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Background: The Lbc oncoprotein stimulates deregulated GTPase activity in RhoA.
Results: Although the Lbc DH domain can independently activate GTP exchange by RhoA, its PH domain also presents surfaces
for DH and activated RhoA interaction.
Conclusion: Multiple sites on both structural domains of the Lbc scaffold control RhoA.
Significance: New sites for mechanism-based design of modulators of Lbc action are revealed.

The small GTPase RhoA promotes deregulated signaling
upon interaction with lymphoid blast crisis (Lbc), the oncogenic
form of A-kinase anchoring protein 13 (AKAP13). The onco-
Lbc protein is a hyperactive Rho-specific guanine nucleotide
exchange factor (GEF), but its structural mechanism has not
been reported despite its involvement in cardiac hypertrophy
and cancer causation. The pleckstrin homology (PH) domain of
Lbc is located at the C-terminal end of the protein and is shown
here to specifically recognize activated RhoA rather than lipids.
The isolated dbl homology (DH) domain can function as an
independent activator with an enhanced activity. However, the
DH domain normally does not act as a solitary Lbc interface with
RhoA-GDP. Instead it is negatively controlled by the PH
domain. In particular, the DH helical bundle is coupled to the
structurally dependent PH domain through a helical linker,
which reduces its activity. Together the two domains form a
rigid scaffold in solution as evidenced by small angle x-ray scat-
tering and 1H,13C,15N-based NMR spectroscopy. The two
domains assume a “chair” shape with its back possessing inde-
pendent GEF activity and the PH domain providing a broad seat
for RhoA-GTP docking rather than membrane recognition.
This provides structural and dynamical insights into how DH
and PH domains work together in solution to support regulated
RhoA activity. Mutational analysis supports the bifunctional PH
domain mediation of DH-RhoA interactions and explains why
the tandem domain is required for controlled GEF signaling.

Signaling relays between specific kinases and GTPases are
mediated by AKAP2 scaffolds. The family of AKAP-lymphoid

blast crisis (Lbc) proteins provides a critical paradigm for the
regulated scaffolds that control RhoA GTPases (1). They medi-
ate pathways involving the mitogen-activated protein kinase
(MAPK) cascade (2) as well as PKA, PKC�, and PKD (or PKC�)
(3, 4). Their physiological complexes utilize these kinases as
well as phosphatases such as Shp2 (5) to regulate GEF activity
through docking sites including those offered by the DH and
PH domains. The DH-PH pair thus represents a master node of
GEF control and must be understood in its multiple states to
effectively manipulate their interplay.

Alternately spliced AKAP variants (see Fig. 1) were discov-
ered in a screen for transforming genes from human myeloid
leukemias. The isoforms include AKAP-Lbc, which is also
known as AKAP13 (6) and Brx, which is specifically expressed
in testis and estrogen-responsive reproductive tissues (7) and is
linked to breast cancer (8) (Fig. 1). The regulated AKAP-Lbc
scaffold is compromised in cases of chronic myeloid leukemia,
breast cancer, and cardiac hypertrophy. A truncated form
known as onco-Lbc was identified in patients suffering from
myeloid leukemia (6). It is tumorigenic in mice and leads to
oncogenic transformation of NIH 3T3 fibroblasts (9, 10). Rela-
tive to AKAP-Lbc, the oncogenic form, onco-Lbc, contains only
the DH-PH tandem as well as a 70-residue N-terminal exten-
sion comprising residues 1922–2346 and induces constitutive
GEF activity. Consequently it induces cell transformation in a
Rho-dependent manner (11). Overexpression of AKAP-Lbc is
found in uterine leiomyoma and may alter perception of
mechanical stress (12). Cardiac hypertrophy and remodeling of
the heart following stress also involve AKAP-Lbc signaling (13).
Together these findings suggest that the Lbc family forms a
critical trigger for mitogenic signaling, deregulation of which
has dire consequences. This realization has stimulated growing
interest focused on Lbc for drug discovery (14, 15). Moreover,
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as several of the �70 such DH-PH scaffolds in the human
genome are oncogenic, additional related therapeutic targets
may emerge (16).

The tandem DH-PH module is a prime target as it provides
the core functionality required for RhoGEF activation. It cap-
tures the GDP-bound RhoA and stabilizes the nucleotide-free
form until GTP is loaded and then released. Crystal structures
of other DH-PH tandems indicate that the DH domain is struc-
turally well conserved with variations in the length of its C-ter-
minal helix and its orientation with the PH domain influencing
their specific effects on GTPases (17). However, the specific
relationships between AKAP-Lbc domains and their partners
including RhoA, actin filaments (12), G� proteins (4), and the
plasma membrane lipids (18) remain unclear.

The interactions mediated by DH-PH scaffolds provide com-
plex opportunities to regulate GTPase activity. Multiple posi-
tive and negative feedback loops can be mediated by the PH
domain (19), a linker region at the N terminus of the DH
domain, phosphorylation, lipids, and dimerization motifs. Acti-
vation results from removal of the C terminus of AKAP-Lbc
(10). A leucine zipper found here mediates oligomerization and
autoinhibition (20). Recently it was shown that the PH domains
of Lbc family RhoGEFs bind to membrane-tethered RhoA-GTP
and promote positive feedback (21). However, the exact Lbc
mechanism remains unknown with no structures of any family
member having been published.

