional problems in [11] have indicated

2



that the adaptation scheme of JADE did not function efficiently within the small num-
ber of generations. Moreover, parameters or strategy in SaDE and SaNSDE are only
adapted after some learning period, e.g. 50 generations in [5]. On the other hand,
CoDE requires multiple (i.e., three) FEs to generate an offspring each time, and thus is
not cost-effective in the context of CEPs. Actually, it would be better if it can be found
out what makes a best strategy/parameter setting for different problems like the inno-
vation method [22]. The innovation method was proposed to unveil salient knowledge
about properties which make a solution optimal by analyzing the commonality and dif-
ference of a set of near-Pareto-optimal solutions for the multi-objective optimization
problem. The information can later be employed to solve a new related optimization
problem at hand. However, it is much more complicated to analyze why a trial vector
generation strategy/control parameter setting is best, which depends on not only the
fitness landscape but also the evolutionary state.

In this paper, we propose that surrogate models can provide a good method of
adapting the trial vector generation strategy and control parameters of DE, and a frame-
work named DE with Surrogate-assisted Self-Adaptation (DESSA) is proposed. Sur-
rogate models are computationally efficient models, and can be used in lieu of the real
fitness function to reduce computational cost [20, 23]. For example, surrogate models
can be interpolation or regression models that are built to approximate the real fitness
function using some input output pairs evaluated by the fitness function. The main
idea of DESSA is to maintain a pool of trial vector generation strategies and a pool
of control parameter settings. For each target vector in the current population, a trial
vector is generated using each combination of strategy and parameter setting. Then, a
surrogate model is built and used to pick out the most promising trial vector, which will
be regarded as the final trial vector and undergo real fitness evaluation. It is important
to note that the use of surrogate models in this paper is very different from the sole
purpose of fitness approximation, which was done in a lot of existing work, and the
key role of surrogate model in our paper is to select the most promising combination
of trial vector generation strategy and control parameter setting. The motivation here
actually shares some similarity to those behind IFEP [24], where it tried to identify the
most promising mutation operator, and PAP [25], where it tried to identify the most
promising algorithm.

Similar to the other self-adaptive variants of DE, DESSA also makes use of the
information accumulated during the search process. However, instead of adapting the
strategy and parameter settings based on their performance in the previous generations,
DESSA directly focuses on employing surrogate models to compare different trial vec-
tors that are generated using different strategies and parameter settings. It is well ac-
knowledged that the performance of a strategy/parameter setting may change during
the search process [13]. Therefore, predicting the performance of strategies/parameter
settings can be expected to be more difficult than modeling the real fitness function.
In other words, the latter task, though still non-trivial, might require fewer FEs to ob-
tain a model that is beneficial and thus can suit the CEPs better. When compared to
CoDE, DESSA only requires one FE in generating an offspring, and hence can be more
cost-effective.

In fact, some initial studies have been conducted to incorporate surrogate models
into DE in the literature [26, 27, 28, 29, 30, 31]. However, none of them investigate

3



the utility of surrogate model from the perspective of self-adaptation. Moreover, most
of these studies were dedicated to specific DE variants. In contrast, this paper mainly
concerns the role of surrogate models from the perspective of self-adaptation, and its
contributions include:

• It is suggested that a surrogate model might provide a promising way for the
self-adaptation of the trial vector generation strategy and control parameters of
DE.

• A new self-adaptation scheme that employs surrogate model is proposed, which
is conceptually different from existing self-adaptation schemes for DE.

• The potential of the proposed self-adaptation scheme is explored by combining
it with different DE variants, which clearly demonstrates that this new scheme
can be combined with any DE variant that involves multiple search strategies.

The rest of this paper is organized as follows. Section 2 gives a brief introduction
to DE and some state-of-the-art DE variants. In Section 3, the DESSA framework
and its instantiation based on CoDE are described. In Section 4, experimental results
and analysis are presented to evaluate the efficacy of the DESSA framework. Finally,
Section 5 concludes this paper.

2. Related Work

In this section, the framework of DE, several representatives of self-adaptive DE
algorithms, and CoDE will be briefly reviewed. Interested readers are referred to [4]
for a comprehensive survey on recent advance in DE.

2.1. Differential Evolution (DE) Algorithm
Without loss of generality, we assume the optimization problem has the following

formulation.
min

x
f(x) (1)

where x is a vector of n design variables in a continuous decision space Ω =
∏n

i=1[Li, Ui],
and f : Ω ⊆ �n → � is called the objective function.

The procedure of DE for solving such optimization problems is given in Algo-
rithm 1. DE begins with a randomly generated population in the decision space,
PG = {xi,G|i = 1, 2, ..., popsize}. Then, DE iteratively uses the trial vector gen-
eration strategy (i.e., mutation and crossover operators) and the selection operator to
evolve the population until a stopping criterion is met.

For the mutation operator, there are five frequently used mutation schemes for gen-
erating a mutant vector:

• “DE/rand/1” [2]
vi,G = xr1,G + F · (xr2,G − xr3,G) (2)

• “DE/best/1” [2]
vi,G = xbest,G + F · (xr1,G − xr2,G) (3)

4



Algorithm 1 The Framework of DE
1: Initialize a population PG = {xi,G|i = 1, 2, ..., popsize}
2: Evaluate PG

3: while the stopping criterion is not met do
4: for each xi,G in PG do
5: vi,G = Mutate(PG)
6: ui,G = Crossover(xi,G, vi,G)
7: PG+1 = PG+1

⋃
Select(xi,G, ui,G)

8: end for
9: Set G = G+ 1

10: end while

• “DE/target-to-best/1” [3]
(i.e., “DE/rand-to-best/1” [2] or “DE/current-to-best/1” [11])

vi,G = xi,G + F · (xbest,G − xi,G) + F · (xr1,G − xr2,G) (4)

• “DE/best/2 [2]

vi,G = xbest,G + F · (xr1,G − xr2,G) + F · (xr3,G − xr4,G) (5)

• “DE/rand/2” [5]

vi,G = xr1,G + F · (xr2,G − xr3,G) + F · (xr4,G − xr5,G) (6)

where the indices r1, r2, r3, r4, and r5 are distinct integers randomly chosen from
the range [1, popsize] and also differ from i, and xbest,G is the best individual at the
G-th generation. The parameter F is called the scale factor and typically ranges on the
interval [0.4, 1.0] according to [4].

For the crossover operator, there exist two crossover schemes for creating a trial
vector with the mutant vector vi,G and the target vector xi,G, i.e., exponential and
binomial crossover schemes, and the latter is the more frequently used one, which can
be described by the following formula:

uj,i,G =

{
vj,i,G, if rand j(0, 1) ≤ CR or j = jrand

xj,i,G, otherwise
(7)

where j = 1, 2, ..., n, jrand is a randomly selected integer ∈ [1, n], rand j(0, 1) repre-
sents a number drawn uniformly between 0 and 1, xj,i,G, uj,i,G, and vj,i,G denote the
j-th element of xi,G, ui,G, and vi,G, respectively. CR ∈ [0, 1] is called the crossover
rate.

In conjunction with the binomial crossover scheme, the above-mentioned mutation
schemes yield a total of five trial vector generation strategies. They are “DE/rand/1/bin”,
“DE/best/1/bin”, “DE/target-to-best/1/bin”, “DE/best/2/bin”, “DE/rand/2/bin”, respec-
tively.

5



After crossover, each generated trial vector ui,G undergoes boundary constraint
check. If the j-th element of ui,G is out of the boundary, it is reset as follows:

uj,i,G =

{
min{Uj , 2Lj − uj,i,G}, if uj,i,G < Lj

max{Lj , 2Uj − uj,i,G}, if uj,i,G > Uj

(8)

At last, the selection operator is performed to select the better one between xi,G
and ui,G to enter the next generation:

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)

xi,G otherwise
(9)

2.2. DE with Self-Adaptation Schemes

As mentioned above, DE has multiple trial vector generation strategies and three
control parameters, i.e., population size popsize , scale factor F , and crossover rate CR.
Recognizing that some problems are very sensitive to the setting of them, researchers
have investigated various self-adaptation schemes to automatically find the suitable
settings during the search process. Usually, self-adaptation is applied to the trial vector
generation strategy, F , and CR. In the following part of this subsection, the key points
of some self-adaptive DE variants, jDE, JADE, SaDE, SaNSDE, PM-AdapSS-DE, DE
with F-AUC-Bandit, GaDE, and EPSDE, are summarized in the following part of this
subsection.

Brest et al. [9] proposed jDE for adapting F and CR, in which F and CR are
encoded with the individual. It is believed that better control parameter values lead
to better individuals that in turn, are more likely to survive. Thus, jDE adapts the
encoded control parameters by propagating better parameter values to the next gener-
ation. Specifically, 90% of offspring individuals inherit the F or CR value from their
separate parents at each generation. In other words, a successful F or CR value has
the probability of 0.9 to be selected to generated an offspring at the next generation.
Here, a successful F or CR value means that the offspring generated with this F or
CR value successfully enters next the generation.

JADE [11] generates new F values according to a truncated Cauchy distribution
and new CR values according to a normal distribution. The parameters of the Cauchy
distribution and the normal distribution are updated using new successful F and CR
values at each generation, respectively.

