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The effects of LPS on adhesion and migration of human dental pulp

stem cells in vitro

Abstract

Objectives: The aim of the present study was to investigate the effects of lipopolysaccharide (LPS)
on the migration and adhesion of human dental pulp stem cells (hDPSCs) and the associated
intracellular signaling pathways.

Methods: hDPSCs obtained from impacted third molars were exposed to LPS and in vitro cell
adhesion and migration were evaluated. The effects of LPS on gene expression of adhesion
molecules and chemotactic factors were investigated using quantitative real-time reverse-
transcriptase polymerase chain (qQRT-PCR). The potential involvement of Nuclear factor NF-
kappa-B (NF-kB) or mitogen-activated protein kinase (MAPK) signaling pathways in the
migration and adhesion of hDPSCs induced by LPS was assessed using a transwell cell migration
assay and qRT-PCR.

Results: LPS promoted the adhesion of hDPSCs at 1 pg/mL and 10 pg/mL concentrations, 1
pg/mL LPS showing the greater effect. Transwell cell migration assay demonstrated that LPS
increased migration of hDPSCs at 1 pg/mL concentration while decreasing it significantly at 10
pg/mL. The mRNA expressions of adhesion molecules and chemotactic factors were enhanced
significantly after stimulation with 1 ug/mL LPS. Specific inhibitors for NF-xB and extracellular
signal regulated kinases (ERK), c-Jun N-terminal kinase (JNK), and P38, markedly antagonized

LPS-induced adhesion and migration of hDPSCs and also significantly abrogated LPS-induced

Page 2 of 28



up-regulation of adhesion molecules and chemotactic factors. In addition, specific inhibitors of

SDF-1/CXCR4, AMD3100 significantly diminished LPS-induced migration of hDPSCs.

Conclusions: LPS at specific concentrations can promote cell adhesion and migration in hDPSCs

via the NF-kB and MAPK pathways by up-regulating the expression of adhesion molecules and

chemotactic factors.

Clinical significance: LPS may influence pulp healing through enhancing the adhesion and

migration of human dental pulp stem cells when it enters into pulp during pulp exposure or deep

caries.

Key words: LPS; hDPSCs; adhesion; migration; NF-kB; MAPK
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Introduction

Human dental pulp stem cells (hDPSCs) represent a post-natal mesenchymal stem cell
population with the potential to differentiate into odontoblast-like cells in vitro and form
dentin/pulp-like tissue in vivo."? Regeneration of dentin-pulp after severe injury involves
migration and adhesion of hDPSCs to sites of injury, followed by odontoblasts-like cell
differentiation and tertiary dentin secretion giving rise to a dentin bridge.* While carious bacteria
and their products are important factors in tooth injury, their influence on repair mechanisms, such
as hDPSC migration and adhesion and the underlying molecular mechanisms, remain unclear.

LPS, a gram-negative bacterial cell wall component, is commonly detected in infected pulp
cavities and root canals.” As well as being an important etiologic factor for human chronic
periodontitis and apical periodontitis, LPS is also strongly implicated in pulpitis.*” LPS is
postulated to have profound effects on alveolar bone resorption and pro-inflammatory cytokine
production.*” Notably previous studies have demonstrated that LPS can decrease adhesion of
endothelial progenitor cells (EPCs)'" and increase the migration of dental follicle progenitor cells
(DFPCs)'"" and bone marrow cells.'? However, the effects of LPS on migration of hDPSCs is
unclear.

LPS specifically binds to TLR4 on eukaryotic cell walls leading to intracellular activation of
the NF-kB or MAPK pathways downstream via myeloid differentiation factor 88 (MyD88)-
dependent signaling.”” Notably MAPK has previously been reported to be involved in
proliferation, migration and myofibroblastic (MF) differentiation of periodontal ligament (PDL)-

derived endothelial progenitor cell (EPC)-like cells through MEK/ERK and JNK-mediated
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signals.' Recent studies have also demonstrated that NF-kB plays an important role in the
migration and adhesion of several cell types when induced by LPS."" Our previous research has
recently demonstrated that LPS can activate MAPK and NF-«B signaling in hDPSCs,'® however
the effects of these signaling pathways on the adhesion and migration of hDPSCs has not been
assessed.

The aim of the present study was to investigate the influence of LPS on the adhesion and
migration of hDPSCs, and the potential roles of MAPK and NF-«B signaling in mediating these

effects.