Most interesting are the unique ligand interactions of Lbc
DH-PH scaffolds that could account for their specific activities
(22). Defining the structural basis of such interactions is neces-
sary for designing selective molecular probes and inhibitors.
Here we present solution structures of onco-Lbc and charac-
terize the interactions among its DH and PH domains, RhoA,
and lipids. By mapping and mutating the key residues, the
mechanisms by which DH and PH domains communicate and
integrate signals to control GTPase activity are revealed.

EXPERIMENTAL PROCEDURES

Protein Purification—The cDNA of human AKAP13 (Har-
vard database identification number HsCD00399180) corre-
sponding to onco-Lbc (residues 1922–2346) or the isolated DH

domain (1992–2210) was subcloned into a pGEX-6P-1 vector
(GE Healthcare) between BamHI/SalI restriction sites and
expressed in Escherichia coli BL21(DE3) cells. The production
of the AKAP-Lbc construct encompassing residues 2164 –2346
(“DH�PH”) was as described previously (23). Expression was
induced overnight by addition of 1 mM isopropyl 1-thio-�-
D-galactopyranoside at 18 °C. The cells were resuspended in
phosphate-buffered saline buffer, pH 7.3 and 0.5 mM tris(2-
carboxyethyl)phosphine and lysed, and soluble protein was
purified on GST columns (GE Healthcare). Subsequently, the
GST tag was cleaved with PreScission protease (GE Health-
care). Onco-Lbc constructs were further purified by size exclu-
sion chromatography on an S75 26/60 Sephadex column using
50 mM Tris, pH 7.5, 150 mM NaCl, and 0.5 mM tris(2-carboxy-
ethyl)phosphine. The identity and purity were assessed by SDS-
PAGE. Mutations were generated using QuikChange mutagen-
esis kits (Stratagene), and the DNA sequences were verified by
sequencing. Soluble RhoA (residues 1–181) was expressed
overnight in E. coli BL21(DE3) at 18 °C and resuspended in 50
mM Tris, pH 8, 150 mM NaCl, 10 mM imidazole, 10% glycerol, 10
mM �-mercaptoethanol, 5 mM MgCl2, 100 �M GDP, and 0.1%
Nonidet P-40. The protein was bound to a nickel column and
eluted against an imidazole gradient. The fractions containing
RhoA were pooled and further purified by size exclusion chro-
matography against a buffer containing 20 mM HEPES, pH 7,
100 mM NaCl, 5 mM MgCl2, and 2 mM tris(2-carboxyethyl)-
phosphine. RhoA-GTP and RhoA-GDP were prepared in buf-
fers containing an excess (10�) of GTP or GDP in 20 mM Tris
buffer, pH 8, 100 mM NaCl, 1 mM DTT (TB), and 10 mM EDTA.
The excess nucleotide and EDTA were removed by exchange
with TB containing 10 mM MgCl2.

NMR Spectroscopy—Uniformly labeled protein samples
were prepared in M9 medium supplemented by 15NH4Cl or
15NH4Cl/[13C6]glucose as the sole source of nitrogen or carbon.
The structure of the DH�PH domain (500 �M) of onco-Lbc was
determined using NMR spectra acquired at 297 K on Varian
Inova 800- and 900-MHz spectrometers equipped with triple
resonance cold probes with enhanced 13C and 1H sensitivity
and z axis gradients using assigned 1H, 13C, and 15N resonances
(23). The protein samples were dissolved in H2O or 10% D2O
and used for the acquisition of 13C- and 15N-resolved NOESY-
HSQC experiments to estimate interproton distances from
cross-peak volumes based on mixing times of 100 ms. The dihe-
dral angles were derived from DANGLE (24), and hydrogen
bonds were identified by deuterium exchange.

To monitor possible interactions with plasma membrane lip-
ids by NMR, soluble lipid titrations were carried out using
dihexanoyl derivatives of phosphatidylserine, PtdIns(4,5)P2, or
PtdIns(3,4,5)P3 (Cayman Chemicals, Ann Arbor, MI) dissolved
in the NMR sample buffer. Interactions with micelles were
tested using dodecylphosphocholine with and without CHAPS
(Sigma-Aldrich), which was added to help stabilize the protein.

NMR Structure Determination—The solution structures of
the DH�PH domain were calculated with ARIA2.2 (25). A total
of 100 structures were generated at each of the eight iterations
in vacuum using torsion angle dynamics. The final refinement
step was performed in explicit water. Twenty representative
structures were selected based on their favorable energies and

FIGURE 1. Lbc RhoGEF family, AKAP13 variants, and constructs. The
orthologs and constructs of AKAP-Lbc are depicted with their constituent
domains. The number of residues are indicated on the right for ARHGEF1
(also known as p115), ARHGEF11 (PRG or PDZRhoGEF), ARHGEF12 (LARG),
ARHGEF2 (GEFH1), ARHGEF18 (p114), and ARHGEF28 (p190). The ankyrin
binding site (Ank), PKA binding domain, C2, DH, PH, and dimerization (DM)
domains are indicated. The DH and PH domains are indicated by yellow and
orange boxes, respectively; other domains are represented by a black box.
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minimal violations as analyzed by PROCHECK (26). The back-
bone order parameters (S2) were computed using the RCI
server (27).

