
 
 

The focusing performance of an aperiodic double
layer metallic grating
Ma, Long; Lin, Jie; Jin, Peng; Prewett, Philip; Lu, Zhengang; Tan, Jiubin

DOI:
10.1016/j.mee.2014.05.033

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ma, L, Lin, J, Jin, P, Prewett, P, Lu, Z & Tan, J 2014, 'The focusing performance of an aperiodic double layer
metallic grating', Microelectronic Engineering, vol. 123, pp. 112-116. https://doi.org/10.1016/j.mee.2014.05.033

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Microelectronic Engineering. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was
subsequently published in Microelectronic Engineering, Volume 123, 1 July 2014, Pages 112–116 DOI: 10.1016/j.mee.2014.05.033
Checked for repository 28/10/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1016/j.mee.2014.05.033
https://research.birmingham.ac.uk/portal/en/publications/the-focusing-performance-of-an-aperiodic-double-layer-metallic-grating(7229e9cd-f9d6-41e4-8213-2f86dc59d7ed).html


Accepted Manuscript

The focusing performance of an aperiodic double layer metallic grating

Long Ma, Jie Lin, Peng Jin, Phil Prewett, Zhengang Lu, Jiubin Tan

PII: S0167-9317(14)00240-8
DOI: http://dx.doi.org/10.1016/j.mee.2014.05.033
Reference: MEE 9482

To appear in: Microelectronic Engineering

Received Date: 20 October 2013
Revised Date: 14 May 2014
Accepted Date: 23 May 2014

Please cite this article as: L. Ma, J. Lin, P. Jin, P. Prewett, Z. Lu, J. Tan, The focusing performance of an aperiodic
double layer metallic grating, Microelectronic Engineering (2014), doi: http://dx.doi.org/10.1016/j.mee.
2014.05.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.mee.2014.05.033
http://dx.doi.org/http://dx.doi.org/10.1016/j.mee.2014.05.033
http://dx.doi.org/http://dx.doi.org/10.1016/j.mee.2014.05.033


  

The focusing performance of an aperiodic double layer metallic 

grating 

Long Ma
a
, Jie Lin

a
, Peng Jin

a
*, Phil Prewett

b
, Zhengang Lu

a
, Jiubin Tan

a
 

a
 Center of Ultra-precision Optoelectronic Instrument, Harbin Institute of Technology, Harbin 150080, 

China 
b
 School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, 

UK 

*Corresponding author. Building D, NO.2 Yikuang Street, Nangang district, Harbin;  

Tel.:+86 451 86412041; Email: P.Jin@hit.edu.cn  

Abstract: In this paper, a double-layer aperiodic metallic grating is designed and the focusing 

performance is numerically researched using the finite-difference time-domain method. A 

sub-wavelength focusing spot is achieved and the depth of focus is twice the length of the incident 

wavelength. With its ease of fabrication, the designed aperiodic double-layer metallic grating has great 

potential in applications such as data storage, laser direct writing and optical probe. 
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1. Introduction 

Breaking the optical diffraction limit to obtain sub-wavelength scale focusing spot has attracted 

considerable interest for applications in nano-lithography, laser direct writing, data storage, etc. 
[1,2,3,4,5,6,7,8,9,10,11,12]

. Based on super oscillation theory, an optical planar mask with a quasi-crystal array 

of nanoholes was previously designed to achieve a super-resolution focusing spot
 [13]

. However, its 

application was limited by the low energy efficiency. An alternative approach is the realization of 

sub-wavelength focusing based on surface plasmon polaritons (SPPs). In 2007, super-resolution was 

achieved in the visible frequency region using a super lens formed from a plasmonic microzone plate 

structure fabricated in a silver film [14]. In addition, radiation-less electromagnetic interference was 

proposed and shown experimentally to be capable of subwavelength focusing to λ /20 in the 1GHz 

range 
[15,16]

. In 2010, a similar theory was used to design a near field focusing plate in the visible 

frequency region 
[17]

. Unfortunately, the application of many nanoscale devices is limited by the 

inherent difficulty of their fabrication. For example, the maximum aspect ratio of the aforementioned 

focusing plate with sub-wavelength slit is as large as 50:1, which limits its realization
 [18]

.  