Material and Methods
Reagents

Ultrapure Escherichia coli LPS was obtained from InvivoGen (San Diego, CA).
Pyrrolidinedithiocarbamate (PDTC), a specific inhibitor of NF-kB, and AMD3100, a specific
inhibitor of stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) were
obtained from Sigma-Aldrich (St Louis, MO, USA). U0126, a specific inhibitor of extracellular
signal-regulated kinase (ERK); SB203580, a specific inhibitor of p38 kinase; and SP600125, a
specific inhibitor of Jun N- terminal kinase (JNK), were purchased from InvivoGen (San Diego,

CA).

E.ZN.A. Total RNA Kit I was obtained from Omega (Omega, USA) and Prime Script RT-PCR
Kit, Quantitect SYBR Green kits were obtained from Takara (Takara, Japan). All the primer

sequences were synthesised and purchased from Sangon (Sangon Biotech (Shanghai) Co., Ltd.).

Page 5 of 28



Isolation and culture of hDPSC

Healthy third molars extracted for orthodontic reasons were collected from patients (18-25
years) at the Stomatological Hospital affiliated with Fourth Military Medical University (FMMU).
Informed consent was obtained from each patient and research protocols were approved by the
University’s Ethics Committee. Dental pulps from extracted teeth were isolated and digested with
3 mg/mL type I collagenase and 4 mg/mL dispase (Sigma) for 45-60 min at 37 °C. Single-cell
suspensions were seeded in 35-mm or 60-mm culture dishes and maintained in growth medium
consisting of o-minimum essential medium (Invitrogen, Carlsbad, CA) supplemented with 15%
fetal bovine serum (Gibco-BRL, Grand Island, NY), 100 units/mL penicillin-G, and 100 mg/mL
streptomycin (Invitrogen) in a humidified atmosphere of 5% CO, at 37 °C. Single-cell clones of
DPSCs was isolated, passaged and characterized as previous described.'® Cultures of between the

2nd and 5th passages were used in subsequent experiments.

Adhesion assay

For the cell adhesion assay, 50 pl type I collagen diluted in PBS (40 mg/l) was added to each
well of a 96-well plate and incubated overnight at 4 °C. After removal of unbound collagen, each
well was washed with PBS and then blocked with 1% BSA for 1 h at 37 °C in a 5% CO,
atmosphere. Cells were trypsinized, resuspended in serum-free medium at a cell density of 1 x 10°
cells/mL and 100 pl of the cell suspension were added to each well. Different concentrations of
LPS with or without inhibitors of the MAPK and NF-kB pathways were combined with hDPSCs

prior to seeding on the collagen-coated wells. Cells were incubated for 90 min at 37 °C and non-
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adhered cells were removed by washing three times with PBS. The remaining cells were observed

by inverted phase contrast microscopy (Olympus, Japan) and then fixed with 4%

paraformaldehyde for 15 min and washed three times with PBS. Cells were stained with 0.5%

toluidine blue for 10 min and washed three times with PBS prior to the addition of 100 pl of 33%

acetic acid (v/v) to each well. Subsequently, the optical density (OD) was determined using a

microplate reader (BIO-TEK, Winooski, VT, USA) at an absorbance of 595 nm.

Transwell migration assay

Cell migration was evaluated using a two chamber transwell system (8 mm pore size and 6.5

mm_diameter) and the cell culture inserts are pre-coated with extracellular matrix proteins
(Corning, N.Y, USA). Briefly, the cells were starved for 24 h with serum-free medium, then
dissociated and resuspended in 100 pl serum-free medium, and re-seeded onto the top chamber of

a transwell plate at a density of 3 x 10* cells/mL. 600-800 pl of serum-free a-MEM containing
various concentrations of LPS, inhibitors of SDF-1/CXCR4, or inhibitors of MAPK and NF-xB
(Invitrogen) were added to the lower migration chamber. 100-150 pl cell suspension were added to
the transwell upper chamber, then the chamber was placed into medium for 24h in an incubator at
37 °C and 5% CO,. Cells migrating through the membrane were fixed in 4% paraformaldehyde
for 15 min, while non-migratory cells were discarded. The transwell chamber was then immersed
in 1 g/ml hematoxylin (Sigma-Aldrich, USA) for staining for 15 min. To quantify the migrated
cells, ten random microscopic fields per filter at 200x magnification (Olympus, Japan) were
selected for cell counting. Measurements were performed in triplicate and mean counts calculated

for each experiment.