Interaction between DH�PH and RhoA—The 15N-labeled
DH�PH and RhoA-GDP samples were dialyzed against 20 mM

Tris buffer, pH 7, 100 mM NaCl, 1 mM DTT, and 10 mM MgCl2.
A series of 15N-resolved two-dimensional spectra were
acquired in a solution containing DH�PH (100 �M) and after
sequential addition of GTP (1 mM), RhoA-GDP (150 �M), onco-
Lbc (4 nM), and finally 10 �l of calf intestinal alkaline phospha-
tase (Invitrogen) to cleave off nucleotide phosphate and thus to
demonstrate the reversibility of the interaction.

Modeling—A structural model of onco-Lbc was built by
Modeler using the DH�PH solution structure and structurally
comparable DH domains from ARHGEF1 (p115), ARHGEF11
(PDZRhoGEF or PRG), ARHGEF12 (LARG), and Intersectin
structures (Protein Data Bank codes 1TDX, 3ODO, 1XCG, and
1KI1). The orientations of onco-Lbc DH and PH domain resi-
dues were based on conserved DH�PH fold features common
to the crystal structures and by the small angle x-ray scattering
(SAXS) envelope. The Membrane Optimum Docking Area
(MODA) and PIER programs (28, 29) were used as experimen-
tally trained algorithms to predict direct membrane and protein
binding surfaces, respectively, on the protein structures.

SAXS—Data were acquired at the X33 beamline at the Euro-
pean Molecular Biology Laboratory Hamburg outstation as
described (30). Scattering patterns were collected at room tem-
perature at protein concentrations between 2.0 and 6.1 mg/ml
in 150 mM NaCl and 50 mM Tris buffer, pH 7.5. Background
scattering caused by buffer alone was automatically subtracted
from the protein scattering profiles. The data were processed
using the ATSAS package (31). Radii of gyration (Rg) and max-
imum particle sizes (Dmax) were determined using PRIMUS
(32). DAMMIF (33) and DAMAVER (34) were used to generate
the molecular envelope and average shape.

Guanine Exchange Experiments—Nucleotide exchange upon
addition of onco-Lbc was measured on an LS55 PerkinElmer
Life Sciences fluorescence spectrophotometer at 25 °C in TB
containing 10 mM MgCl2. Nucleotide exchange activities used
to compare the activities of AKAP-Lbc constructs in various
conditions were carried out using 2 �M RhoA-GDP and 400 nM

Mant-GTP (Invitrogen). For production of liposomes, a lipid
stock of palmitoyloleylphosphatidylcholine (Avanti) at 2 mM

was prepared in TB with 10 mM MgCl2 by successive freezing
and thawing cycles. The resulting suspension was extruded
through a 30-nm polycarbonate filter before the experiment.
Exchange rates were measured from solutions containing RhoA
loaded with Mant-GDP (500 nM) (Invitrogen) and the GTP ana-
log GMP-PNP (100 �M) (Sigma). The rates of exchange were
determined from the fluorescence change (excitation, 356 nm;
emission, 440 nm) fitted to a single exponential. The GEF activ-
ities were calculated for concentrations of onco-Lbc ranging
from 25 to 800 nM where the exchange activity varies linearly
with the enzyme concentration.

Analytical Ultracentrifugation—The oligomeric state of
AKAP-Lbc was assessed by sedimentation velocity experiments
in a Beckman XLI ultracentrifuge using an eight-cell 50Ti rotor
in 20 mM Tris, pH 7, 100 mM NaCl, 1 mM DTT, and 5 mM EDTA

at 20 °C and 40,000 rpm. Proteins were detected from their
absorbance at 280 nm. The viscosity and density of the solution
were calculated from Sednterp (35), and the sedimentation
coefficient distribution was calculated with Sedfit (36) using a
continuous distribution model.

Surface Plasmon Resonance—A hexahistidine-tagged RhoA
sample was exchanged overnight with nonhydrolyzable deriv-
ative GDP�S or GTP�S as described above. RhoA (200 nM; 30
�l) was coated on a nitrilotriacetic acid sensor chip on a Biacore
3000 instrument (GE Healthcare) at a flow rate of 10 �l�min�1

and rinsed with a pulse of imidazole (3 mM). The reference lanes
were coated with hexahistidine-tagged ubiquitin. Experiments
were carried out using a phosphate-buffered saline solution at
pH 7.4 containing 1 mM MgCl2. Untagged onco-Lbc and
DH�PH were injected (75 �l; 200-s dissociation time) in sepa-
rate experiments to avoid cross-contamination between the
RhoA-GDP and RhoA-GTP. Data were analyzed using
BIAevaluation software.

RESULTS

Structure of AKAP-Lbc DH�PH Domain—To elucidate the
respective orientation of the DH and PH domains in solution,
we first determined the NMR structure of the PH domain and
attached �6 helix of the DH domain. Constructs spanning only
the canonical PH domain were markedly different in their NMR
spectra and were also intrinsically unstable, suggesting that the
�6 helix stabilizes the structure of the PH domain. This was
despite extensive buffer screening of multiple AKAP-Lbc
constructs using thermal shift assays with over 96 distinct
buffer, salt, pH, and osmolyte conditions. This optimization did
yield a stable construct in a physiological buffer suitable for
NMR studies (50 mM phosphate buffer, pH 7.0, 150 mM NaCl,
and 0.02% NaN3). The solution structure was calculated using
3564 distance, 234 dihedral angle, and 27 hydrogen bond
restraints. The resulting ensemble of structures exhibited a
backbone root mean square deviation of 0.34 Å for the struc-
tured elements between residues Gly2186 and Glu2346 (Fig. 2A
and Table 1), whereas residues Ser2162–Ile2185 were unstruc-
tured. Thus, the minimal structural unit that is stably folded
spans residues Gly2186–Glu2346. This represents what we term
the DH�PH fold in recognition of the obligate integration of the
PH fold with the last helix of the DH domain.