 

In this paper, a double-layer aperiodic metallic grating is proposed to achieve super-resolution focusing 

while maintaining a much smaller aspect ratio. To study the designed grating structure, we employ the 

finite-difference time-domain method (FDTD Solutions, Lumerical Inc.) [19]. For incident light of 

wavelength 650 nm, a sub-wavelength focusing spot is obtained and the depth of focus (DOF) is twice 

the incident wavelength (1.37 mµ ). Most importantly, the difficulty of fabricating and assembling the 

device is greatly reduced due to the much smaller aspect ratio. The double-layer aperiodic metallic 

grating structure for sub-wavelength focusing therefore has a promising future for data storage, laser 

direct writing and optical probing. 



  

 

2. Methods 

To achieve a focal spot, the phase of the transmitted beam satisfies the equation: 
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where f and y represent the focal distance and the position of a slit along the y axis in Fig. 1(a), 

respectively. λ  is the wavelength of the incident light in vacuum. The phase of the beam passing 

through the gold film can be controlled by the width of the slits, considering the generation of SPPs by 

the TM wave 
[18]

. After passing through the grating structure, the beam will radiate into the space. The 

relation between the phase retardation in the slit and the slit parameters is determined by the following 

equation:  
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where w is the slit width of the metal film and β  is the propagation constant of SPPs in the slit. 
0k  

is the propagation constant of the incident beam in vacuum, and 
m

ε  is the relative permittivity of the 

metal. The real part of the complex quantity β determines the phase shift in the slit, while the 

imaginary part determines the energy loss. As is shown in Fig. 1(a), d is the thickness of the film. Thus 

dβ  is the phase shift of a beam travelling through the slit. 

 

To obtain a high electric intensity at the focusing point, the thickness of the metallic film should be 

optimized. According to the previous research, the relation between the transmittance and thickness of 

the metallic film will satisfy the formula below 
[20]
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where 
iE  is the electric intensity of the incident beam and t represents the thickness of the metal film. 

SPPk  is the propagation constant of SPPs. Fig. 1(b) is the transmission curve which shows a damped 

oscillatory tendency as the thickness of the metal film is increased from 100 nm to 800 nm. 

 

As is shown in Fig. 1(b), despite the clear difference in transmission of gratings with different slit 

widths, the tendencies are consistent. For example, when a gold film with a thickness of 440 nm is 

illuminated by an incident beam with a wavelength of 650 nm, the transmission will reach a local 

maximum. 

 

In addition, when a film with of thickness of d is composed of two films of thicknesses d1 and d2, so 

that d=d1+d2, a new relation for phase retardation is obtained as following: 

1 2Re( d) Re( d ) Re( d )β β β= + .       (4) 

Eq. 4 implies that the phase retardation is linear with the total thickness of the multi-layer structure.  

As an illustration, a film with a thickness of 440 nm is divided into two films with equal thickness. The 

transmission of this double-layer grating is calculated according to the intensity distribution curve.  

According to numerical calculations, the light coupling effect between the two layers can be neglected 

in designing the grating structure. 



  

 

3. Results 

To verify the assumption of the linear relation between the thickness of the multi-layer structure and 

the phase shift, a double-layer aperiodic gold grating structure was built and calculated by FDTD. The 

diagram of the double-layer aperiodic gold grating is shown in Fig. 2. The double-layer structure’s 

lateral distribution of slits is exactly the same as that of a single-layer aperiodic grating with a thickness 

of d. The separation between the two layers along the x axis is 100 nm, represented by a. The dielectric 

layer is air and the separation between the slits is 60 nm, represented by s; the minimum width of the 

slit is 20 nm and the wavelength of the TM mode incident beam is 650 nm. According to the 

Drude-Lorentz model, the relative permittivity of gold is -12.9+1.2i 
[21]

 and the refractive index of air is 

1. 