Quantitative Real-time Polymerase Chain Reaction (QRT-PCR)

After exposure to LPS 1 ug/mL in the presence or absence of inhibitors, total RNA was isolated
from cells using the E.Z.N.A. Total RNA Kit I (Omega, USA) according to the manufacturer’s
protocol and digested with DNase I (RNase-free, RQ1; Promega). First-strand cDNA was

synthesized from 1 pg of total RNA using Prime Script RT-PCR Kit (Takara, Japan). qRT-PCR
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analyses were performed using an ABI Prism 7500 Real-Time PCR System (Applied Biosystems,

Foster City, CA) using the SYBR Green PCR master mix reagent (Takara, Otsu, Japan). Reaction

mixtures were subjected to 35 cycles of PCR comprising denaturation for 10 seconds at 95 °C,

annealing for 15 seconds at 60 °C, and extension for 10 seconds at 72 °C. The relative amount or

fold change of the target gene was normalized relative to the level of glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) and relative to a control (untreated cells). Primer sequences (Sangon

Biotech (Shanghai) Co., Ltd.) for GAPDH, fibronectin (FN), intercellular adhesion molecule 1

(ICAM-1), betal integrin (Integrin 1), vascular endothelial growth factor (VEGF) and

chemokines CXC chemokine receptor type 4 (CXCR4), fibroblast growth factor 2 (FGF2),

monocyte chemoattractant protein 1 (MCP-1), stromal cell-derived factor-1 (SDF-1), macrophage

inflammatory protein-1 alpha (MIP-1a), transforming growth factor B1 (TGF-f1)and laminin a5

(LAMA 05) are listed in Table 1.

Statistical Analysis

Data are represented as the mean + standard deviation of 3 separate experiments performed in

triplicate. The data were analyzed, where appropriate, by using the Student’s t test or one-way

analysis of variance followed by the Student-Neumann—Keuls test using SPSS software (version

17.0; SPSS, Chicago, IL). A P value < 0.05 was considered statistically significant.

Results

3.1 Effects of LPS on hDPSCs adhesion

The effects of various concentrations of LPS on hDPSCs adhesion to extracellular matrix were
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investigated. While there was no significant difference in adherent cell numbers between 0.1

pg/mL LPS and the control group (Fig. 1A and B), 1 pg /mL and 10 pg/mL LPS concentrations

considerably increased adherent cell number compared with the control. Cell adhesion was more

strongly promoted by 1 than 10 pg/mL LPS (Fig. 1A and B). LPS (0.1, 1 or 10 pg/mL) did not

influence cell viability as assessed by the MTT assay (data not shown).

The mRNA expressions of key adhesion molecules were determined using real-time PCR after

exposing the hDPSCs to various concentrations of LPS. The results showed that the expressions of

FN, ICAM-1, Integrin-f1 and VEGF were significantly increased by LPS at concentrations of 1

pg/mL and 10 pg/mL, while no detectable differences were observed after exposure to LPS at 0.1

pg/mL (Fig. 1C). 1 pg/mL LPS strongly increased mRNA expression of FN, ICAM-1, Integrin-p1

and VEGF compared with 10 pg/mL LPS (Fig. 1C).

3.2 Involvement of NF-kB and MAPK Pathways in LPS-induced hDPSCs adherence

To investigate whether NF-kB or MAPK signaling was necessary for LPS-induced cell

adhesion, cells were treated with 1 pg/mL LPS with or without pretreatment with specific

inhibitors of NF-kB or MAPK signaling. Treatment with the NF-«xB inhibitor (PDTC, 20 umol/L),

ERK1/2 MAPK inhibitor (U0126, 25 umol/L), p38 MAPK inhibitor (SB203580, 20 pmol/L), or

JNK MAPK inhibitor (SP600125, 25 umol/L) significantly decreased adherent cell numbers

compared with the LPS-treated control (Fig. 2A and B). Treatment of the cells with PDTC (20

pmol/L), U0126 (25 pmol/L), SB203580 (20 pmol/L) or SP600125 (25 pmol/L) did not influence

cell viability as assessed by the MTT assay (data not shown).

The mRNA expression of adhesion molecules was examined using real-time PCR after
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exposing the hDPSCs to 1 pg/mL LPS with or without pretreatment with the specific inhibitors of

NF-kB or MAPK signaling. The results demonstrated that PDTC, U0126, SB203580 and

SP600125 significantly decreased LPS-induced mRNA expression of FN, ICAM-1, Integrin-B1

and VEGF in hDPSCs (Fig. 1C).