SaDE [8, 5], for the first time, adapts the trial vector generation strategy along with
the control parameters. In SaDE, multiple trial vector generation strategies exist. The
probability of selection of each strategy is updated proportionally to its success rate
with relation to the others. The success rate of one strategy is the rate of the trial vectors
generated by this strategy and successfully entering the next generation over previous
learning period generations. Besides, SaDE generates a new CR for each target vector
according to a Gaussian distribution, whose mean is updated every generation based
on the successful CR values in previous learning period generations.

SaNSDE proposed by Yang et al. [10] can be considered as an improved version of
SaDE. In SaNSDE, two different distributions are used to generate new F values. The

6



probability of selection of each distribution is updated proportionally to its success rate
with relation to the other. Also, the fitness improvement (the improvement achieved by
the offspring over its parent) related to each successful CR is taken into consideration
in SaNSDE in updating the mean of the Gaussian distribution for generating new CR.

PM-AdapSS-DE [15] keeps an empirical quality estimate for each trial vector gen-
eration strategy, and updates it based on the absolute average of the relative fitness
improvement (normalized by the fitness of the best-so-far individual) recently received
by the corresponding strategy. Then, the probability to select each strategy is updated
proportionally to its empirical estimate with relation to the others.

In [16], the authors coupled a comparison-based technique, the F-AUC-Bandit [32],
with DE to make DE adapt the strategy automatically and be invariant with relation
to monotonous transformations over the fitness function. The generated DE variant
keeps an empirical quality estimate for each strategy, which is updated by using the
AUC paradigm and the rank of fitness of the offspring recently generated by the corre-
sponding strategy. And, the probability to select each strategy is updated based on its
empirical quality estimate.

In [12], a generalized parameter adaptation scheme was employed to design a new
adaptive DE variant, GaDE, for large-scale optimization problems. In GaDE, new F
and CR are generated for each target vector according to different probability distribu-
tions, whose parameters are updated every generation based on good F and CR values
and the corresponding fitness improvements in previous generations, respectively.

Considering that different mutation strategies with different parameter settings can
be appropriate during different stages of the evolution, Mallepeddi et al. [13] pro-
posed EPSDE for adapting combination of mutation scheme and parameter setting. In
EPSDE, combinations of mutation scheme and parameter setting are generated at the
individual level and better combinations are propagated to the next generation.

2.3. CoDE

CoDE was proposed by Wang et al. [14] to improve DE through combining three
trial vector generation strategies with three different control parameter settings, which
have distinct advantages confirmed by other researchers’ studies.

Specifically, the three strategies used in CoDE are:

• “DE/rand/1/bin”

• “DE/rand/2/bin”

• “DE/current-to-rand/1” [33],

and the three parameter settings are:

• [F = 1.0,CR = 0.1]

• [F = 1.0,CR = 0.9]

• [F = 0.8,CR = 0.2].

7



In CoDE, for each target vector, a trial vector is generated using each strategy and a
randomly selected parameter setting. Then, the three trial vectors will be evaluated
with the real fitness function, and the best one is returned as the final trial vector.

In this section, we have introduced some representatives of DE variants that adjust
the trial vector strategy and its control parameters during the search process. Besides
these representatives, there are many other DE variants proposed in various research
aspects. The interested readers are referred to [4] for details.

3. A new self-adaptation scheme using surrogate models

In this section, we propose a new scheme to adapt the strategy and control parame-
ter setting for DE. The main idea of this scheme is to select the potentially best strategy
and parameter setting by building surrogate models to select the most promising one
among multiple trial vectors generated using several trial vector generation strategies
and control parameter settings. Furthermore, a generalized framework of DE that em-
ploys the newly proposed scheme, DESSA, is proposed.

3.1. The DESSA Framework

Algorithm 2 DESSA
1: Initialize a population PG = {xi,G|i = 1, 2, ..., popsize}
2: Evaluate PG

3: Archive all exact evaluations into a database DB
4: while computational budget is not exhausted do
5: if database building phase does not end then
6: Evolve PG with DE operators using exact evaluations
7: else
8: for each xi,G in PG do
9: Generate multiple trial vectors using several strategies and parameter set-

tings
10: Build a surrogate model S based on DB
11: Select the best trial vector (denoted as ui,G) according to S and evaluate it
12: PG+1 = PG+1

⋃
Select(xi,G, ui,G)

13: end for
14: end if
15: Archive all exact evaluations into DB
16: Set G = G+ 1
17: end while

The outline of the proposed DESSA framework is given in Algorithm 2. DESSA
begins with an initialized population of decision vectors. During the database building
phase, the population is evolved with mutation, crossover and selection operators using
exact evaluations for a certain number of generations, and all exact evaluations are
archived into a database DB . After this, surrogate models are involved. For each target
vector, several trial vector generation strategies and several control parameter settings

8



are used to generate multiple trial vectors. Then, a surrogate model is built based on the
evaluated points in the database. According to the surrogate model, the trial vector that
appears the best is selected to undergo exact evaluation and competes with the target
vector. This process is repeated until the computational budget is used up.

Figure 1: (a) A generalized framework for existing self-adaptive DE variants. (b) The generalized framework
of CoDE. (c) The workflow of DESSA.

The main stages of DESSA are also illustrated in Fig. 1 along with the generalized
frameworks of existing self-adaptive DE algorithms and CoDE. It can be observed from
Fig. 1 that the main idea of DESSA is quite different from those of CoDE and existing
self-adaptive variants of DE.

3.2. DESSA-CoDE
The newly proposed self-adaptation scheme can be directly incorporated with CoDE,

thereby leading to a new self-adaptive DE variant. Algorithm 3 presents the detailed
steps of the new algorithm, namely DESSA-CoDE.

DESSA-CoDE uses the same strategies and parameter settings as CoDE. This
yields a total of 3 × 3 = 9 combinations of strategies and parameter settings. DESSA-
CoDE begins with a randomly generated population and evolves it as CoDE does in
[14] for MaxGdb generations. At each generation G (G > MaxGdb), each of the 9
combinations is used to create a trial vector for each target vector. As the surrogate
model is built to select the most promising trial vector, we consider ranking models
in the implementation, which seem more applicable compared to interpolate or regres-
sion models when the best individuals need to be selected [34, 35], and use Rank-SVM
[36] as the surrogate model, which was also used in [34, 35]. To build a Rank-SVM
model S, we select min(k, |DB |) nearest evaluated points for each generated trial vec-
tor based on the Euclidean distance and combine them together, 80% of which are
chosen uniformly as the training set and the remaining 20% form the set for validating
the prediction quality. If the prediction accuracy of S is larger than 0.5 (the accuracy
of a random approach), the trial vector appears the best according to S is further eval-
uated with the exact objective function, otherwise a trial vector is randomly selected
for evaluation, which will enter the next generation if it is better than the target vector.
This process iterates until all FEs are used up.

According to Algorithm 3, DESSA-CoDE can automatically select a promising
combination of strategy and parameter setting for each target vector without extra FEs,
and thus can be more cost-effective than CoDE.

9



Algorithm 3 DESSA-CoDE
Input:

the objective function, f ;
maximal number of FEs, MaxEval ;
candidate strategies: “DE/rand/1/bin”, “DE/rand/2/bin”, and “DE/current-to-
rand/1”;
candidate parameter settings: [F = 1.0, CR = 0.1], [F = 1.0,CR = 0.9], and
[F = 0.8,CR = 0.2];

1: Set popsize , MaxGdb, G = 0, eval = 0, DB = Φ
2: Initialize a population PG = {xi,G|i = 1, 2, ..., popsize}
3: Archive all (xi,G, f(xi,G)) into DB
4: eval = eval + popsize
5: while eval < MaxEval do
6: if G < MaxGdb then
7: Generate PG+1 based on PG as CoDE does
8: else
9: for each xi,G in PG do

10: Generate nine trial vectors using the nine combinations of strategies and
parameter settings

11: Build a ranking model S based on DB
12: if The prediction accuracy of S is larger than 0.5 then
13: Select the best trial vector according to S (denoted as ui,G)
14: else
15: Randomly select one trial vector as ui,G

16: end if
17: Evaluate ui,G with f
18: PG+1 = PG+1

⋃
Select(xi,G, ui,G)

19: eval = eval + 1
20: end for
21: end if
22: Archive all exact evaluations into DB (like step 3)
23: G = G+ 1
24: end while
Output:

the best individual in the current population, xbest,G;

10



3.3. Discussion
It should be noted that DESSA-CoDE in this paper serves as an instantiation of

DESSA. In general, DESSA can also be combined with any other DE variant that
involve multiple search strategies, and thus generating other instantiations of DESSA,
which will be further investigated in our experimental section. Moreover, according
to Fig. 1, incorporating more strategies and parameter settings into DESSA will only
lead to more trial vectors generated for each target vector, while no additional FEs will
be induced as all newly generated trial vectors are to be first filtered by the surrogate
model. Therefore, DESSA may easily accommodate more strategies and parameter
settings. In fact, other ways to select the training set and other modeling techniques
can also be used in the implementation of DESSA-CoDE. However, considering that
it is the effect of combining DE and surrogate models that is the key in this paper, no
more attention will be paid to this in the following sections.