 

The near field electric field intensity distribution of the double-layer grating is illustrated in Fig. 3. A 

focal point is shown at the transmitted side because of the phase modulation of the slits. In Fig. 4(a), 

the maximum electric field intensity occurs at x=2.9 mµ . The maximum electric field intensity is 3.75 

times that of the incident beam. The DOF, which is defined as the range having 80% of the maximum 

intensity, is 1.37 mµ . The full width at half maximum (FWHM) is 533 nm, as shown in Fig. 4(b). Here 

the origin is chosen as the middle point of the second layer’s exit facet. The FWHM at the focal plane 

is the same as that of a single layer, and the transmission remains the same. Therefore, the double-layer 

structure maintains the high focusing performance while significantly reducing the maximum 

depth-to-width ratio. In this case, the maximum required depth-to-width ratio is only 10:1. 

 

4. Discussion 

The tolerance of alignment of the two layers is calculated considering the lateral shift along x axis 

xδ , the lateral shift along y axis yδ  and the rotation error δθ . As shown in Fig. 5, the lateral shift 

along x axis, xδ  can be allowed to vary from -25 nm to 25 nm, while yδ  can be allowed to drift by 

as much as 20 nm. As for the rotation error, it can be seen from the simulation results that the 

requirement for the relative position between the two gold layers is relatively flexible. According to the 

alignment error tolerance calculation results shown in Table 1, the spot position and size both change 

slightly. The spot FWHM will see a slight increase as the front gold film moves along the x axis or 

rotates around its center. However, the coordinate of the focusing spot varies as the shift direction of 

the front film changes. The two dimensional electric field distributions for each case of alignment error 

are shown in Fig. 6. The distribution of electric field in different cases is nearly the same. According to 

the data analysis, the alignment error has a negligible impact on the focusing performance. As the 

double-layer structure is not sensitive to alignment error, we have more freedom to determine the 

method used for attaching the back layer to the front one. Here, we assume it is air filling in the slit and 

separation. Other materials such as adhesive can be used as the dielectric layer as well.  

 

A wider slit width and gold wall should also increase the lateral shift error tolerance, for such structure 

reduces the fraction of light, which should have travelled through the wrong slits beside the target slit 

and then generated unexpected phases. A wider gold wall will increase the aperture of the metallic lens 

and the cost. A wider slit will result in a smaller phase retard, leading to the need for a thicker metallic 

film. Therefore, the minimum width of the structure and the lateral shift error tolerance should be 

balanced. 



  

 

5. Conclusion 

A double-layer aperiodic metallic grating has been designed and investigated theoretically. According 

to the simulation result, based on the FDTD method, both long DOF and spots with sub-wavelength 

FWHM are achieved simultaneously. As the required maximum depth-to-width ratio is half of that of a 

single layer with the same slit distribution, the proposed grating structure is easy to fabricate. Different 

types of alignment errors including the lateral shift along the x axis, the lateral shift along the y axis and 

the rotation error between layers and their influence on the focusing performance are discussed in detail. 

The proposed double-layer gold grating structure has the advantage of high focusing performance and 

ease of fabrication and assembly. It is expected to be widely used in data storage, laser direct writing 

and optical probe in the future.  
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Table 1. The influence of alignment errors on the focusing performance 

 
Variation of x 

coordinate(nm) 

Variation of y 

coordinate(nm) 
FWHM(nm) 

Designed structure 0 0 533 

yδ = ± 20nm 0 ± 8 533 

xδ = ± 25nm ± 2 0 536 ± 3 

δθ = ± 1 °  ± 2 ± 8 534 ± 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Figure Captions: 

 

Fig. 1. (a) Schematic diagram of a single layer aperiodic gold grating. (b) Relation between normalized 

transmission and the thickness of the gold layer. 

 

Fig. 2. Schematic diagram of the double-layer aperiodic gold grating. d1 and d2 represent the thickness 

of the two layers, respectively. a represents the separation of the two layers along x axis, and s 

represents the separation of slits. 

 

Fig. 3. The near field electric field intensity distribution at the transmitted side of grating. 

 

Fig. 4. (a) Electric field intensity along the x axis. (b) Electric field intensity along the y axis at the 

focal plane. 

 

Fig. 5. Error factors of fabrication in aperiodic double-layers metallic grating. Lateral shift of the front 

layers along y axis is represented by yδ . Vertical shift of the front layers along x axis is represented 

by xδ . The rotation error between layers is represented by δθ . 