The structure of the DH�PH domain of AKAP-Lbc differs in
several significant ways from the canonical PH folds. A segment
spanning eight amino acids (Phe2271–Thr2279) splits the �4
strand into two short strands, �4� and �4� and forms a bulge
that obstructs the canonical lipid binding site found in PH
domains (Fig. 2B). This element is structured based on NOE
cross-peaks within the bulge (Leu2274-Lys2277 and Leu2274-
Thr2279) and within the �4� strand (Lys2277-Val2280 and Ser2278-
Val2280) and the order parameters (27) (Fig. 3A), which indicate
that this motif is structured. This represents a significant diver-
gence from ARHGEF1, ARHGEF11, and ARHGEF12, which all
possess an additional 11 residues here and form a highly flexible
motif, suggesting a functional difference. The linker region
between the DH and PH domains forms a short helix encom-
passing Lys2224–Arg2229 and an unstructured loop that folds
back onto the strands of the PH domain (Fig. 2C). The linker

Lbc Oncoprotein Structure and RhoA GTPase Activation
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helix interacts with the �6 helix through residues Leu2201,
Ile2204, and Tyr2205 to form an ordered hydrophobic core that
involves PH residues �3-Leu2262 and �4-Tyr2269 as well as
linker residues Leu2227 and Leu2232 (Fig. 2D). This infers that
Lbc-type PH domains only assume independently folded stable
structures in solution when interdigitating their cores with the
�6 and linker helices. Thus, � sheets of these PH domains
may have evolved to endow unique functional and stabilizing
features.

The dynamics of the DH�PH protein residues were charac-
terized using secondary chemical shifts of backbone atoms (27).
The order parameters calculated for individual structural ele-
ments within either DH or PH segments were very similar, indi-
cating a single structure with significant dynamics concen-
trated in terminal residues before and after residues 2193 and
2340, respectively (Fig. 3A). This infers that the final four turns
of the �6 helix are sufficient to form a structural unit that is as
rigid as the attached PH domain. Together they form the struc-
turally intact DH�PH fold. Only one loop exhibits significantly
elevated dynamics, indicating a particularly rigid � sandwich
fold. As such, the singularly flexible �6-�7 loop and its exposed
residues including Met2303, Asp2307, and Met2310 may offer

unique opportunities for induced binding of ligands as
described below.

Modular Architecture of Onco-Lbc—Multimerization is an
established means of RhoGEF control, and although some
DH-PH tandems form monomers, dimer structures of others
have been crystallized (Protein Data Bank codes 1X86, 1XCG,
3ODO, and 3KZ1). The oligomeric state of onco-Lbc remains
indeterminate and hence was studied by analytical ultracentri-
fugation using sedimentation velocity experiments. The sedi-
mentation coefficient of onco-Lbc was distributed around a
single value (3.024 S), which demonstrated that onco-Lbc was
monodispersed in solution (Fig. 3B). The corresponding esti-
mated molecular mass of 54.8 kDa was consistent with a theo-
retical monomer size of 61.5 kDa.

The solution state formed by onco-Lbc was characterized by
integrating the molecular envelope determined by SAXS and
the structural model of the DH-PH tandem (Fig. 3C and Table
2). The SAXS envelope accommodated the structured DH and
PH domains as well as the N terminus, which folded back onto
the DH domain. The 49 residues at the extreme N terminus
(Asn1922–Leu1971) of onco-Lbc are predicted to be disordered
and could not be precisely modeled because of a lack of suffi-

FIGURE 2. Solution structure of the AKAP13 PH domain and DH �6 helix. A, solution structure of AKAP13 PH domain and the C-terminal helix of the DH
domain (DH�PH). The structure is colored from its N terminus (blue) to C terminus (red). The secondary structure elements and termini are labeled. B, the
topology of the DH�PH fold includes the �6 helix of DH domain (yellow) followed by the linker region (gray) and the PH domain (orange). Secondary structures
are labeled above with a bulge separating �4 into two ministrands, �4� and �4�. C, the representative solution structures of DH�PH are superimposed, and the
component domains are color-coded yellow, gray, and orange for the DH�6 helix, linker, and PH domain, respectively. D, the interface between the DH, PH, and
linker is shown with side chains of residues involved in long range contacts represented with sticks and balls. The unambiguous distance restraints that link the
DH and PH elements involve labeled residue pairs Leu2201-Leu2232, Leu2201-Leu2227, Ile2204-Leu2227, Tyr2205-Leu2227, Tyr2205-Lys2224, Tyr2205-Lys2228, Thr2208-
Tyr2269, Thr2208-Leu2262, Thr2208-Lys2224, and Thr2208-Tyr2269. The solution structure was deposited under the Protein Data Bank code 2LG1.
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ciently similar three-dimensional structures. A series of 50
models were built, and their calculated scattering intensities
were compared with the experimental data using CRYSOL (37)
(Fig. 3C). The best matching model was fitted into the SAXS
envelope and displayed the characteristic “chaise longue” shape
of RhoGEF DH-PH domains (Fig. 3C). This suggests that the
PH domain of onco-Lbc and its canonical lipid binding site and
dynamic �6-�7 loop are positioned away from the active site of
the DH domain that is formed by the conserved regions CR1
and CR3 and the �6 helix of the DH domain (16). These relative
domain positions also infer that the DH and PH modules of
onco-Lbc do not both simultaneously and directly control a
GTPase molecule but rather that the PH domain could exert an
indirect or separable role.