As mentioned above, there exist a few attempts to incorporate surrogate models
with DE in literature [26, 27, 28, 29, 30, 31]. In [28], classification models are built
to estimate whether offspring are better than their separate parents and the worse ones
are prevented from being evaluated with the real fitness function. Based on this work,
CRADE was proposed in [29] by incorporating classification and regression techniques
to construct a more effective surrogate model. In [26, 27], DE-AEC was proposed
based on jDE by generating multiple offspring for each parent and selecting one to
compete with the parent according to a surrogate model. The main difference between
our work and DE-AEC is that we considers multiple trial vector strategies and param-
eter settings while DE-AEC considers only one strategy and parameter setting for each
target vector. The authors in [31] enhanced DE by generating multiple trial vectors
with several trial vector strategies and building surrogate models to select the most
promising one. Unlike their work, our work considers different strategies as well as
different control parameter settings. In [30], a surrogate model-assisted EPSDE algo-
rithm, SMA-EPSDE, was proposed by generating a competitive trail vector for each
target vector. The difference between SMA-EPSDE and DESSA is that SMA-EPSDE
stops generating trial vectors for a target vector once obtaining a competitive trial vec-
tor according to the surrogate model while DESSA employs surrogate models to select
the best one among multiple trial vectors. Furthermore, none of the aforementioned
surrogate-assisted DE studies investigate the role of surrogate models in DE from the
perspective of self-adaptation, and most of them take into account only one DE variant.

4. Empirical Study

To assess the performance of the new self-adaptation scheme, we have carried out
different experiments using a test suite proposed in the CEC2005 special session on
real-parameter optimization. The test suite consists of 25 benchmark functions, in-
cluding:

• unimodal functions f1-f5,

• basic multimodal functions f6-f12,

• expanded multimodal functions f13-f14, and

11



• hybrid composition functions f15-f25.

A detailed description of them can be found in [37]. The focus of this study was to
check whether the new self-adaptation scheme can suits CEPs better, and we studied
the performance of DESSA-CoDE along this direction. We also studied the efficiency
of this new scheme by comparing it with the self-adaptation scheme of SaDE.

The dimensionality of the test functions was set to 30 throughout the experiments.
Considering that only limited computational resources are allowable to solve CEPs, all
the algorithms in our experiments were assigned with 3000 FEs. For each algorithm,
the average and standard deviation of the minimum function error values it can find on
each test function over 25 independent runs using 3000 FEs were recorded for mea-
suring its performance. The function error value of a solution equals to the function
value of the solution minus the minimal value of the objective function. To make a
comparison between one algorithm and another, we conducted the Wilcoxon rank-sum
test at a 0.05 significance level.

4.1. Performance of DESSA-CoDE

To assess the efficacy of DESSA-CoDE, performance comparisons have been made
between it and eight state-of-the-art DE variants including CoDE, four self-adaptive
DE variants (i.e., jDE, SaDE, JADE, and EPSDE), one DE variant with accelerated
convergence rate (i.e., DEahcSPX [38]), and two surrogate model-assisted DE vari-
ants (i.e., SMA-EPSDE and CRADE). In DEahcSPX, an adaptive local search opera-
tion with a hill-climbing heuristic was employed to improve the performance of DE.
Also, DESSA-CoDE was compared with one non-DE approach, the standard covari-
ance matrix adaptation evolution strategy (CMA-ES) [39], which is a very efficient and
well-known ES.

It should be noted here that the ideas behind CRADE and the DESSA framework
are quite different. CRADE, specifically designed for solving CEPs, attempts using
surrogate models to check whether an offspring is worthy of real fitness evaluation,
and thus prevent wasting fitness evaluations on unpromising offsprings. On the other
hand, DESSA builds surrogate models to select the best one among multiple gener-
ated trial vectors along with the best strategy and parameter setting so as to generate
better offsprings without extra fitness evaluations. In fact, the idea of CRADE can
be directly incorporated into DESSA by introducing surrogate models of CRADE to
decide whether the trial vectors selected by DESSA should undergo real fitness evalu-
ations. As this work aims to investigate the performance of DE in solving CEPs from
the perspective of self-adaption, we focused the experimental studies on testing the
effectiveness of surrogate models in this background. Thus, the comparison between
CRADE and DESSA-CoDE serves primarily as a reference.

The parameters of all the compared algorithms except SaDE were directly set the
same as in their original papers. In [5], the learning period (LP) was set 50 for SaDE,
which means the parameter and strategy are adapted after the initial 50 generations.
This seems not a best setting when only 3000 FEs are available. To make a fair com-
parison, we run SaDE 25 times on each test function with 3000 FEs and six different
different LPs of 1, 5, 15, 25, 35, 50, and then SaDE with the best performing LP value

12



was selected for comparison. Note that the other parameters of SaDE were set the same
as in [5].

Table 1 summarizes the average and standard deviation of the function error values
that SaDE obtained with six different LPs. Through the Wilcoxon rank-sum test, we
found that, overall, SaDE with LPs of 1 and 5 performed best. So, SaDE with LP of 5
was used for the comparison between SaDE and DESSA-CoDE.

Table 1: Experimental results of SaDE with six different LPs over 25 runs with 3000 FEs on 25 test functions
of 30 variables

Func LP=1 LP=5 LP=15 LP=25 LP=35 LP=50
MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev

f1 5.27e+003±1.67e+003 5.05e+003±1.31e+003 5.09e+003±1.25e+003 5.05e+003±1.09e+003 5.56e+003±7.99e+002 6.32e+003±9.56e+002
f2 2.22e+004±3.84e+003 2.34e+004±4.69e+003 2.38e+004±4.90e+003 2.32e+004±4.87e+003 2.31e+004±4.04e+003 2.44e+004±3.76e+003
f3 7.97e+007±2.72e+007 8.76e+007±3.01e+007 9.54e+007±2.99e+007 1.06e+008±3.66e+007 1.12e+008±3.95e+007 1.48e+008±4.10e+007
f4 2.87e+004±6.15e+003 2.68e+004±4.98e+003 2.89e+004±3.63e+003 2.78e+004±4.19e+003 3.01e+004±5.53e+003 2.95e+004±5.06e+003
f5 1.73e+004±1.83e+003 1.70e+004±1.41e+003 1.67e+004±1.40e+003 1.73e+004±1.70e+003 1.76e+004±1.83e+003 1.75e+004±1.52e+003
f6 7.02e+008±2.86e+008 5.02e+008±2.05e+008 6.25e+008±1.99e+008 5.16e+008±2.34e+008 6.59e+008±1.70e+008 8.19e+008±2.52e+008
f7 1.16e+003±2.27e+002 1.21e+003±2.02e+002 1.08e+003±2.45e+002 1.15e+003±2.78e+002 1.20e+003±3.16e+002 1.37e+003±2.95e+002
f8 2.12e+001±4.98e-002 2.12e+001±5.33e-002 2.11e+001±6.99e-002 2.11e+001±5.52e-002 2.12e+001±5.48e-002 2.11e+001±6.39e-002
f9 2.20e+002±1.73e+001 2.29e+002±1.55e+001 2.42e+002±1.97e+001 2.43e+002±1.28e+001 2.49e+002±1.94e+001 2.45e+002±1.83e+001
f10 3.10e+002±2.35e+001 3.02e+002±1.80e+001 3.03e+002±1.92e+001 3.07e+002±2.18e+001 3.08e+002±1.64e+001 3.12e+002±2.16e+001
f11 4.22e+001±1.25e+000 4.27e+001±1.36e+000 4.34e+001±1.31e+000 4.40e+001±1.51e+000 4.34e+001±1.54e+000 4.34e+001±1.70e+000
f12 5.73e+005±7.02e+004 5.51e+005±9.24e+004 5.50e+005±1.09e+005 5.99e+005±1.08e+005 5.86e+005±1.07e+005 6.32e+005±9.88e+004
f13 1.98e+001±2.09e+000 2.06e+001±1.63e+000 2.10e+001±1.14e+000 2.17e+001±2.04e+000 2.17e+001±1.84e+000 2.30e+001±1.32e+000
f14 1.39e+001±1.45e-001 1.39e+001±1.91e-001 1.39e+001±2.11e-001 1.40e+001±1.15e-001 1.40e+001±1.76e-001 1.40e+001±1.86e-001
f15 6.90e+002±8.79e+001 7.01e+002±7.67e+001 7.08e+002±7.87e+001 7.01e+002±7.82e+001 7.19e+002±7.79e+001 7.06e+002±8.64e+001
f16 4.08e+002±6.74e+001 4.09e+002±6.06e+001 3.85e+002±4.69e+001 4.19e+002±6.67e+001 4.10e+002±6.74e+001 4.18e+002±6.78e+001
f17 4.80e+002±7.18e+001 5.04e+002±8.32e+001 4.78e+002±7.70e+001 4.75e+002±7.54e+001 4.80e+002±5.58e+001 5.34e+002±1.06e+002
f18 1.08e+003±1.79e+001 1.07e+003±1.48e+001 1.07e+003±1.84e+001 1.08e+003±1.92e+001 1.08e+003±1.43e+001 1.08e+003±1.86e+001
f19 1.08e+003±2.20e+001 1.07e+003±2.29e+001 1.07e+003±1.74e+001 1.07e+003±1.52e+001 1.08e+003±2.28e+001 1.07e+003±2.63e+001
f20 1.07e+003±2.13e+001 1.08e+003±2.10e+001 1.07e+003±1.62e+001 1.08e+003±1.85e+001 1.07e+003±2.40e+001 1.08e+003±2.31e+001
f21 1.17e+003±7.04e+001 1.17e+003±4.36e+001 1.17e+003±3.70e+001 1.15e+003±7.16e+001 1.17e+003±4.77e+001 1.19e+003±3.42e+001
f22 1.18e+003±4.03e+001 1.20e+003±2.94e+001 1.18e+003±4.18e+001 1.19e+003±3.27e+001 1.18e+003±3.84e+001 1.22e+003±3.65e+001
f23 1.18e+003±4.34e+001 1.17e+003±5.14e+001 1.17e+003±4.58e+001 1.18e+003±3.85e+001 1.17e+003±4.35e+001 1.19e+003±3.72e+001
f24 1.24e+003±6.55e+001 1.23e+003±4.74e+001 1.20e+003±7.22e+001 1.22e+003±5.47e+001 1.25e+003±4.09e+001 1.24e+003±3.98e+001
f25 1.33e+003±6.55e+001 1.29e+003±1.10e+002 1.27e+003±1.02e+002 1.29e+003±5.62e+001 1.30e+003±6.27e+001 1.29e+003±1.11e+002

