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The effects of LPS on adhesion and migration of human dental pulp 

stem cells in vitro  

 

Abstract 

Objectives: The aim of the present study was to investigate the effects of lipopolysaccharide (LPS) 

on the migration and adhesion of human dental pulp stem cells (hDPSCs) and the associated 

intracellular signaling pathways.  

Methods: hDPSCs obtained from impacted third molars were exposed to LPS and in vitro cell 

adhesion and migration were evaluated. The effects of LPS on gene expression of adhesion 

molecules and chemotactic factors were investigated using quantitative real-time reverse-

transcriptase polymerase chain (qRT-PCR). The potential involvement of Nuclear factor NF-

kappa-B (NF-κB) or mitogen-activated protein kinase (MAPK) signaling pathways in the 

migration and adhesion of hDPSCs induced by LPS was assessed using a transwell cell migration 

assay and qRT-PCR.  

Results: LPS promoted the adhesion of hDPSCs at 1 μg/mL and 10 μg/mL concentrations, 1 

μg/mL LPS showing the greater effect. Transwell cell migration assay demonstrated that LPS 

increased migration of hDPSCs at 1 μg/mL concentration while decreasing  it significantly at 10 

μg/mL. The mRNA expressions of adhesion molecules and chemotactic factors were enhanced 

significantly after stimulation with 1 μg/mL LPS. Specific inhibitors for NF-κB and extracellular 

signal regulated kinases (ERK), c-Jun N-terminal kinase (JNK), and P38, markedly antagonized 

LPS-induced adhesion and migration of hDPSCs and  also significantly abrogated LPS-induced 
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up-regulation of adhesion molecules and chemotactic factors. In addition, specific inhibitors of 

SDF-1/CXCR4, AMD3100 significantly diminished LPS-induced migration of hDPSCs.  

Conclusions: LPS at specific concentrations can promote cell adhesion and migration in hDPSCs 

via the NF-κB and MAPK pathways by up-regulating the expression of adhesion molecules and 

chemotactic factors.  

Clinical significance: LPS may influence pulp healing through enhancing the adhesion and 

migration of human dental pulp stem cells when it enters into pulp during pulp exposure or deep 

caries. 

Key words：LPS; hDPSCs; adhesion; migration; NF-κB; MAPK 
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Introduction 

Human dental pulp stem cells (hDPSCs) represent a post-natal mesenchymal stem cell 

population with the potential to differentiate into odontoblast-like cells in vitro and form 

dentin/pulp-like tissue in vivo.1-3 Regeneration of dentin-pulp after severe injury involves 

migration and adhesion of hDPSCs to sites of injury, followed by odontoblasts-like cell 

differentiation and tertiary dentin secretion giving rise to a dentin bridge.4 While carious bacteria 

and their products are important factors in tooth injury, their influence on repair mechanisms, such 

as hDPSC migration and adhesion and the underlying molecular mechanisms, remain unclear.  

LPS, a gram-negative bacterial cell wall component, is commonly detected in infected pulp 

cavities and root canals.5 As well as being an important etiologic factor for human chronic 

periodontitis and apical periodontitis, LPS is also strongly implicated in pulpitis.6,7 LPS is 

postulated to have profound effects on alveolar bone resorption and pro-inflammatory cytokine 

production.8,9 Notably previous studies have demonstrated that LPS can decrease adhesion of 

endothelial progenitor cells (EPCs)10 and increase the migration of dental follicle progenitor cells 

(DFPCs)11 and bone marrow cells.12 However, the effects of LPS on migration of hDPSCs is 

unclear. 

LPS specifically binds to TLR4 on eukaryotic cell walls leading  to intracellular activation of 

the NF-κB or MAPK pathways downstream via myeloid differentiation factor 88 (MyD88)-

dependent signaling.13 Notably MAPK has previously been reported to be involved in 

proliferation, migration and myofibroblastic (MF) differentiation of periodontal ligament (PDL)-

derived endothelial progenitor cell (EPC)-like cells through MEK/ERK and JNK-mediated 
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signals.14 Recent studies have also demonstrated that NF-κB plays an important role in the 

migration and adhesion of several cell types when induced by LPS.15-17 Our previous research has 

recently demonstrated that LPS can activate MAPK and NF-κB signaling in hDPSCs,18 however 

the effects of these signaling pathways on the adhesion and migration of hDPSCs has not been 

assessed. 