The Guanine Exchange Activity Is Devolved to the DH
Domain of AKAP-Lbc—To establish the GEF activity determi-
nants, we first measured onco-Lbc effects over a concentration
range (Fig. 4A). The activity varied in a hyperbolic manner over
the range of concentrations used (Fig. 4B). This was consistent
with other GEFs carrying a DH-PH tandem that catalyzes the
GTP exchange in a two-step binding model (38). Next, to inves-
tigate the contribution of the PH domain, we compared the
activities of onco-Lbc and its isolated DH domain (Fig. 5). This
revealed that the Lbc DH domain is primarily responsible for
mediating the GEF activity.

In other RhoGEFs related to Lbc, truncations of the PH
domain have been associated with a significant loss of GEF
activity (39, 40). Instead, in onco-Lbc, the deletion of the PH
domain resulted in enhancement of GEF activity by a factor of

TABLE 1
Structural statistics for the solution structures of the onco-Lbc DH�PH
domain
r.m.s., root mean square; vdw, van der Waals; dihe, dihedral; cdih, constrained
dihedral.

Distance and dihedral constraints
Distance constraints

1H-1H NOE 3537
Intraresidue (i � j) 1323
Small (�i � j� � 1) 517
Medium (2 � �i � j� � 5) 335
Long range (�i � j� � 5) 842
Ambiguous 520

Hydrogen bonds 27
Total dihedral angle restraints

�, 	 235
Structure statistics

Violationsa

Distance constraints (Å) (
0.5 Å) 1.4
Dihedral angle constraints (°) 0.4

Deviations from idealized geometry
Bond lengths (Å) 0.00674 � 0.00038
Bond angles (°) 0.839 � 0.027
Improper angles (°) 2.276 � 0.364

Average pairwise r.m.s. deviationb (Å)
Heavy, backbone 0.36, 0.76

Energies (kcal�mol�1)
ENOE 756.1 � 61.9
Ecdih 8.6 � 3.0
Ebond 137.2 � 14.5
Eimproper 279.4 � 45.0
Eangle 587.2 � 37.8
Evdw �10.6 � 124.7
Edihe 1123.8 � 25.9

Ramachandran statistics (%)b,c

Residues in core regions 76.3
Residues in allowed regions 21.6
Residues in generous regions 1.7
Residues in disallowed regions 0.4

a Averaged per structure.
b Residues Ile2185–Glu2346.
c Statistics were calculated from the 20 lowest energy structures out of 100

calculated.

FIGURE 3. Solution structure of the full-length onco-Lbc. A, the dynamics
of DH�PH is illustrated by the order parameters (S2) calculated using the RCI
server (27). B, monomeric solution state of onco-Lbc as determined by veloc-
ity sedimentation. The distribution of the sedimentation coefficients is cen-
tered on 3.024 S, showing that onco-Lbc is monodispersed and monomeric in
solution. C, interatomic distance distribution function for onco-Lbc calculated
with PRIMUS. Models were generated with Modeler, and their theoretical
scattering intensity was calculated with CRYSOL and fitted to the experimen-
tal data. The best fit calculated by CRYSOL between the experimental data
and the model is represented in the left panel (	2, 1.352). The best fit model of
onco-Lbc is positioned in the molecular envelope generated with DAMMIF
from the scattering pattern. Domains of onco-Lbc are color-coded as in Fig. 1.

TABLE 2
Structural parameter of onco-Lbc derived from SAXS data
Rg and Dmax are the radius of gyration and the maximum size, respectively. 	shape and
	model are the discrepancies between the calculated and experimental scattering
curves for the molecular shape and the atomic model obtained by homology mod-
eling, respectively.

Rg Dmax �shape �model

nm nm
2.97 � 0.01 9.9 � 0.5 1.015 1.352
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1.74 (Fig. 5). Conversely, the PH domain alone did not show
GEF activity toward RhoA (data not shown) nor did its presence
inhibit the reaction. The fact that the Lbc PH domain appears to

be functionally dispensable can be explained by its unusual
structural orientation whereby the �Ct helix does not directly
bind DH-bound RhoA unlike in ARHGEF11. Together the GEF
results with the isolated DH and onco-Lbc constructs indicate
that the Lbc PH domain exerts a unique inhibitory effect on the
catalytic activation by the DH domain.

Lipid interactions were investigated as many PH domains
including that of AKAP-Lbc associate with membranes (18, 41),
and a homologous hydrophobic part of ARHGEF12 may con-
tact lipids (39). In the case of onco-Lbc, its PH domain did not
associate with phosphoinositides or phosphatidylserine deriv-
atives. That is, there was an absence of NMR signal perturba-
tions after these soluble ligands were titrated in. Moreover the
addition of small unilamellar vesicles composed of palmito-
yloleylphosphatidylcholine did not modify the nucleotide
exchange activity detected by fluorescence (data not shown).
This membrane-independent Lbc activity is consistent with the
absence of exposed hydrophobic residues in the �1-�2 loop
that usually mediate membrane insertion as well as the lack of a
canonical phosphoinositide recognition motif.