The parameters of DESSA-CoDE were set as: popsize = 30, k = n2/9. Note that
the population size popsize of DESSA-CoDE was set the same as that of CoDE, and
the product of k and the number of the generated trial vectors for each target vector
is approximately proportionate to (n + 1)(n + 2)/2, which is the minimum number
of data points required to build a quadratic regression model, while k was set to be
moderate considering the complexity of training a model. The maximum number of
iterations of the SVM learning algorithms was set to 50000

√
n. The constraint weights

Ci were set to 106(�0.8k� − i)2, which implies that the cost of constraint violation
quadratically increases for the points ranking the top. Here, �0.8k� is the number of
training points used to build an Rank-SVM model. Moreover, we employs the RBF
kernel function and the kernel width was set to the average distance between training
points. It is worth noting that, since we aim at a suitable self-adaptive scheme for
solving CEPs, i.e., problems that may cost from minutes to hours of computational time
per evaluation, the overhead for identifying the nearest k points and building surrogate
models are considered to be insignificant. The setting of MaxGdb indicates how many
data points are accumulated before a surrogate model is involved in the search process.
In our experimental study, we run DESSA-CoDE 25 times on each test function with
3000 FEs and six different MaxGdb values of 0, 1, 2, 3, 5, 8. Table 2 summarizes
the average and standard deviation of the function error values that DESSA-CoDE
obtained with six different MaxGdb values. Through the Wilcoxon rank-sum test, it is
found that, DESSA-CoDE works best with MaxGdb value of 0.

13



Table 2: Experimental results of DESSA-CoDE with six different MaxGdb over 25 runs with 3000 FEs on
25 test functions of 30 variables

Func MaxGdb=0 MaxGdb=1 MaxGdb=2 MaxGdb=3 MaxGdb=5 MaxGdb=8
MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev

f1 3.63e-001±1.56e-001 6.27e-001±4.66e-001 6.87e-001±1.81e-001 1.18e+000±5.97e-001 1.74e+000±3.89e-001 3.73e+000±1.32e+000
f2 9.39e+003±2.17e+003 1.17e+004±2.84e+003 1.06e+004±2.19e+003 1.04e+004±4.13e+003 1.01e+004±3.32e+003 1.25e+004±4.58e+003
f3 1.41e+007±5.70e+006 1.60e+007±7.60e+006 1.66e+007±8.11e+006 1.72e+007±5.57e+006 2.35e+007±1.37e+007 2.77e+007±1.18e+007
f4 2.24e+004±5.68e+003 2.05e+004±6.82e+003 2.36e+004±5.79e+003 2.23e+004±5.10e+003 1.99e+004±5.53e+003 2.59e+004±9.81e+003
f5 4.81e+003±7.20e+002 4.47e+003±1.00e+003 5.11e+003±7.35e+002 5.16e+003±8.78e+002 5.42e+003±8.32e+002 5.60e+003±9.65e+002
f6 4.73e+003±6.82e+003 5.12e+003±3.84e+003 6.60e+003±4.79e+003 3.91e+003±2.29e+003 3.61e+003±2.05e+003 1.12e+004±5.88e+003
f7 1.42e+001±8.61e+000 1.60e+001±9.19e+000 1.54e+001±7.48e+000 1.93e+001±8.45e+000 2.30e+001±5.78e+000 3.29e+001±1.59e+001
f8 2.12e+001±6.53e-002 2.12e+001±5.17e-002 2.12e+001±5.39e-002 2.11e+001±4.00e-002 2.11e+001±6.53e-002 2.12e+001±6.62e-002
f9 1.66e+002±9.71e+000 1.79e+002±5.11e+000 1.66e+002±1.35e+001 1.80e+002±1.34e+001 1.69e+002±1.75e+001 1.83e+002±1.38e+001
f10 2.43e+002±2.15e+001 2.45e+002±1.49e+001 2.48e+002±1.69e+001 2.46e+002±2.12e+001 2.44e+002±2.52e+001 2.42e+002±1.27e+001
f11 4.18e+001±1.57e+000 4.16e+001±1.35e+000 4.12e+001±1.53e+000 4.25e+001±9.44e-001 4.12e+001±1.79e+000 4.20e+001±1.85e+000
f12 7.39e+004±5.68e+004 5.86e+004±2.81e+004 1.09e+005±7.04e+004 1.20e+005±1.06e+005 8.38e+004±4.55e+004 1.48e+005±1.30e+005
f13 1.62e+001±1.19e+000 1.61e+001±1.72e+000 1.78e+001±1.76e+000 1.74e+001±1.50e+000 1.67e+001±1.66e+000 1.75e+001±1.76e+000
f14 1.39e+001±1.48e-001 1.39e+001±1.69e-001 1.40e+001±1.26e-001 1.40e+001±2.06e-001 1.39e+001±1.40e-001 1.40e+001±1.08e-001
f15 3.55e+002±5.98e+001 3.59e+002±4.25e+001 3.73e+002±5.14e+001 3.37e+002±9.04e+001 4.24e+002±8.33e+001 4.23e+002±6.44e+001
f16 3.19e+002±8.15e+001 3.10e+002±6.45e+001 3.01e+002±5.38e+001 3.24e+002±8.52e+001 2.82e+002±5.47e+001 2.81e+002±4.64e+001
f17 3.48e+002±6.28e+001 3.96e+002±8.83e+001 3.63e+002±5.95e+001 3.91e+002±8.58e+001 3.73e+002±7.05e+001 3.58e+002±5.62e+001
f18 9.15e+002±3.27e+000 9.16e+002±2.57e+000 9.15e+002±3.31e+000 9.06e+002±3.17e+001 9.17e+002±3.74e+000 9.21e+002±3.15e+000
f19 9.15e+002±2.34e+000 9.16e+002±2.44e+000 9.15e+002±3.08e+000 9.16e+002±2.96e+000 9.17e+002±2.26e+000 9.20e+002±3.90e+000
f20 9.16e+002±3.44e+000 9.15e+002±2.74e+000 9.14e+002±2.16e+000 9.15e+002±2.92e+000 9.18e+002±4.33e+000 9.18e+002±3.86e+000
f21 5.00e+002±1.89e-001 5.01e+002±8.80e-001 5.01e+002±5.58e-001 5.01e+002±3.52e-001 5.01e+002±5.21e-001 5.02e+002±1.01e+000
f22 9.97e+002±2.69e+001 9.93e+002±3.44e+001 9.80e+002±2.83e+001 9.84e+002±2.97e+001 9.85e+002±2.62e+001 1.02e+003±3.66e+001
f23 5.35e+002±1.33e+000 5.34e+002±3.42e-001 5.35e+002±2.08e+000 5.85e+002±1.48e+002 5.36e+002±1.53e+000 5.41e+002±8.19e+000
f24 2.03e+002±3.76e+000 2.02e+002±1.01e+000 2.03e+002±2.75e+000 2.03e+002±1.93e+000 2.13e+002±1.07e+001 2.15e+002±2.17e+001
f25 2.52e+002±1.54e+001 2.65e+002±5.02e+001 2.55e+002±1.11e+001 2.56e+002±2.69e+001 2.59e+002±1.17e+001 2.70e+002±3.11e+001

Table 3: Experimental results of CoDE and DESSA-CoDE over 25 runs with 3000 FEs on 25 test functions
of 30 variables, +, −, and ≈ denote that the result of CoDE is better than, worse than, and comparable to
that of DESSA-CoDE, respectively

Func CoDE DESSA-CoDE
MeanError±StdDev MeanError±StdDev

f1 1.02e+004±2.92e+003 − 3.63e-001±1.56e-001
f2 3.84e+004±6.36e+003 − 9.39e+003±2.17e+003
f3 2.07e+008±6.65e+007 − 1.41e+007±5.70e+006
f4 4.79e+004±8.80e+003 − 2.24e+004±5.68e+003
f5 1.81e+004±1.74e+003 − 4.81e+003±7.20e+002
f6 9.03e+008±4.77e+008 − 4.73e+003±6.82e+003
f7 2.02e+003±4.86e+002 − 1.42e+001±8.61e+000
f8 2.12e+001±4.35e-002 ≈ 2.12e+001±6.53e-002
f9 2.43e+002±1.76e+001 − 1.66e+002±9.71e+000
f10 3.43e+002±2.56e+001 − 2.43e+002±2.15e+001
f11 4.33e+001±1.45e+000 − 4.18e+001±1.57e+000
f12 7.48e+005±1.14e+005 − 7.39e+004±5.68e+004
f13 3.25e+001±4.88e+000 − 1.62e+001±1.19e+000
f14 1.40e+001±1.97e-001 − 1.39e+001±1.48e-001
f15 6.79e+002±7.37e+001 − 3.55e+002±5.98e+001
f16 4.12e+002±5.30e+001 − 3.19e+002±8.15e+001
f17 4.56e+002±4.83e+001 − 3.48e+002±6.28e+001
f18 1.05e+003±2.03e+001 − 9.15e+002±3.27e+000
f19 1.06e+003±2.03e+001 − 9.15e+002±2.34e+000
f20 1.04e+003±1.80e+001 − 9.16e+002±3.44e+000
f21 1.18e+003±4.34e+001 − 5.00e+002±1.89e-001
f22 1.22e+003±3.84e+001 − 9.97e+002±2.69e+001
f23 1.20e+003±3.83e+001 − 5.35e+002±1.33e+000
f24 1.19e+003±5.63e+001 − 2.03e+002±3.76e+000
f25 9.30e+002±2.78e+002 − 2.52e+002±1.54e+001