3.3 Effects of LPS on the migration of hDPSCs

To explore the role of LPS on the migratory motility of hDPSCs, assays were performed using a

two-chamber transwell system. The hDPSCs were treated with different concentrations of LPS for

24 h, and cells that had traversed the membrane to the bottom side were fixed and stained. The

results showed that 1 pg/mL LPS significantly increased the migratory ability of hDPSCs,

however, 10 pg/mL LPS significantly decreased migration of these cells (Fig. 3A and B).

The mRNA expression of chemotactic factors was determined using real-time PCR after

exposing the hDPSCs to various concentrations of LPS. The expressions of SDF-1, CXCR4,

MCP-1, LAMA-a5, FGF2, MIP-1a and TGF-B1 were significantly increased by LPS at 1 pg /mL

and decreased at 10 ug/mL, while no detectable differences were observed after stimulation by

LPS at 0.1 pg/mL (Fig. 3C).

3.4 Involvement of NF-kB and MAPK signaling pathways in the LPS-induced migration of

hDPSCs

To explore signaling pathways involved in the LPS-induced migration of hDPSCs, cells were

treated with 1 pg/mL LPS with or without pretreatment with specific inhibitors of NF-kB or

MAPK signaling. The results showed that NF-«B inhibitor (PDTC, 20 umol/L) and ERK1/2
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MAPK inhibitor (U0126, 25 pmol/L), p38 MAPK inhibitor (SB203580, 20 pumol/L), or JNK
MAPK inhibitor (SP600125, 25 pmol/L) significantly decreased 1 pg/mL LPS-induced migration
of hDPSCs, especially with PDTC and SP600125, which virtually abolished the effects of 1
pg/mL LPS (Fig. 4A and B).

The mRNA expression of chemotactic factors was determined using qRT-PCR after exposing
the hDPSCs to 1 pg/mL LPS with or without pretreatment with specific inhibitors of NF-xB or
MAPK signaling. The results showed that PDTC, SB203580, U0126 and SP600125 significantly
antagonized LPS-induced mRNA expression of SDF-1, MCP-1, LAMA-a5, FGF2, MIP-1a and

TGF-B1 (Fig. 4C).

3.5 Involvement of SDF-1/CXCR4 in LPS-induced migration of hDPSCs

To investigate the role of SDF-1/CXCR4 in LPS-induced migration of hDPSCs, cultures were
treated with 1 pg/mL LPS with or without pretreatment with a specific inhibitor of SDF-1/CXCR4
(AMD3100, 1 umol/L). The results showed that AMD3100 significantly diminished 1 pg/mL
LPS-induced migration of hDPSCs (Fig. 4D and E). However, AMD3100 (1 pumol/L) did not

influence cell viability as assessed by the MTT assay (data not shown).

Discussion

Adhesion is fundamental to cell behaviour in tissues. Previous studies have shown that in
endothelial progenitor cells (EPCs), LPS at concentrations of 10 pg/ml, 100 pg/ml and 1 ng/ml has
no effect on EPC adhesion, while 10 and 100 ng/ml LPS significantly decreases cell adhesion."

However in breast cancer cells, LPS treatment increased cell adhesion." In addition, it was found

Page 11 of 28



that the concentration of endotoxin in all root canal samplings ranged from 17-696 EU/mL

(equate to 0.27-0.696 ug/mL). Endotoxin contents ranged from 17-228 EU/mL (equate to 0.17-

0.228 ug/mlL) in asymptomatic teeth. In contrast, higher levels of endotoxin were found in teeth

which had clinical symptomatology, ranging from 270-696 EU/mL (equate to 0.27-0.696 ug/mL).

2 n the present study, 1 pg/mL and 10 pg/mL LPS significantly promoted adhesion of hDPSCs,

while 0.1 pg/mL LPS had no effect. It indicated that maybe there was a threshold for the cells of

dental pulp in response to bacterial endotoxin. These results also suggested that cell specific

differences in adhesion may exist.
Cell adhesion is mediated by adhesion molecules via several signaling pathways. Previous
studies have shown that molecules including FN, ICAM-1, Integrin-f1 and VEGF play important

. . 21-24
roles in cell adhesion.