The aim of the present study was to investigate the influence of LPS on the adhesion and 

migration of hDPSCs, and the potential roles of MAPK and NF-κB signaling in mediating these 

effects.   

 

Material and Methods 

Reagents 

Ultrapure Escherichia coli LPS was obtained from InvivoGen (San Diego, CA). 

Pyrrolidinedithiocarbamate (PDTC), a specific inhibitor of NF-κB, and AMD3100, a specific 

inhibitor of stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) were 

obtained from Sigma-Aldrich (St Louis, MO, USA). U0126, a specific inhibitor of extracellular 

signal-regulated kinase (ERK); SB203580, a specific inhibitor of p38 kinase; and SP600125, a 

specific inhibitor of Jun N- terminal kinase (JNK), were purchased from InvivoGen (San Diego, 

CA). 

 

E.Z.N.A. Total RNA Kit I was obtained from Omega (Omega, USA) and Prime Script RT-PCR 

Kit, Quantitect SYBR Green kits were obtained from Takara (Takara, Japan). All the primer 

sequences were synthesised and purchased from Sangon (Sangon Biotech (Shanghai) Co., Ltd.). 



Page 6 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

 

Isolation and culture of hDPSC 

Healthy third molars extracted for orthodontic reasons were collected from patients (18-25 

years) at the Stomatological Hospital affiliated with Fourth Military Medical University (FMMU). 

Informed consent was obtained from each patient and research protocols were approved by the 

University’s Ethics Committee. Dental pulps from extracted teeth were isolated and digested with 

3 mg/mL type I collagenase and 4 mg/mL dispase (Sigma) for 45-60 min at 37 °C. Single-cell 

suspensions were seeded in 35-mm or 60-mm culture dishes and maintained in growth medium 

consisting of α-minimum essential medium (Invitrogen, Carlsbad, CA) supplemented with 15% 

fetal bovine serum (Gibco-BRL, Grand Island, NY), 100 units/mL penicillin-G, and 100 mg/mL 

streptomycin (Invitrogen) in a humidified atmosphere of 5% CO2 at 37 °C. Single-cell clones of 

DPSCs was isolated, passaged and characterized as previous described.18 Cultures of between the 

2nd and 5th passages were used in subsequent experiments. 

 

Adhesion assay 

For the cell adhesion assay, 50 μl type I collagen diluted in PBS (40 mg/l) was added to each 

well of a 96-well plate and incubated overnight at 4 °C. After removal of unbound collagen, each 

well was washed with PBS and then blocked with 1% BSA for 1 h at 37 °C in a 5% CO2 

atmosphere. Cells were trypsinized, resuspended in serum-free medium at a cell density of 1 × 105 

cells/mL and 100 μl of the cell suspension were added to each well. Different concentrations of 

LPS with or without inhibitors of the MAPK and NF-κB pathways were combined with hDPSCs 

prior to seeding on the collagen-coated wells. Cells were incubated for 90 min at 37 °C and non-
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adhered cells were removed by washing three times with PBS. The remaining cells were observed 

by inverted phase contrast microscopy (Olympus, Japan) and then fixed with 4% 

paraformaldehyde for 15 min and washed three times with PBS. Cells were stained with 0.5% 

toluidine blue for 10 min and washed three times with PBS prior to the addition of 100 μl of 33% 

acetic acid (v/v) to each well. Subsequently, the optical density (OD) was determined using a 

microplate reader (BIO-TEK, Winooski, VT, USA) at an absorbance of 595 nm. 