− 24
+ 0
≈ 1

14



0 1000 2000 3000
0

2

4

6

8

10

12x 10
4

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
E

rr
or

 V
al

ue CoDE
DESSA−CoDE

(a) f1

0 1000 2000 3000
0

1

2

3

4

5x 104

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(b) f5

0 1000 2000 3000
0

2

4

6

8

10

12x 1010

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(c) f6

0 1000 2000 3000
21.15

21.2

21.25

21.3

21.35

21.4

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(d) f8

0 1000 2000 3000
0

500

1000

1500

2000

2500

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(e) f13

0 1000 2000 3000
13.8

14

14.2

14.4

14.6

14.8

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(f) f14

0 1000 2000 3000
0

500

1000

1500

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(g) f15

0 1000 2000 3000
500

1000

1500

2000

2500

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
E

rr
or

 V
al

ue CoDE
DESSA−CoDE

(h) f22

0 1000 2000 3000
0

500

1000

1500

2000

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue CoDE
DESSA−CoDE

(i) f25

Figure 2: Evolutionary curves of CoDE and DESSA-CoDE

15



Table 4: Experimental results of jDE, SaDE, JADE, EPSDE, and DESSA-CoDE over 25 runs with 3000 FEs
on 25 test functions of 30 variables, +, −, and ≈ denote that the result of the corresponding algorithm is
better than, worse than, and comparable to that of DESSA-CoDE, respectively

Func jDE SaDE JADE EPSDE DESSA-CoDE
MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev

f1 1.71e+004±3.25e+003 − 5.05e+003±1.31e+003 − 4.01e+003±7.13e+002 − 3.09e+003±1.42e+003 − 3.63e-001±1.56e-001
f2 6.15e+004±9.33e+003 − 2.34e+004±4.69e+003 − 3.74e+004±5.47e+003 − 6.21e+004±1.60e+004 − 9.39e+003±2.17e+003
f3 4.41e+008±9.80e+007 − 8.76e+007±3.01e+007 − 1.91e+008±3.96e+007 − 4.03e+008±1.94e+008 − 1.41e+007±5.70e+006
f4 7.15e+004±1.18e+004 − 2.68e+004±4.98e+003 − 5.04e+004±9.77e+003 − 8.27e+004±2.52e+004 − 2.24e+004±5.68e+003
f5 2.00e+004±1.90e+003 − 1.70e+004±1.41e+003 − 1.24e+004±1.13e+003 − 1.76e+004±4.05e+003 − 4.81e+003±7.20e+002
f6 3.52e+009±9.66e+008 − 5.02e+008±2.05e+008 − 1.86e+008±7.10e+007 − 3.02e+008±3.04e+008 − 4.73e+003±6.82e+003
f7 2.89e+003±3.32e+002 − 1.21e+003±2.02e+002 − 7.12e+002±1.16e+002 − 6.78e+002±2.03e+002 − 1.42e+001±8.61e+000
f8 2.11e+001±5.11e-002 ≈ 2.12e+001±5.33e-002 ≈ 2.12e+001±4.99e-002 ≈ 2.11e+001±4.95e-002 ≈ 2.12e+001±6.53e-002
f9 2.76e+002±1.81e+001 − 2.29e+002±1.55e+001 − 2.28e+002±1.53e+001 − 2.45e+002±2.12e+001 − 1.66e+002±9.71e+000
f10 3.82e+002±2.59e+001 − 3.02e+002±1.80e+001 − 2.89e+002±1.68e+001 − 3.03e+002±1.93e+001 − 2.43e+002±2.15e+001
f11 4.30e+001±1.72e+000 − 4.27e+001±1.36e+000 ≈ 4.39e+001±1.28e+000 − 4.43e+001±1.14e+000 − 4.18e+001±1.57e+000
f12 8.58e+005±1.42e+005 − 5.51e+005±9.24e+004 − 6.79e+005±8.53e+004 − 9.02e+005±1.22e+005 − 7.39e+004±5.68e+004
f13 7.31e+001±1.81e+001 − 2.06e+001±1.63e+000 − 2.64e+001±1.94e+000 − 3.20e+001±1.19e+001 − 1.62e+001±1.19e+000
f14 1.40e+001±1.08e-001 − 1.39e+001±1.91e-001 ≈ 1.39e+001±1.41e-001 ≈ 1.42e+001±1.74e-001 − 1.39e+001±1.48e-001
f15 7.84e+002±7.97e+001 − 7.01e+002±7.67e+001 − 6.52e+002±9.54e+001 − 8.63e+002±3.90e+001 − 3.55e+002±5.98e+001
f16 4.87e+002±5.20e+001 − 4.09e+002±6.06e+001 − 3.54e+002±5.08e+001 − 4.17e+002±1.00e+002 − 3.19e+002±8.15e+001
f17 5.61e+002±6.48e+001 − 5.04e+002±8.32e+001 − 3.96e+002±8.06e+001 − 4.96e+002±8.11e+001 − 3.48e+002±6.28e+001
f18 1.10e+003±3.19e+001 − 1.07e+003±1.48e+001 − 9.69e+002±1.17e+001 − 9.49e+002±3.90e+001 − 9.15e+002±3.27e+000
f19 1.09e+003±3.21e+001 − 1.07e+003±2.29e+001 − 9.72e+002±9.87e+000 − 9.46e+002±3.56e+001 − 9.15e+002±2.34e+000
f20 1.10e+003±2.06e+001 − 1.08e+003±2.10e+001 − 9.69e+002±1.01e+001 − 9.40e+002±2.31e+001 − 9.16e+002±3.44e+000
f21 1.23e+003±1.91e+001 − 1.17e+003±4.36e+001 − 1.05e+003±8.38e+001 − 9.70e+002±3.21e+001 − 5.00e+002±1.89e-001
f22 1.28e+003±5.38e+001 − 1.20e+003±2.94e+001 − 1.11e+003±3.21e+001 − 8.22e+002±1.52e+002 + 9.97e+002±2.69e+001
f23 1.24e+003±1.49e+001 − 1.17e+003±5.14e+001 − 1.03e+003±7.64e+001 − 9.74e+002±3.47e+001 − 5.35e+002±1.33e+000
f24 1.27e+003±2.87e+001 − 1.23e+003±4.74e+001 − 1.01e+003±6.09e+001 − 4.05e+002±1.07e+002 − 2.03e+002±3.76e+000
f25 1.45e+003±3.58e+001 − 1.29e+003±1.10e+002 − 1.02e+003±2.13e+002 − 5.39e+002±2.37e+002 − 2.52e+002±1.54e+001

− 24 22 23 23
+ 0 0 0 1
≈ 1 3 2 1

Table 5: Experimental results of DEahcSPX, SMA-EPSDE, CRADE, CMA-ES, and DESSA-CoDE over
25 runs with 3000 FEs on 25 test functions of 30 variables, +, −, and ≈ denote that the result of the
corresponding algorithm is better than, worse than, and comparable to that of DESSA-CoDE, respectively

Func DEahcSPX SMA-EPSDE CRADE CMA-ES DESSA-CoDE
MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev MeanError±StdDev