For functional comparison, the specific exchange rates were
contrasted between the onco-Lbc constructs and its orthologs
(Table 3). The specific activity of onco-Lbc (3.92 � 103 M�1 s�1)
was an order of magnitude lower than that of ARHGEF12 (39),
which had been acquired under similar conditions, whereas the
isolated DH domain was only 4 times slower than that of
ARHGEF12 (9.06 � 103 M�1 s�1). Thus, activities of onco-Lbc
and its DH domain are consistently lower than those of
ARHGEF12. Its enhanced GEF activity when the PH domain is
removed is in contrast to other Lbc-type RhoGEFs that display
significant decreases of activity when the PH domain is
truncated.

Mapping Activated RhoA Docking Site in Lbc—The specific
association of the Lbc PH domain with activated RhoA was
demonstrated by NMR using the 15N-labeled DH�PH domain.
No perturbations of any DH�PH cross-peak intensities or
chemical shifts were observed after sequential addition of GTP
and RhoA-GDP (1:2 ratio of DH�PH:RhoA) after more than 20
min, inferring that no binding occurred. However, subsequent
addition of 4 nM onco-Lbc immediately yielded a rapid decrease
of cross-peak intensities of resonances across the onco-Lbc PH
domain, suggesting complex formation with RhoA-GTP in
solution due to GEF activity. As the GEF reaction progressed,
the intensity of the cross-peaks of the residues Lys2217, Phe2239,

FIGURE 4. RhoA nucleotide exchange as a function of onco-Lbc concen-
tration. A, the formation of RhoA-Mant-GTP was followed by fluorescence
(excitation, 356 nm; emission, 440 nm) for onco-Lbc concentrations ranging
from 0 and 800 nM. The AKAP protein was injected at time 0. B, the exchange
activity of RhoA deviates from a straight line (dotted gray line) with increasing
onco-Lbc concentrations and follows a hyperbolic function (dotted black line)
indicative of a two-step mechanism. a.u., arbitrary units.

FIGURE 5. GEF activity of onco-Lbc mutants. A, the residues mutated in the
DH-PH tandem are represented by atomic spheres. Mutations are colored accord-
ing to the effects on GEF activity: red for inactivating except for Glu2319 (magenta),
which is activating. B, the exchange activity of onco-Lbc mutants is compared
with the wild-type onco-Lbc. The curves represent the exchange of GDP to Mant-
GTP after injection of 200 nM onco-Lbc at time 0. Curves are labeled for each
mutant. C, the exchange activities of wild-type onco-Lbc and mutants as calcu-
lated for GDP to Mant-GTP exchanges are depicted: onco-Lbc, 100 � 3.6; DH,
173.6 � 33.4; E2001A, 8.4 � 4.4; R2136G, 7.4 � 6.0; R2289A, 10.9 � 6.5; F2299A,
23.3 � 22.1; and E2319A, 148.0 � 8.9. a.u., arbitrary units. Error bars represent S.D.

TABLE 3
Specific exchange activities of onco-Lbc mutants

Onco-Lbc
Specific exchange

activitya
Relative
activity

(s�1 M�1) � 103

DH-PH 3.92 1
DH 14.33 3.70
E2001A 1.07 0.27
R2136G 0.23 0.06
R2289A 0.68 0.17
F2299A 0.44 0.11
E2319A 7.30 1.86

a The specific exchange activity was calculated by fitting the decrease of fluores-
cence that accompanies the replacement of Mant-GDP by GMP-PNP to a single
exponential function assuming a pseudo-first order rate of the reaction (kobs)
and corrected by the intrinsic exchange activity of RhoA (kintrinsic) according to
kobs/[onco-Lbc] � kintrinsic.
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Ala2243, Ser2278, Val2291, Ala2292, Glu2294, Leu2298–Ile2301,
Gly2304, and Val2313 was significantly reduced (Fig. 6). These
changes circumscribe a surface that has intrinsic protein inter-
action propensity based on PIER-based protein interaction site
prediction (28) and that is centered on the �6 strand. This
defines a broad RhoA-GTP-selective docking platform. A sec-
ond set of cross-peaks corresponding to the bound state could
not be observed despite using saturating concentrations of
RhoA. This may be due to the high molecular weight of the tight
complex formed by DH�PH and RhoA and an intermediate
exchange rate on the NMR time scale. This would be consistent
with the affinity of ARHGEF11-PH for RhoA-GTP�S in the
�M-mM range (42). The slow recovery of most cross-peaks after
addition of calf intestinal alkaline phosphatase to the solution
confirmed that changes observed were not due to aggregation
but instead to a reversible process (Fig. 6C). The measurement
of progressive resonance intensity changes enabled us to map
the docking site of onco-Lbc in a time-resolved manner. The
sequence of spectra reproduced the cycle of association and
dissociation of the activated RhoA by the PH domain of onco-
Lbc and thus demonstrated the specificity of the �6-centered
site of the PH domain for the product of the reaction,
RhoA-GTP.