 

Transwell migration assay 

Cell migration was evaluated using a two chamber transwell system (8  mm  pore  size  and  6.5  
mm diameter) and the cell culture inserts are pre-coated with extracellular matrix proteins 
(Corning, N.Y, USA). Briefly, the cells were starved for 24 h with serum-free medium, then 
dissociated and resuspended in 100 μl serum-free medium, and re-seeded onto the top chamber of 
a transwell plate at a density of 3 × 104 cells/mL. 600-800 μl of serum-free α-MEM containing 
various concentrations of LPS, inhibitors of SDF-1/CXCR4, or inhibitors of MAPK and NF-κB 
(Invitrogen) were added to the lower migration chamber. 100-150 μl cell suspension were added to 
the transwell upper chamber, then the chamber was placed into medium for 24h in an incubator at 
37 °C and 5% CO2. Cells migrating through the membrane were fixed in 4% paraformaldehyde 
for 15 min, while non-migratory cells were discarded. The transwell chamber was then immersed 
in 1 g/ml hematoxylin（Sigma-Aldrich, USA）for staining for 15 min. To quantify the migrated 
cells, ten random microscopic fields per filter at 200x magnification (Olympus, Japan) were 
selected for cell counting. Measurements were performed in triplicate and mean counts calculated 
for each experiment. 

 

Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) 

After exposure to LPS 1 μg/mL in the presence or absence of inhibitors, total RNA was isolated 

from cells using the E.Z.N.A. Total RNA Kit I (Omega, USA) according to the manufacturer’s 

protocol and digested with DNase I (RNase-free, RQ1; Promega). First-strand cDNA was 

synthesized from 1 μg of total RNA using Prime Script RT-PCR Kit (Takara, Japan). qRT-PCR 
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analyses were performed using an ABI Prism 7500 Real-Time PCR System (Applied Biosystems, 

Foster City, CA) using the SYBR Green PCR master mix reagent (Takara, Otsu, Japan). Reaction 

mixtures were subjected to 35 cycles of PCR comprising denaturation for 10 seconds at 95 °C, 

annealing for 15 seconds at 60 °C, and extension for 10 seconds at 72 °C. The relative amount or 

fold change of the target gene was normalized relative to the level of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and relative to a control (untreated cells). Primer sequences（Sangon 

Biotech (Shanghai) Co., Ltd.）for GAPDH, fibronectin (FN), intercellular adhesion molecule 1 

(ICAM-1), beta1 integrin (Integrin β1) ， vascular endothelial growth factor (VEGF) and 

chemokines CXC chemokine receptor type 4 (CXCR4), fibroblast growth factor 2 (FGF2), 

monocyte chemoattractant protein 1 (MCP-1), stromal cell-derived factor-1 (SDF-1), macrophage 

inflammatory protein-1 alpha (MIP-1α)，transforming growth factor β1 (TGF-β1)and laminin α5 

(LAMA α5) are listed in Table 1. 

 

Statistical Analysis 

Data are represented as the mean ± standard deviation of 3 separate experiments performed in 

triplicate. The data were analyzed, where appropriate, by using the Student’s t test or one-way 

analysis of variance followed by the Student–Neumann–Keuls test using SPSS software (version 

17.0; SPSS, Chicago, IL). A P value < 0.05 was considered statistically significant. 

 

Results 

3.1 Effects of LPS on hDPSCs adhesion 

The effects of various concentrations of LPS on hDPSCs adhesion to extracellular matrix were 
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investigated. While there was no significant difference in adherent cell numbers between 0.1 

μg/mL LPS and the control group (Fig. 1A and B), 1 μg /mL and 10 μg/mL LPS concentrations 

considerably increased adherent cell number compared with the control. Cell adhesion was more 

strongly promoted by 1 than 10 μg/mL LPS (Fig. 1A and B). LPS (0.1, 1 or 10 μg/mL) did not 

influence cell viability as assessed by the MTT assay (data not shown). 

The mRNA expressions of key adhesion molecules were determined using real-time PCR after 

exposing the hDPSCs to various concentrations of LPS. The results showed that the expressions of 

FN, ICAM-1, Integrin-β1 and VEGF were significantly increased by LPS at concentrations of 1 

μg/mL and 10 μg/mL, while no detectable differences were observed after exposure to LPS at 0.1 

μg/mL (Fig. 1C). 1 μg/mL LPS strongly increased mRNA expression of FN, ICAM-1, Integrin-β1 

and VEGF compared with 10 μg/mL LPS (Fig. 1C). 