f1 8.63e+003±2.58e+003 − 1.44e+004±2.44e+003 − 2.34e+000±5.56e-001 − 2.36e+004±5.49e+003 − 3.63e-001±1.56e-001
f2 2.71e+004±3.68e+003 − 3.47e+004±5.43e+003 − 1.89e+004±5.75e+003 − 2.71e+004±3.13e+004 − 9.39e+003±2.17e+003
f3 1.73e+008±7.25e+007 − 2.40e+008±7.36e+007 − 7.38e+007±1.97e+007 − 4.76e+008±3.89e+008 − 1.41e+007±5.70e+006
f4 3.74e+004±6.10e+003 − 5.23e+004±8.27e+003 − 2.52e+004±6.76e+003 ≈ 2.52e+006±2.91e+006 − 2.24e+004±5.68e+003
f5 1.81e+004±2.36e+003 − 2.12e+004±2.37e+003 − 4.03e+003±7.02e+002 + 2.27e+004±3.42e+003 − 4.81e+003±7.20e+002
f6 8.35e+008±4.43e+008 − 2.17e+009±7.21e+008 − 1.15e+007±7.14e+006 − 3.86e+009±2.74e+009 − 4.73e+003±6.82e+003
f7 2.28e+003±5.21e+002 − 2.46e+003±3.87e+002 − 1.19e+001±6.71e+000 ≈ 2.13e+000±7.21e-001 + 1.42e+001±8.61e+000
f8 2.12e+001±4.94e-002 ≈ 2.11e+001±8.20e-002 ≈ 2.11e+001±7.38e-002 ≈ 2.15e+001±9.80e-002 − 2.12e+001±6.53e-002
f9 2.84e+002±3.14e+001 − 3.02e+002±1.78e+001 − 1.87e+002±2.95e+001 − 4.60e+002±8.90e+001 − 1.66e+002±9.71e+000
f10 3.19e+002±3.64e+001 − 3.34e+002±2.76e+001 − 2.18e+002±1.91e+001 + 3.47e+002±6.80e+001 − 2.43e+002±2.15e+001
f11 4.36e+001±1.40e+000 − 4.06e+001±1.61e+000 + 3.83e+001±5.14e+000 + 4.05e+001±1.37e+001 ≈ 4.18e+001±1.57e+000
f12 8.17e+005±1.70e+005 − 6.18e+005±2.65e+005 − 1.47e+006±2.22e+005 − 2.31e+005±4.13e+005 ≈ 7.39e+004±5.68e+004
f13 2.70e+001±2.51e+000 − 1.74e+001±1.78e+000 − 1.93e+001±1.61e+000 − 1.88e+001±4.84e+000 − 1.62e+001±1.19e+000
f14 1.39e+001±2.02e-001 ≈ 1.40e+001±1.44e-001 − 1.40e+001±1.07e-001 − 1.47e+001±2.29e-001 − 1.39e+001±1.48e-001
f15 6.43e+002±8.80e+001 − 6.37e+002±9.18e+001 − 3.59e+002±6.25e+001 ≈ 8.42e+002±1.60e+002 − 3.55e+002±5.98e+001
f16 3.94e+002±6.29e+001 − 3.60e+002±5.75e+001 − 2.88e+002±9.25e+001 ≈ 7.07e+002±2.17e+002 − 3.19e+002±8.15e+001
f17 4.67e+002±7.19e+001 − 4.67e+002±7.66e+001 − 3.51e+002±1.20e+002 ≈ 8.26e+002±4.89e+002 − 3.48e+002±6.28e+001
f18 1.06e+003±2.80e+001 − 1.09e+003±2.72e+001 − 9.12e+002±2.76e+000 + 1.12e+003±3.96e+001 − 9.15e+002±3.27e+000
f19 1.07e+003±3.17e+001 − 1.08e+003±2.43e+001 − 9.14e+002±3.29e+000 + 1.10e+003±4.44e+001 − 9.15e+002±2.34e+000
f20 1.07e+003±2.34e+001 − 1.09e+003±2.28e+001 − 9.13e+002±4.33e+000 ≈ 1.13e+003±4.48e+001 − 9.16e+002±3.44e+000
f21 1.16e+003±4.58e+001 − 1.16e+003±7.03e+001 − 5.45e+002±1.69e+002 − 1.26e+003±2.98e+001 − 5.00e+002±1.89e-001
f22 1.21e+003±5.22e+001 − 1.21e+003±4.89e+001 − 9.54e+002±2.22e+001 + 1.34e+003±9.58e+001 − 9.97e+002±2.69e+001
f23 1.19e+003±4.37e+001 − 1.19e+003±4.12e+001 − 5.62e+002±1.06e+002 ≈ 1.26e+003±2.67e+001 − 5.35e+002±1.33e+000
f24 1.14e+003±6.02e+001 − 1.20e+003±9.07e+001 − 2.01e+002±5.23e-001 ≈ 1.28e+003±5.42e+001 − 2.03e+002±3.76e+000
f25 8.24e+002±3.14e+002 − 1.37e+003±4.24e+001 − 2.45e+002±9.34e+000 ≈ 2.20e+002±2.04e+001 + 2.52e+002±1.54e+001

− 23 23 9 21
+ 0 1 6 2
≈ 2 1 10 2

16



Tables 3, 4 and 5 summarize the average and standard deviation of the function
error values obtained by the 10 algorithms on all the test functions. The results of
the corresponding Wilcoxon rank-sum tests are presented in the last three rows of the
tables.

As can be seen from the last three rows of Table 3, DESSA-CoDE outperformed
CoDE on 24 test functions while CoDE failed to surpass DESSA-CoDE on any test
function. Furthermore, when looking at the evolution curves of CoDE and DESSA-
CoDE, it can be observed that the evolution curves of DESSA-CoDE always lie beneath
CoDE on almost all the test functions. Fig. 2 shows the evolution curves of CoDE and
DESSA-CoDE on some representative test functions. This substantiates our claim that
DESSA-CoDE is more cost-effective than CoDE.

By comparing DESSA-CoDE to the four self-adaptive DE variants (i.e., CoDE,
jDE, SaDE, JADE, and EPSDE), we have found that DESSA-CoDE overall performed
better than them. Specifically, it can be seen from Table 4 that DESSA-CoDE ob-
tained better solutions than each of jDE, SaDE, JADE and EPSDE on more than 20
test functions, while only EPSDE outperformed DESSA-CoDE on only 1 test func-
tion. When compared to DEahcSPX, DESSA-CoDE achieved better results than it
on 23 test functions, while DEahcSPX did not outperform DESSA-CoDE on any test
function. Moreover, looking at the the last three rows of Table 5, DESSA-CoDE even
showed competitive performance in comparison with SMA-EPSDE and CMA-ES, and
comparable results in contrast to CRADE.

4.2. Comparison with the self-adaptation scheme of SaDE

According to the above comparisons, DESSA-CoDE exhibited overall better per-
formance than the compared four self-adaptive DE variants. However, as DESSA-
CoDE applies a different set of search strategies compared to the four self-adaptive
DE variants, the observation can not clearly establish that the newly proposed self-
adaptation scheme is better than the existing self-adaptation schemes. In order to
clearly evaluate the potential of the new scheme, we further compared it with the
self-adaptation scheme applied in SaDE. In this comparison, we embedded the new
scheme into SaDE to adapt the trial vector generation strategy instead of the origi-
nal self-adaptation scheme and compared the resulted algorithm, DESSA-SaDE, with
SaDE. Specifically, in DESSA-SaDE, four trial vectors are generated with four trial
vector generation strategies that are used in SaDE and a Rank-SVM model is built to
select the most promising one for each target vector, while the rest of the algorithm is
exactly the same as SaDE. The parameter setting of SaDE is the same as in Section
4.1. The parameters of DESSA-SaDE were set as: popsize = 50, MaxGdb = 0. As
the number of generated trial vectors for each target vector in DESSA-SaDE is 4, k is
set to n2/4 instead of n2/9. Note that the population size of DESSA-SaDE was set the
same as that of SaDE.

Table 6 demonstrates the average and standard deviation of the best function error
values achieved by SaDE and DESSA-SaDE on each test function over 25 independent
runs using 3000 FEs and the results of the Wilcoxon rank-sum tests conducted to com-
pare them. From the comparison results in the last three rows of Table 6, it can be seen
that DESSA-SaDE overall gives better results than SaDE.

17



Table 6: Experimental results of SaDE and DESSA-SaDE over 25 runs with 3000 FEs on 25 test functions
of 30 variables, +, −, and ≈ denote that the result of SaDE is better than, worse than, and comparable to
that of DESSA-SaDE, respectively

Func SaDE DESSA-SaDE
MeanError±StdDev MeanError±StdDev

f1 5.05e+003±1.31e+003 − 9.55e+001±3.97e+001
f2 2.34e+004±4.69e+003 − 1.47e+004±2.77e+003
f3 8.76e+007±3.01e+007 − 3.69e+007±1.20e+007
f4 2.68e+004±4.98e+003 ≈ 2.53e+004±5.42e+003
f5 1.70e+004±1.41e+003 − 7.95e+003±7.91e+002
f6 5.02e+008±2.05e+008 − 4.07e+006±4.16e+006
f7 1.21e+003±2.02e+002 − 1.88e+002±5.39e+001
f8 2.12e+001±5.33e-002 ≈ 2.11e+001±6.91e-002
f9 2.29e+002±1.55e+001 − 2.16e+002±1.16e+001
f10 3.02e+002±1.80e+001 − 2.56e+002±2.06e+001
f11 4.27e+001±1.36e+000 ≈ 4.31e+001±1.36e+000
f12 5.51e+005±9.24e+004 − 1.54e+005±9.21e+004
f13 2.06e+001±1.63e+000 − 1.92e+001±1.57e+000
f14 1.39e+001±1.91e-001 ≈ 1.39e+001±1.76e-001
f15 7.01e+002±7.67e+001 − 4.50e+002±5.69e+001
f16 4.09e+002±6.06e+001 − 2.85e+002±2.75e+001
f17 5.04e+002±8.32e+001 − 3.67e+002±9.11e+001
f18 1.07e+003±1.48e+001 − 9.37e+002±4.11e+001
f19 1.07e+003±2.29e+001 − 9.55e+002±1.22e+001
f20 1.08e+003±2.10e+001 − 9.45e+002±3.67e+001

− 21
+ 0
≈ 4

In addition to the quality of the final solution, the evolution curves of SaDE and
DESSA-SaDE on some representative test functions are presented in Fig. 3. The Fig. 3
shows that the evolution curves on almost all the test functions obtained by DESSA-
SaDE lie beneath their respective ones obtained by SaDE in the whole search process.