Mutational Analysis of Lbc Interactions—Based on the onco-
Lbc structural model and similarity with other Lbc RhoGEFs
(Fig. 7), mutations were designed to engineer in altered GEF

activities. Crystal structures of ARHGEF11 in complex with
RhoA as a dimer (Protein Data Bank code 3KZ1) or a monomer
(Protein Data Bank code 3T06) were used as a template for
manipulating the RhoA interactions (Fig. 5A). To test the
involvement of the canonical RhoA-GDP binding site, two DH
mutations of absolutely conserved residues were generated.
The E2001A substitution in the �1 helix reduced the GEF activ-
ity to 8.4% (Fig. 5, B and C), underscoring its significant role in
the nucleotide exchange of RhoA. A short sequence in regula-
tory N-terminal helices �N1 and �N2 that precede the DH
domain displays high similarity with other RhoGEF members
(Fig. 7). This element is reported to interact with switch 1 of
RhoA (39). More precisely, by analogy with ARHGEF11 and
ARHGEF12, the Glu2001 residue is predicted to stabilize the
regulatory elements �N1 and �N2 near the RhoA binding site
and could interact with Tyr34 of RhoA (39). Mutation of this
residue also causes deficient nucleotide exchange in LARG (39).
A second mutation in the RhoA-GDP binding site, R2136G in
the �4-�5 loop, reduced the GEF activity to 7.4% (Fig. 5, B and
C). The Arg2136 residue of onco-Lbc is required for specific
recognition of RhoA-GDP residues Asp45 and Glu54 (17), again
confirming this site.

Specific mutations of the Lbc PH domain were designed to
test the proposed RhoA-GTP interaction site within the
exposed hydrophobic patch centered on �6 and delimited by
charged residues. This patch has been proposed as a putative

FIGURE 6. Mapping of RhoA interaction site. A, binding of RhoA-GTP specifically broadens amide signals in the PH domain following the addition of 4 nM

onco-Lbc with peak intensity reductions measured from a 1H,15N-resolved two-dimensional experiment after 20 min. The y axis represents the normalized peak
intensity reduction (1 � 100% reduction). B, the residues exhibiting line broadening upon RhoA-GTP binding are labeled and map to the exposed � sheet and
proximal loops of the PH domain. C, the 15N-resolved two-dimensional NMR spectra of the AKAP DH�PH domain sample containing RhoA-GDP (1:2 ratio) and
GTP (1 mM) are overlaid in the upper panel before (black) and after addition of onco-Lbc (4 nM) (red). The lower panel shows the recovery of amide resonances
from 15N-labeled AKAP DH�PH after addition of calf intestinal alkaline phosphatase (CIP) (blue). Signals significantly broadened after addition of onco-Lbc are
labeled by the residue. The S2278a and G2297b peaks are weak and located just outside the spectral region displayed, respectively.
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FIGURE 7. Structure-based sequence alignment of the ARHGEF family members. A, the amino acid sequences of the tandem DH-PH domains of AKAP-Lbc
and its relatives ARHGEF28, ARHGEF18, ARHGEF2, ARHGEF12, ARHGEF11, and ARHGEF1 were aligned by ClustalW and colored by BOXSHADE using Clustal 1.60
values. Absolutely conserved, identical, and similar residues are shaded in blue, aqua, and green, respectively. The residues that, when mutated, reduce or
increase GEF activity are boxed in red and magenta, respectively, and indicated with a similarly colored asterisk. An “n” is placed above those residues that
exhibit NMR-based restraints between the DH�6 and linker helices and the PH domain. An “m” is placed above those residues in which mutations alter
AKAP-Lbc biochemical function including Tyr2153 and Trp2324. A “c” is above those residues that incur substitutions due to missense mutations identified in the
Catalogue of Somatic Mutations in Cancer (COSMIC) database (55) including the following: Q2033H, E2044G, F2052L, A2090T, L2174I, V2181L, S2194R, R2229Q,
R2229L, S2237N, L2254I, L2259V, K2296R, P2308L, S2317F, and Q2326K. The positions of AKAP-Lbc helices and strands are displayed above the alignment. B,
surface mapping of the DH-PH tandem according to conservation scores as calculated from the Blosum62 matrix. Highly and moderately conserved residues
are represented in blue and cyan, respectively, and indicate conservation of the functional sites.
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docking site in RhoGEF for proteins including activated RhoA
(21, 42). Several mutations were designed to test the RhoA-
GTP docking site based on the NMR data, the ARHGEF11

structure (42), and conservation across the RhoGEF family. A
pair of hydrogen bonds identified in ARHGEF11 links the res-
idue corresponding to Arg2289 of Lbc and Glu40 of RhoA. The
R2289A mutation reduced the onco-Lbc GEF activity to 10.9%
(Fig. 5, B and C), supporting its important role. Residue Phe2299

was found to complement a hydrophobic patch with residues
Trp58 (21), Phe59, and Leu72 of RhoA. The F2299A mutation
reduced the enzymatic activity to 23.3% of the wild-type form (Fig.
5C). Thus, these mutations indicated that docking of the PH
domain to Rho-GTP has a vital role in promoting nucleotide
exchange.

The �Ct helix of Lbc-type PH domains can play a role in
stabilizing a RhoA molecule that is bound to the active site of
the DH domain (Fig. 8). This is illustrated by ARHGEF11
Ser1065 and ARHGEF12 Ser1118 residues that interact with
RhoA Glu97 (38, 39). However, this could infer that the corre-
sponding �Ct helix residue in onco-Lbc could generate a repul-
sive effect on RhoA-GDP interactions. Indeed, an E2319A sub-
stitution here yielded enhanced GEF activity close to that of the
isolated DH domain, suggesting that this PH domain contact
can autoinhibit the GEF activity of onco-Lbc. This negatively
charged position is conserved in ARHGEF2, ARHGEF18, and
ARHGEF28 (Fig. 7), which hence may share a similar repulsive
effect that functionally distinguishes them from the subfamily
composed of ARHGEF1, -11, and -12.