 

3.2 Involvement of NF-κB and MAPK Pathways in LPS-induced hDPSCs adherence 

To investigate whether NF-κB or MAPK signaling was necessary for LPS-induced cell 

adhesion, cells were treated with 1 μg/mL LPS with or without pretreatment with specific 

inhibitors of NF-κB or MAPK signaling. Treatment with the NF-κB inhibitor (PDTC, 20 μmol/L), 

ERK1/2 MAPK inhibitor (U0126, 25 μmol/L), p38 MAPK inhibitor (SB203580, 20 μmol/L), or 

JNK MAPK inhibitor (SP600125, 25 μmol/L) significantly decreased adherent cell numbers 

compared with the LPS-treated control (Fig. 2A and B). Treatment of the cells with PDTC (20 

μmol/L), U0126 (25 μmol/L), SB203580 (20 μmol/L) or SP600125 (25 μmol/L) did not influence 

cell viability as assessed by the MTT assay (data not shown).  

The mRNA expression of adhesion molecules was examined using real-time PCR after 
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exposing the hDPSCs to 1 μg/mL LPS with or without pretreatment with the specific inhibitors of 

NF-κB or MAPK signaling. The results demonstrated that PDTC, U0126, SB203580 and 

SP600125 significantly decreased LPS-induced mRNA expression of FN, ICAM-1, Integrin-β1 

and VEGF in hDPSCs (Fig. 1C).                                                                                                                                    

 

3.3  Effects of LPS on the migration of hDPSCs 

To explore the role of LPS on the migratory motility of hDPSCs, assays were performed using a 

two-chamber transwell system. The hDPSCs were treated with different concentrations of LPS for 

24 h, and cells that had traversed the membrane to the bottom side  were fixed and stained. The 

results showed that 1 μg/mL LPS significantly increased the migratory ability of hDPSCs, 

however, 10 μg/mL LPS significantly decreased migration of these cells (Fig. 3A and B).  

The mRNA expression of chemotactic factors was determined using real-time PCR after 

exposing the hDPSCs to various concentrations of LPS. The expressions of SDF-1, CXCR4, 

MCP-1, LAMA-α5, FGF2, MIP-1α and TGF-β1 were significantly increased by LPS at 1 μg /mL 

and decreased at 10 μg/mL, while no detectable differences were observed after stimulation by 

LPS at 0.1 μg/mL (Fig. 3C).  

 

3.4 Involvement of NF-κB and MAPK signaling pathways in the LPS-induced migration of 

hDPSCs 

To explore signaling pathways involved in the LPS-induced migration of hDPSCs, cells were 

treated with 1 μg/mL LPS with or without pretreatment with specific inhibitors of NF-κB or 

MAPK signaling. The results showed that NF-κB inhibitor (PDTC, 20 μmol/L) and ERK1/2 
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MAPK inhibitor (U0126, 25 μmol/L), p38 MAPK inhibitor (SB203580, 20 μmol/L), or JNK 

MAPK inhibitor (SP600125, 25 μmol/L) significantly decreased 1 μg/mL LPS-induced migration 

of hDPSCs, especially with PDTC and SP600125, which virtually abolished the effects of 1 

μg/mL LPS (Fig. 4A and B).  

The mRNA expression of chemotactic factors was determined using qRT-PCR after exposing 

the hDPSCs to 1 μg/mL LPS with or without pretreatment with specific inhibitors of NF-κB or 

MAPK signaling. The results showed that PDTC, SB203580, U0126 and SP600125 significantly 

antagonized LPS-induced mRNA expression of SDF-1, MCP-1, LAMA-α5, FGF2, MIP-1α and 

TGF-β1 (Fig. 4C).  

 

3.5 Involvement of SDF-1/CXCR4 in LPS-induced migration of hDPSCs 

To investigate the role of SDF-1/CXCR4 in LPS-induced migration of hDPSCs, cultures were 

treated with 1 μg/mL LPS with or without pretreatment with a specific inhibitor of SDF-1/CXCR4 

(AMD3100, 1 μmol/L). The results showed that AMD3100 significantly diminished 1 μg/mL 

LPS-induced migration of hDPSCs (Fig. 4D and E). However, AMD3100 (1 μmol/L) did not 

influence cell viability as assessed by the MTT assay (data not shown). 