Furthermore, the dynamics of the true rank of the trial vector that was selected
by the adaptation scheme in the search process of both SaDE and DESSA-SaDE are
plotted in Figs. 4, 5 and 6, where the X-axis represents the number of generations
and the Y-axis represents the average rank of the selected trial vectors. Note that, if the
selected trial vector is actually the best one among all the generated trail vectors, its true
rank is 1. For each generation, the average rank of the selected trial vectors is calculated
by averaging over all selected trial vectors first and then averaging over 25 runs. From
Figs. 4, 5 and 6, it can be seen that both the self-adaptation scheme of SaDE and
that of DESSA-CoDE can not play positive roles in the optimization of f8 and f14.
Except f8 and f14, the curve of SaDE on each test function shows a general descending
trend. Nevertheless, SaDE failed to select good trial vectors in almost the first half of
the whole search process as the average rank of the selected trial vectors in such a
period showed a slight fluctuation around 2.5, which is the expected rank that can be
obtained by the random selection method, thereby substantiating the claim that existing
self-adaptation schemes may not function effectively within a small generations. In
contrast, the self-adaptation scheme of DESSA-SaDE can select significantly better
trial vectors in the early stage even the whole search process one the other 23 test
functions. Overall, the newly proposed self-adaptation scheme performed better than
that of SaDE, and thus is more appropriate for CEPs.

All the above observations from Table 6 and Figs. 3- 6 constituently establish the
newly proposed scheme as a competitive self-adaptation scheme for DE to solve CEPs.

18



0 1000 2000 3000
0

2

4

6

8

10

12x 10
4

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
E

rr
or

 V
al

ue SaDE
DESSA−SaDE

(a) f1

0 1000 2000 3000
0

0.5

1

1.5

2

2.5x 105

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(b) f4

0 1000 2000 3000
21.1

21.2

21.3

21.4

21.5

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
E

rr
or

 V
al

ue SaDE
DESSA−SaDE

(c) f8

0 1000 2000 3000
42

44

46

48

50

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(d) f11

0 1000 2000 3000
13.8

14

14.2

14.4

14.6

14.8

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(e) f14

0 1000 2000 3000
400

600

800

1000

1200

1400

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(f) f15

0 1000 2000 3000
0

500

1000

1500

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(g) f17

0 1000 2000 3000
1000

1200

1400

1600

1800

2000

2200

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(h) f22

0 1000 2000 3000
800

1000

1200

1400

1600

1800

2000

The Number of FEs

A
ve

ra
ge

 F
un

ct
io

n 
Er

ro
r 

V
al

ue SaDE
DESSA−SaDE

(i) f25

Figure 3: Evolutionary curves of SaDE and DESSA-SaDE

19



10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(a) f1

10 20 30 40 50
1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
R

an
k 

of
 th

e 
Se

le
ct

ed
 T

ri
al

 V
ec

to
r

SaDE
DESSA−SaDE

(b) f2

10 20 30 40 50
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(c) f3

10 20 30 40 50
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(d) f4

10 20 30 40 50
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(e) f5

10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(f) f6

10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(g) f7

10 20 30 40 50
2.4

2.45

2.5

2.55

The Number of Generations

A
ve

ra
ge

 T
ru

e 
R

an
k 

of
 th

e 
Se

le
ct

ed
 T

ri
al

 V
ec

to
r

SaDE
DESSA−SaDE

(h) f8

10 20 30 40 50
1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(i) f9

Figure 4: Change curves of the true rank of the selected trial vectors in the search process of SaDE and
DESSA-SaDE on f1 − f9

20



10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
R

an
k 

of
 th

e 
Se

le
ct

ed
 T

ri
al

 V
ec

to
r

SaDE
DESSA−SaDE

(a) f10

10 20 30 40 50
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(b) f11

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(c) f12

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(d) f13

10 20 30 40 50

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
R

an
k 

of
 th

e 
Se

le
ct

ed
 T

ri
al

 V
ec

to
r

SaDE
DESSA−SaDE

(e) f14

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(f) f15

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(g) f16

10 20 30 40 50
1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(h) f17

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(i) f18

Figure 5: Change curves of the true rank of the selected trial vectors in the search process of SaDE and
DESSA-SaDE on f10 − f18

21



10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
R

an
k 

of
 th

e 
Se

le
ct

ed
 T

ri
al

 V
ec

to
r

SaDE
DESSA−SaDE

(a) f19

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
R

an
k 

of
 th

e 
Se

le
ct

ed
 T

ri
al

 V
ec

to
r

SaDE
DESSA−SaDE

(b) f20

10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(c) f21

10 20 30 40 50
1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(d) f22

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(e) f23

10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(f) f24

10 20 30 40 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

The Number of Generations

A
ve

ra
ge

 T
ru

e 
Ra

nk
 o

f t
he

 S
el

ec
te

d 
Tr

ia
l V

ec
to

r

SaDE
DESSA−SaDE

(g) f25

Figure 6: Change curves of the true rank of the selected trial vectors in the search process of SaDE and
DESSA-SaDE on f19 − f25

22



4.3. More strategies and parameter settings for DESSA

In Section 3, it has been stated that DESSA may easily accommodate more strate-
gies and parameter settings. Therefore, we also conducted some experiments to check
whether the performance of DESSA can be further boosted by incorporating more
strategies and parameter settings.

First, we formed a new instantiation of DESSA by introducing another strategy
and two other parameter settings into DESSA-CoDE, which is referred to as DESSA-
CoDE*. As none of the strategies used in DESSA-CoDE rely on the best solution
found so far, we selected DE/target-to-best/2 as the added strategy. The two added
parameter settings are: [F = 0.5,CR = 0.9] and [F = 0.5,CR = 0.3], which are
commonly suggested settings of F and CR [8, 11, 13], while suitably considering
the parameter settings of DESSA-CoDE. Then, performance comparisons were made
between DESSA-CoDE and DESSA-CoDE* on the 25 test functions.

Table 7: Experimental results of DESSA-CoDE and DESSA-CoDE* over 25 runs with 3000 FEs on 25 test
functions of 30 variables, +, −, and ≈ denote that the result of DESSA-CoDE is better than, worse than,
and comparable to that of DESSA-CoDE*, respectively

Func DESSA-CoDE DESSA-CoDE*
MeanError±StdDev MeanError±StdDev

f1 3.63e-001±1.56e-001 − 7.26e-005±6.15e-005
f2 9.39e+003±2.17e+003 − 5.31e+003±8.32e+002
f3 1.41e+007±5.70e+006 − 1.09e+007±5.98e+006
f4 2.24e+004±5.68e+003 ≈ 2.57e+004±6.90e+003
f5 4.81e+003±7.20e+002 ≈ 4.97e+003±1.05e+003
f6 4.73e+003±6.82e+003 ≈ 3.89e+003±4.84e+003
f7 1.42e+001±8.61e+000 ≈ 1.04e+001±6.69e+000
f8 2.12e+001±6.53e-002 ≈ 2.12e+001±4.48e-002
f9 1.66e+002±9.71e+000 ≈ 1.70e+002±1.80e+001
f10 2.43e+002±2.15e+001 ≈ 2.37e+002±1.63e+001
f11 4.18e+001±1.57e+000 ≈ 4.15e+001±2.50e+000
f12 7.39e+004±5.68e+004 − 3.66e+004±2.51e+004
f13 1.62e+001±1.19e+000 ≈ 1.65e+001±2.22e+000
f14 1.39e+001±1.48e-001 ≈ 1.39e+001±1.46e-001
f15 3.55e+002±5.98e+001 ≈ 3.48e+002±6.14e+001
f16 3.19e+002±8.15e+001 ≈ 3.25e+002±9.03e+001
f17 3.48e+002±6.28e+001 ≈ 3.89e+002±1.13e+002
f18 9.15e+002±3.27e+000 ≈ 9.15e+002±5.34e+000
f19 9.15e+002±2.34e+000 ≈ 9.16e+002±5.94e+000
f20 9.16e+002±3.44e+000 ≈ 9.17e+002±6.02e+000
f21 5.00e+002±1.89e-001 + 5.25e+002±8.63e+001
f22 9.97e+002±2.69e+001 − 9.61e+002±2.91e+001
f23 5.35e+002±1.33e+000 ≈ 5.79e+002±1.46e+002
f24 2.03e+002±3.76e+000 − 2.00e+002±5.88e-002
f25 2.52e+002±1.54e+001 ≈ 2.86e+002±2.13e+002

− 6
+ 1
≈ 18

Table 7 presents the average and standard deviation of the best function error values
achieved by DESSA-CoDE and DESSA-CoDE* on each of the 25 test function over 25
independent runs using 3000 FEs and the results of the Wilcoxon rank-sum tests con-
ducted to compare them. It can be observed that DESSA-CoDE* performed better than
DESSA-CoDE as DESSA-CoDE* outperformed DESSA-CoDE on 6 test functions
while DESSA-CoDE is superior to DESSA-CoDE* on only 1 test function, thereby
supporting our claim that DESSA has the ability of accommodating more strategies
and parameter settings.

23



5. Conclusions and Discussion

The performance of DE highly depends on its trial vector generation strategy and
control parameter values. In the past few years, great efforts have been made to auto-
mate the strategy selection or parameter tuning procedure of DE and quite a few DE
variants have emerged, such as jDE, JADE, SaDE, EPSDE, and CoDE. Although these
variants have shown certain advantages over the classical DE, they may not perform
satisfactorily on CEPs.