In the present study, our results showed that mRNA expression of FN,
ICAM-1, Integrin-B1 and VEGF were significantly up-regulated by LPS at 1 pg/mL, which also
enhanced adhesion of hDPSCs.

The effects of LPS on migration of DPSCs will impact on recruitment of DPSCs to sites of
injury. The present data showed that 1 pg/mL LPS significantly increased migration of hDPSCs,
however, 10 pg/mL LPS significantly decreased migration of these cells. Our unpublished data
showed that 10 pg/mL LPS inhibited proliferation of hDPSCs although did not affect viability of
these cells. Previous studies have shown that LPS promotes migration of dendritic cells (DCs) and

Lewis lung cancer (LLC) cells?>?¢

as well as stem cell populations, including dental follicle
progenitor cells (DFPCs)'" and bone marrow cells.'> Any differences in LPS effects on migration

of these various cell populations likely reflects relative sensitivities of specific cell types to LPS.

Various chemotactic factors have been considered to be important in cell migration, including
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SDF-1, CXCR4, MCP-1, FGF2, MIP-1o and TGF-B1." In the present study, we examined the
expression of SDF-1, CXCR4, MCP-1, FGF2, MIP-1a and TGF-B1 to investigate their association
with the migration of hDPSCs. Our result showed that all these chemotactic factors were
significantly increased by LPS exposure at 1 pg /mL while being decreased at 10 pg/mL, however
no detectable difference after exposure to LPS at 0.1 pg/mL, which paralleled the results for the
migration assay. This suggests that SDF-1, CXCR4, MCP-1, FGF2, MIP-1a and TGF-B1 may be
strongly associated with hDPSCs migration induced by 1 pg /mL LPS. In order to investigate the
role of SDF-1/CXCR4 in LPS-induced migration of hDPSCs, a specific inhibitor of SDF-
1/CXCR4, AMD3100 was used prior to LPS stimulation. The results showed that AMD3100
significantly diminished 1 pg/mL LPS-induced migration, which further indicated that SDF-
1/CXCR4 was involved in LPS-induced migration.

NF-kB and MAPK pathways have been shown to be involved in cell adhesion and migration.”
37 In order to determine the role of NF-kB and MAPK pathways in 1 pg/mL LPS-induced cell
adhesion and migration of hDPSCs, specific inhibitors for NF-kB and MAPK pathways were
added prior to 1 pg/mL LPS treatment. Our results showed that specific inhibitors of NF-kB, JNK,
P38, and ERK clearly repressed the migration and adhesion induced by 1 pg/mL LPS.
Interestingly, the effects of PDTC and SP600125 were greatest and led to virtually complete
inhibition of the LPS-induced migration of hDPSCs. These data suggests that NF-kB and JNK
MAPK may play key roles in LPS-induced cell migration in hDPSCs. Such signaling may be cell-
specific since inhibitor studies have implicated ERK signaling in mechano-growth factor (MGF)-
induced mesenchymal stem cell migration.”” However, other studies have shown that P3SMAPK

pathway is important for themigration of ovarian cancer cells.™ Notably our previous research has
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shown that LPS can activate NF-kB and MAPK signaling in hDPSCs,'® which may be associated

with increased adhesion and migration of hDPSCs.

In conclusion, our results have shown that LPS at a concentration of 1 ug/mL can promote the

adhesion and migration of hDPSCs and that NF-kB and MAPK pathways appear to be involved

in up-regulating the expression of adhesion molecules and chemotactic factors.
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Figure legends

Fig. 1 - The effects of LPS on the adhesion of hDPSCs. Cells were incubated with LPS at the
concentrations indicated for 90 min. Adherent cells were fixed and stained and examined by
inverted microscopy (Fig. 1A). The stain was dissolved from the cells and quantified at 595 nm
using a multiplate reader (Fig. 1B). In a separated experiment, total RNA was extracted, then
mRNA expression of adhesion molecules including FN, ICAM-1, integrin-p1 and VEGF were
measured by qRT-PCR (Fig. 1C). Results are shown as the mean + S.D. deviation of three
independent experiments performed in triplicate. CON represent the control group. *P < 0.05

represents a significant difference compared with the control. Scale bars indicate 100 pum.