 

Discussion 

Adhesion is fundamental to cell behaviour in tissues. Previous studies have shown that in 

endothelial progenitor cells (EPCs), LPS at concentrations of 10 pg/ml, 100 pg/ml and 1 ng/ml has 

no effect on EPC adhesion, while 10 and 100 ng/ml LPS significantly decreases cell adhesion.10 

However in breast cancer cells, LPS treatment increased cell adhesion.19 In addition, it was found 
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that the concentration of endotoxin in all root canal samplings ranged from 17–696 EU/mL 

(equate to 0.27-0.696 ug/mL). Endotoxin contents ranged from 17–228 EU/mL (equate to 0.17-

0.228 ug/mL) in asymptomatic teeth. In contrast, higher levels of endotoxin were found in teeth 

which had clinical symptomatology, ranging from 270–696 EU/mL (equate to 0.27-0.696 ug/mL). 

20 In the present study, 1 μg/mL and 10 μg/mL LPS significantly promoted adhesion of hDPSCs, 

while 0.1 μg/mL LPS had no effect. It indicated that maybe there was a threshold for the cells of 

dental pulp in response to bacterial endotoxin. These results also suggested that cell specific 

differences in adhesion may exist.  

Cell adhesion is mediated by adhesion molecules via several signaling pathways. Previous 

studies have shown that molecules including FN, ICAM-1, Integrin-β1 and VEGF play important 

roles in cell adhesion.21-24 In the present study, our results showed that mRNA expression of FN, 

ICAM-1, Integrin-β1 and VEGF were significantly up-regulated by LPS at 1 μg/mL, which also 

enhanced adhesion of hDPSCs.   

The effects of LPS on migration of DPSCs will impact on recruitment of DPSCs to sites of 

injury. The present data showed that 1 μg/mL LPS significantly increased migration of hDPSCs, 

however, 10 μg/mL LPS significantly decreased migration of these cells. Our unpublished data 

showed that 10 μg/mL LPS inhibited proliferation of hDPSCs although did not affect viability of 

these cells. Previous studies have shown that LPS promotes migration of dendritic cells (DCs) and 

Lewis lung cancer (LLC) cells25,26 as well as stem cell populations, including dental follicle 

progenitor cells (DFPCs)11 and bone marrow cells.12 Any differences in LPS effects on migration 

of these various cell populations likely reflects relative sensitivities of specific cell types to LPS.  

Various chemotactic factors have been considered to be important in cell migration, including 
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SDF-1, CXCR4, MCP-1, FGF2, MIP-1α and TGF-β1.27-31 In the present study, we examined the 

expression of SDF-1, CXCR4, MCP-1, FGF2, MIP-1α and TGF-β1 to investigate their association 

with the migration of hDPSCs. Our result showed that all these chemotactic factors were 

significantly increased by LPS exposure at 1 μg /mL while being decreased at 10 μg/mL, however 

no detectable difference after exposure to LPS at 0.1 μg/mL, which paralleled the results for the 

migration assay. This suggests that SDF-1, CXCR4, MCP-1, FGF2, MIP-1α and TGF-β1 may be 

strongly associated with hDPSCs migration induced by 1 μg /mL LPS.  In order to investigate the 

role of SDF-1/CXCR4 in LPS-induced migration of hDPSCs, a specific inhibitor of SDF-

1/CXCR4, AMD3100 was used prior to LPS stimulation. The results showed that AMD3100 

significantly diminished 1 μg/mL LPS-induced migration, which further indicated that SDF-

1/CXCR4 was involved in LPS-induced migration. 

NF-κB and MAPK pathways have been shown to be involved in cell adhesion and migration.32-

37 In order to determine the role of NF-κB and MAPK pathways in 1 μg/mL LPS-induced cell 

adhesion and migration of hDPSCs, specific inhibitors for NF-κB and MAPK pathways were 

added prior to 1 μg/mL LPS treatment. Our results showed that specific inhibitors of NF-κB, JNK, 

P38, and ERK clearly repressed the migration and adhesion induced by 1 μg/mL LPS. 

Interestingly, the effects of PDTC and SP600125 were greatest and led to virtually complete 

inhibition of the LPS-induced migration of hDPSCs. These data suggests that NF-κB and JNK 

MAPK may play key roles in LPS-induced cell migration in hDPSCs. Such signaling may be cell-

specific since inhibitor studies have implicated ERK signaling in mechano-growth factor (MGF)-

induced mesenchymal stem cell migration.37 However, other studies have shown that P38MAPK 

pathway is important for themigration of ovarian cancer cells.33 Notably our previous research has 
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shown that LPS can activate NF-κB and MAPK signaling in hDPSCs,18 which may be associated 

with increased adhesion and migration of hDPSCs. 