In this paper, we have proposed to employ surrogate models to adapt the trial vec-
tor generation strategy and control parameter setting in the search process of DE for
solving CEPs, and a generalized framework called DESSA has been proposed. For
each target vector, DESSA generates multiple trial vectors by using different strategies
and parameter settings. After that, a surrogate model is built to identify the poten-
tially best trial vector among the generated trial vectors, which will then be evaluated
with the real objective function. With this framework, three concrete DE variants,
namely DESSA-CoDE, DESSA-SaDE, and DESSA-CoDE*, have been developed.
Empirical results showed that DESSA-CoDE is more cost-effective than CoDE and
also generally outperformed CMA-ES, SMA-EPSDE and the compared self-adaptive
DE variants. By comparing DESSA-SaDE to SaDE, experimental results showed that
this novel self-adaptation scheme achieved superior performance in comparison with
the self-adaptation scheme employed in SaDE. Moreover,it is shown that DESSA has
the ability of accommodating more search strategies by comparing DESSA-CoDE*
and DESSA-CoDE. All these observations demonstrate that the new self-adaptation
scheme as a more suitable self-adaptation scheme, and DESSA as a promising frame-
work for solving CEPs.

In future work, the efficacy of the proposed self-adaptation scheme will be tested
on more test functions and higher dimensions and other modeling techniques will be
considered. Also, the combination of the idea of CRADE with that of DESSA will be
tested on some benchmark functions at the expectation of obtaining a better DE variant
for solving CEPs. Since DESSA is capable of accommodating different sets of trial
vector generation strategies and control parameter settings, it is unlikely that all DE
variants designed based on DESSA will perform the same. Hence, how to identify
a good set of search strategies and parameter settings for DESSA would be another
direction for further investigation.

Acknowledgment

This work was supported in part by the 973 Program of China under Grant 2011CB707006,
the National Natural Science Foundation of China under Grants 61175065 and 61329302,
the Program for New Century Excellent Talents in University under Grant NCET-12-
0512, the Science and Technological Fund of Anhui Province for Outstanding Youth
under Grant 1108085J16, and the European Union Seventh Framework Programme
under Grant 247619.

24



References

[1] R. Storn, K. Price, Differential evolution-a simple and efficient adaptive scheme
for global optimization over continuous spaces, International Computer Science
Institute-Publications-TR, 1995.

[2] R. Storn, On the usage of differential evolution for function optimization, in: Pro-
ceedings of the North American Fuzzy Information Processing Society (NAFIPS-
1996), IEEE, 1996, pp. 519–523.

[3] K. Price, R. Storn, J. Lampinen, Differential evolution: a practical approach to
global optimization, Springer-Verlag New York, Inc., 2005.

[4] S. Das, P. Suganthan, Differential evolution: A survey of the state-of-the-art,
IEEE Transactions on Evolutionary Computation 15 (1) (2011) 4–31.

[5] A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Transactions on Evo-
lutionary Computation 13 (2) (2009) 398–417.

[6] R. Gämperle, S. D. Müller, P. Koumoutsakos, A parameter study for differential
evolution, Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Com-
putation 10 (2002) 293–298.

[7] M. G. Omran, A. Salman, A. P. Engelbrecht, Self-adaptive differential evolution,
in: Proceedings of Computational Intelligence and Security, Lecture Notes in
Artificial Intelligence, Vol. 3801, Springer, 2005, pp. 192–199.

[8] A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution algorithm for
numerical optimization, in: Proceedings of the 2005 IEEE Congress on Evolu-
tionary Computation, Vol. 2, 2005, pp. 1785–1791.

[9] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: A comparative study on numerical bench-
mark problems, IEEE Transactions on Evolutionary Computation 10 (6) (2006)
646–657.

[10] Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood
search, in: Proceedings of the 2008 IEEE Congress on Evolutionary Computa-
tion, IEEE, 2008, pp. 1110–1116.

[11] J. Zhang, A. Sanderson, JADE:adaptive differential evolution with optional ex-
ternal archive, IEEE Transactions on Evolutionary Computation 13 (5) (2009)
945–958.

[12] Z. Yang, K. Tang, X. Yao, Scalability of generalized adaptive differential evo-
lution for large-scale continuous optimization, Soft Computing 15 (11) (2011)
2141–2155.

25



[13] R. Mallipeddi, P. Suganthan, Q. Pan, M. Tasgetiren, Differential evolution algo-
rithm with ensemble of parameters and mutation strategies, Applied Soft Com-
puting 11 (2) (2011) 1679–1696.

[14] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector
generation strategies and control parameters, IEEE Transactions on Evolutionary
Computation 15 (1) (2011) 55–66.

[15] W. Gong, Á. Fialho, Z. Cai, Adaptive strategy selection in differential evolution,
in: Proceedings of the 12th annual conference on Genetic and evolutionary com-
putation, ACM, 2010, pp. 409–416.

[16] Á. Fialho, R. Ros, M. Schoenauer, M. Sebag, Comparison-based adaptive strategy
selection with bandits in differential evolution, in: Proceeding of Parallel Problem
Solving from Nature–PPSN XI, Springer, 2010, pp. 194–203.

[17] P. Hajela, J. Lee, Genetic algorithms in multidisciplinary rotor blade design, in:
Proceedings of the 36th Conference on Structures, Structural Dynamics, and Ma-
terials, New Orleans, LA, USA, 1995, pp. 2187–2197.

[18] Y. Jin, M. Olhofer, B. Sendhoff, Managing approximate models in evolutionary
aerodynamic design optimization, in: Proceedings of the 2001 IEEE Congress on
Evolutionary Computation, Vol. 1, 2001, pp. 592–599.

[19] M. Farina, J. Sykulski, Comparative study of evolution strategies combined with
approximation techniques for practical electromagnetic optimization problems,
IEEE Transaction on Magnetics 37 (5) (2001) 3216–3220.

[20] Y. S. Ong, P. B. Nair, A. J. Keane, Evolutionary optimization of computationally
expensive problems via surrogate modeling, AIAA journal 41 (4) (2003) 687–
696.

[21] P. Zhang, X. Yao, L. Jia, B. Sendhoff, T. Schnier, Target shape design optimiza-
tion by evolving splines, in: Proceedings of the 2007 IEEE Congress on Evolu-
tionary Computation, 2007, pp. 2009–2016.

[22] K. Deb, A. Srinivasan, Innovization: Discovery of innovative design principles
through multiobjective evolutionary optimization, in: Multiobjective Problem
Solving from Nature, Springer, 2008, pp. 243–262.

[23] Y. Ong, P. Nair, A. Keane, K. Wong, Surrogate-assisted evolutionary optimization
frameworks for high-fidelity engineering design problems, Studies in Fuzziness
and Soft Computing 167 (2004) 307–332.

[24] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Transac-
tions on Evolutionary Computation 3 (2) (1999) 82–102.

[25] F. Peng, K. Tang, G. Chen, X. Yao, Population-based algorithm portfolios for
numerical optimization, IEEE Transactions on Evolutionary Computation 14 (5)
(2010) 782–800.

26



[26] J. Zhang, A. Sanderson, DE-AEC: a differential evolution algorithm based on
adaptive evolution control, in: Proceedings of the 2007 IEEE Congress on Evo-
lutionary Computation, IEEE, 2007, pp. 3824–3830.

[27] J. Zhang, A. Sanderson, Surrogate model-based differential evolution, Adaptive
Differential Evolution (2009) 83–93.

[28] X. Lu, K. Tang, X. Yao, Classification-assisted differential evolution for compu-
tationally expensive problems, in: Proceedings of the 2011 IEEE Congress on
Evolutionary Computation, 2011, pp. 1986–1993.

[29] X. Lu, K. Tang, Classification- and regression-assisted differential evolution for
computationally expensive problems, Journal of Computer Science and Technol-
ogy 27 (5) (2012) 1024–1034.

[30] R. Mallipeddi, M. Lee, Surrogate model assisted ensemble differential evolution
algorithm, in: Proceedings of the 2012 IEEE Congress on Evolutionary Compu-
tation, IEEE, 2012, pp. 1–8.

[31] E. Krempser, H. Bernardino, H. Barbosa, A. Lemonge, Differential evolu-
tion assisted by surrogate models for structural optimization problems, in:
Proceedings of the Eighth International Conference on Engineering Compu-
tational Technology, Civil-Comp Press, Stirlingshire, UK, Paper 49, 2012.
doi:10.4203/ccp.100.49.

[32] Á. Fialho, M. Schoenauer, M. Sebag, Toward comparison-based adaptive oper-
ator selection, in: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, ACM, 2010, pp. 767–774.

[33] A. W. Iorio, X. Li, Solving rotated multi-objective optimization problems using
differential evolution, in: AI 2004: Advances in Artificial Intelligence, Springer,
2005, pp. 861–872.

[34] T. Runarsson, Ordinal regression in evolutionary computation, in: Proceedings of
the Parallel Problem Solving from Nature–PPSN IX, Springer, 2006, pp. 1048–
1057.

[35] I. Loshchilov, M. Schoenauer, M. Sebag, Comparison-based optimizers need
comparison-based surrogates, in: Proceedings of the Parallel Problem Solving
from Nature–PPSN XI, Springer, 2011, pp. 364–373.

[36] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, Cambridge
University Press, 2004.

[37] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization, KanGAL Report 2005005.

[38] N. Noman, H. Iba, Accelerating differential evolution using an adaptive local
search, IEEE Transactions on Evolutionary Computation 12 (1) (2008) 107–125.

27



[39] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution
strategies, Evolutionary computation 9 (2) (2001) 159–195.

28