Fig. 2 - Involvement of NF-kB and MAPK pathways in LPS-induced adhesion of hDPSCs.
hDPSCs were pretreated with NF-kB inhibitor (PDTC, 20 pmol/L), ERK1/2 MAPK inhibitor
(U0126, 25 umol/L), p38 MAPK inhibitor (SB203580, 20 pmol/L), or INK MAPK inhibitor
(SP600125, 25 umol/L) for 30 min prior to stimulation with LPS (1 pg/mL) for 90 min. Adherent
cells were fixed and stained and examined by inverted microscopy (Fig. 2A). The stain was
dissolved from cells and quantified at 595 nm using a multiplate reader (Fig. 2B). In a separate

experiment, total RNA was extracted and the mRNA expression of adhesion molecules including
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FN, ICAM-1, integrin-f1 and VEGF were measured by qRT-PCR (Fig. 2C). Results are shown as

the mean + S.D. deviation of three independent experiments performed in triplicate. CON

represent the control group. *P < 0.05 represents a significant difference compared with the

control. Scale bars indicate 100 um.

Fig. 3 - Effects of LPS on the migration of hDPSCs.Cell migration assays were evaluated using a

two-chamber transwell system. Cells were treated withLPS concentration indicated for 24 h and

then the migratory cells were fixed and stained (A and B). In a separated experiment, hDPSCs

were treated with LPS at the concentrations indicated for 24 h, and then total RNA was extracted

and the mRNA expression of chemotactic factors including SDF-1, CXCR4, MCP-1, LAMA-a5,

FGF2, MIP-1a, TGF-B1 were assessed by qRT-PCR (Fig. 3C). Results are shown as the mean +

S.D. deviation of three independent experiments performed in triplicate. CON represent the

control group. *P < 0.05 represents a significant difference compared with the control. Scale bars

indicate 100 um.

Fig. 4 - Involvement of NF-kB, MAPK or SDF-1/CXCR4 pathways in LPS-induced hDPSC

migration. Cell migration assays were evaluated using a two-chamber transwell system. Cells

were treated with LPS (1 ug/mL) for 24 h with or without pretreatment with PDTC (20 pmmol/L),

SB203580 (20 pmmol/L), SP600125 (25 wmmol/L), U0126 (25 wmmol/L) or AMD3100 (1

pmol/L) for 1 h, and then the migratory cells were fixed, stained and counted (A - B and D - E). In

a separated experiment, hDPSCs were treated with LPS (1 pg/mL) with or without indicated

inhibitors, and then total RNA was extracted and the mRNA expressions of chemotactic factors
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including SDF-1, CXCR4, MCP-1, LAMA-a5, FGF2, MIP-1o. and TGF-B1 were assessed by
gRT-PCR (Fig. 4C). CON represent the control group. * P< 0.05 when compared with the
untreated control group. # P< 0.05 when compared with the LPS-treated group. Scale bars indicate

100 pm.
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Table

Gene GeaelD Forward Reverse

Hummm ICAM-1 ID:3383 ATCCATCCCACAGAAGCCTTCCTGC  GCCCACCTCCAGGAGAGTCAGGGGTGT
Humea VEGF 7422 CTACCTCCACCATGCCAAGT GCAGTAGCTGCGCTGATAGA
Fuomm FN ID:2333 TCCTICCTOUTAICATGOCAG AGACCCAGGCTTCICATACTIGA
Humans Integria i IDx3688 TGCAGTTIGTGGATCACTGATTG CCTGTGGACTGTCGAGGCATAAC
Human GAFDH ID:2397 CCIGCACCACCAACTGCITA GOCCATCCACAGTCITCIGAG
Hunwn SDF-1 ID: 6387 TGCCAGAGCCAACGTCAAG CAGCCGGGCTACAATCTGA
Hamaa MCP-1 Ik 6347 CAGCCAGATGCAATCAATGCC TGGAATCCTGAACCCACTTICT
Human FOF2 ID: 2247 COTGCTATCGAAGCAAGATGGA TAGCCCAGTTCATTTCAGT

Humem MTP-1a ID:8348 ACCTGCTCAACATCATGAAGG AGATGGAGCTATGCAGGTGG
Humaa CXCR4 7852 TACACCGAGGAAATGGGCTCA AGATGATGGAGTAGATGGTGGG
Huomen Leminis o5 chain  ID: 3911 CACCGAAGTGQTCTATICIGGC TAAAACGGAGTGTCACGTICGC

Human 1 Ix 7040  TGAACCGGCCTTITCCTGCTTCTCATG GCGGAAGTCAATGTACAGCTGCCGC
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