In conclusion, our results have shown that LPS at a concentration of 1 μg/mL can promote the 

adhesion and migration of hDPSCs and that  NF-κB and MAPK pathways appear to be involved 

in up-regulating the expression of adhesion molecules and chemotactic factors.  
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Figure legends 

Fig. 1 - The effects of LPS on the adhesion of hDPSCs. Cells were incubated with LPS at the 

concentrations indicated for 90 min. Adherent cells were fixed and stained and examined by 

inverted microscopy (Fig. 1A). The stain was dissolved from the cells and quantified at 595 nm 

using a multiplate reader (Fig. 1B). In a separated experiment, total RNA was extracted, then 

mRNA expression of adhesion molecules including FN, ICAM-1, integrin-β1 and VEGF were 

measured by qRT-PCR (Fig. 1C). Results are shown as the mean ± S.D. deviation of three 

independent experiments performed in triplicate. CON represent the control group. *P < 0.05 

represents a significant difference compared with the control. Scale bars indicate 100 μm. 

 

Fig. 2 - Involvement of NF-κB and MAPK pathways in LPS-induced adhesion of hDPSCs. 

hDPSCs were pretreated with NF-kB inhibitor (PDTC, 20 μmol/L), ERK1/2 MAPK inhibitor 

(U0126, 25 μmol/L), p38 MAPK inhibitor (SB203580, 20 μmol/L), or JNK MAPK inhibitor 

(SP600125, 25 μmol/L) for 30 min prior to stimulation with LPS (1 μg/mL) for 90 min. Adherent 

cells were fixed and stained and examined by inverted microscopy (Fig. 2A). The stain was 

dissolved from cells and quantified at 595 nm using a multiplate reader (Fig. 2B). In a separate 

experiment, total RNA was extracted and the mRNA expression of adhesion molecules including 
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FN, ICAM-1, integrin-β1 and VEGF were measured by qRT-PCR (Fig. 2C). Results are shown as 

the mean ± S.D.  deviation of three independent experiments performed in triplicate. CON 

represent the control group. *P < 0.05 represents a significant difference compared with the 

control. Scale bars indicate 100 μm. 

 

Fig. 3 - Effects of LPS on the migration of hDPSCs.Cell migration assays were evaluated using a 

two-chamber transwell system. Cells were treated withLPS concentration indicated for 24 h and 

then the migratory cells were fixed and stained (A and B). In a separated experiment, hDPSCs 

were treated with LPS at the concentrations indicated for 24 h, and then total RNA was extracted 

and the mRNA expression of chemotactic factors including SDF-1, CXCR4, MCP-1, LAMA-α5, 

FGF2, MIP-1α, TGF-β1 were assessed by qRT-PCR (Fig. 3C). Results are shown as the mean ± 

S.D. deviation of three independent experiments performed in triplicate. CON represent the 

control group. *P < 0.05 represents a significant difference compared with the control. Scale bars 

indicate 100 μm. 

 

Fig. 4 - Involvement of NF-κB, MAPK or SDF-1/CXCR4 pathways in LPS-induced hDPSC 

migration. Cell migration assays were evaluated using a two-chamber transwell system. Cells 

were treated with LPS (1 ug/mL) for 24 h with or without pretreatment with PDTC (20 μmmol/L), 

SB203580 (20 μmmol/L), SP600125 (25 μmmol/L), U0126 (25 μmmol/L) or AMD3100 (1 

μmol/L) for 1 h, and then the migratory cells were fixed, stained and counted (A - B and D - E). In 

a separated experiment, hDPSCs were treated with LPS (1 µg/mL) with or without indicated 

inhibitors, and then total RNA was extracted and the mRNA expressions of chemotactic factors 
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including SDF-1, CXCR4, MCP-1, LAMA-α5, FGF2, MIP-1α and TGF-β1 were assessed by 

qRT-PCR (Fig. 4C). CON represent the control group. * P< 0.05 when compared with the 

untreated control group. # P< 0.05 when compared with the LPS-treated group. Scale bars indicate 

100 μm. 
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