 

Fig. 6. Influence of the alignment error on the focusing effect: (a) electric field distribution in the case 

of a 20 nm lateral shift of the front layer, (b) electric field distribution in the case of xδ =25 nm, (c) 

electric field distribution in the case of xδ =-25 nm, (d) electric field distribution in the case of a 1 

degree rotation of the front layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

                                                             
1
 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical 

transmission through sub-wavelength hole arrays. Nature 1998, 391: 667-669. 
2
 R. B. Greegor, C. G. Parazzoli, and M. H. Tanielian, Origin of dissipative losses in negative 

index of refraction materials. Applied Physics Letters 2003, 82(14): 2356–2358. 
3
 D. Melville, and R. Blaikie, Super-resolution imaging through a planar silver layer. Optics 

Express 2005, 13(6): 2127–2134. 
4
 X. Zhang, and Z. Liu, Superlenses to overcome the diffraction limit. Nature materials 2008, 7: 

435-441. 
5
 W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, 

Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting 

distance of Bessel beams for optical manipulation. Applied Physics Letters 2005, 87(2): 

024104-024104-3. 
6
 D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, Subwavelength nondiffraction beam 

generated by a plasmonic lens. Applied Physics Letters 2008, 92(23): 233106-233106-3. 
7
 D. K. Gramotnev, and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature 

photonics 2010, 4: 83-91. 
8
 G. Bartal, G. Lerosey, and X. Zhang, Subwavelength dynamic focusing in plasmonic 

nanostructures using time reversal. Physical Review B 2009, 79(20): 201103-1-201103-4. 
9
 A. Grbic, and G. V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed 

transmission-line lens. Physical Review Letters 2004, 92(11): 117403-117406. 
10

 Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Far-field optical 

superlens. Nano Letters 2007, 7(2): 403–408. 
11

 J. Lin, K. Yin, Y. Li, and J. B. Tan, Achievement of longitudinally polarized focusing with 

long focal depth by amplitude modulation. Optics Letters 2011, 36(7): 1185-1187. 
12

 N. Gao, and C. Xie, High-order diffraction suppression using modulated groove position 

gratings. Optics Letters 2011, 36(21): 4251-4253. 
13

 F. M. Huang, and N. I. Zheludev, Super-Resolution without Evanescent Waves. Nano Letters 

2009, 9(3): 1249-1254. 
14

 Y. Fu, W. Zhou, L. E. N. Lim, and C. L. Du, Plasmonic microzone plate: Superfocusing at 

visible regime. Applied Physics Letters, 2007, 91(6): 061124(1)-061124(3). 
15

 R. Merlin, Radiationless electromagnetic interference: Evanescent-field lenses and perfect 

focusing. Science 2007, 317(5840): 927-929. 
16

 A. Grbic, L. Jiang, and R. Merlin, Near-field plates: Subdiffraction focusing with patterned 

surfaces. Science 2008, 320(5875): 511-513. 
17

 H. F. Shi, and L. J. Guo, Design of plasmonic near field plate at optical frequency. Applied 

Physics Letters 2010, 96(14): 141107-1-141107-3. 
18

 H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao. Beam manipulating by metallic 

nano-slits with variant widths. Optics Express 2005, 13(18): 6815–6820. 
19

 http://www.lumerical.com/tcad-products/fdtd/ 
20

 F. A. Ferri, V. A. G. Rivera, S. P. A. Osorio, O. B. Silva, A. R. Zanatta, B. H. V. Borges, John 

Weiner, and Euclydes Marega, Jr. Influence of film thickness on the optical transmission through 

subwavelength single slits in metallic thin films. Applied Optics 2011, 50(31): G11-G16. 
21

 A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. Chapelle, Improved analytical fit 

of gold dispersion: application to the modeling of extinction spectra with a finite-difference 

time-domain method. Physics Review B 2005, 71(8): 085416-085422. 

 



  

 

  



  

 

  



  

 

  



  

 

  



  

 

  



  

 

  



  



  

An aperiodic double layer metallic grating is designed. 

A subwavelength and long depth of focus focal spot is achieved. 

Focusing performance is insensitive to alignment errors between layers. 

 