DISCUSSION

Onco-Lbc catalyzes the exchange of GDP to GTP for RhoA
in a multistep reaction as revealed by several structural and
mutational studies. The mechanism of nucleotide exchange

FIGURE 8. Putative RhoA binding sites. The putative location of RhoA-GTP
bound to the onco-Lbc PH domain �5-�7 sheet is indicated by a blue dotted
line circle. Mutated residues are represented by sticks and balls color-coded
according to Fig. 4. The position of RhoA-GDP on the DH domain is inferred
from ARHGEF11 and -12. Residues corresponding to Lys2318 and Glu2319 are
represented at the �Ct helix of the PH domain for the model of onco-Lbc,
ARHGEF11, and ARHGEF12. Residues Asp97 and Arg150 from RhoA and facing
the PH domain are shown in the enlarged views.

FIGURE 9. Binding affinities of RhoA states for onco-Lbc and DH�PH. A, the dissociation constants of the RhoA-GDP�DH�PH, RhoA-GTP�DH�PH, RhoA-GDP�onco-
Lbc, and RhoA-GTP�onco-Lbc complexes were determined by surface plasmon resonance as illustrated by Biacore sensorgrams measured for onco-Lbc and DH�PH
at varying concentrations (0–5 �M). B, the specific association of RhoA-GTP with the PH domain of onco-Lbc (Kd � 2.93 � 0.37 �M) was contrasted with the inactive
GDP-bound RhoA by surface plasmon resonance (Kd 
 50 �M). The apparent dissociation constant of onco-Lbc that results from the binding of RhoA at two distinct
sites was slightly lower for the active (Kd � 2.21 � 0.26 �M) versus the inactive form of RhoA (Kd � 2. 88 � 0.11 �M). C, model of the feedback mechanism triggered by
RhoA-GTP binding. Following the association with RhoA-GDP, the DH domain of onco-Lbc exchanges the nucleotide of RhoA. Once released from the PH domain,
RhoA-GTP translocates to membranes by virtue of its farnesylfarnesyl moiety (dotted arrow) and specifically recognizes the PH domain of onco-Lbc. The binding
of RhoA-GTP by the PH domain does not compete with the GEF activity of the DH domain but rather constitutes a possible mechanism of regulation by orientation of
onco-Lbc on the membrane by a PH domain that does not itself contain membrane-interacting sites.
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begins with the formation of low affinity complexes by Lbc Rho-
GEFs engaging RhoA-GDP. The complex formation is directly
mediated by the DH domain and is influenced by the �Ct helix
of the PH domain. This modulation has divergent effects. In
ARHGEF11, the PH domain utilizes Met963, Glu969, and Ser1065

in �Ct for weak contacts with RhoA as evidenced by chemical
shift perturbations (43). These residues correspond to onco-
Lbc Leu2232, Asp2235, and Glu2319, respectively. The Glu2319

side chain, if similarly involved in RhoA interaction, would
coincide with charge clashes based on the ARHGEF11 or
ARHGEF12 complexes. Accordingly, GEF activity was boosted
when this onco-Lbc residue was replaced with an alanine. The
role of charged residues at this position is consistent with muta-
tions carried out in ARHGEF11 where replacement of Ser1065

or Asn1068 with alanine does not affect RhoA nucleotide
exchange kinetics (44). Furthermore, in ARHGEF12, the �Ct
mutation S1118D demonstrated this positional role in the PH-
RhoA interaction (39). Our results suggest that this position in
onco-Lbc exhibits a distinctly negative influence over RhoA-
GDP binding that differs from ARHGEF11 (42) and ARH-
GEF12 (39). Our data indicate that the homologous Glu2319

residue disfavors the catalytic activation of onco-Lbc. Specifi-
cally both the isolated DH domain and the E2319A mutant
displayed enhanced activity compared with onco-Lbc.

Mechanistically our results imply that the PH domain of
onco-Lbc may undergo a rotation to fully expose the active site
of the DH domain. Possibilities of a regulatory influence by the
PH domain or lipid binding were discarded as addition of PH
domain or lipids failed to modify the GEF activity (data not
shown). Possible mechanisms for full activation include an
allosteric switch comparable with p63RhoGEF by G�q where-
upon binding to a G-protein the PH domain would undergo a
rotation about the linker (45). In fact, AKAP-Lbc was shown to
be a downstream effector of the G-protein subunit �12 (G�12)
that is relayed to RhoA (4, 46). We note that this represents
another established difference between ARHGEF1, -11, and
-12. The latter all contain a regulator of G protein signaling
homology domain distal from the DH-PH and are subject to
regulation by G�12 and G�13 (47). In contrast, the ARHGEF-2,
-18, -28, and onco-Lbc proteins do not possess such a domain.
Hence we infer that this position is a specificity determinant,
playing a particularly critical differentiating role in AKAP13
isoforms and exerting more control over RhoA. We also note
that the conserved PH-RhoA interface, which includes Glu2319

FIGURE 10. Assessment of the lipid binding by the PH domain of onco-
Lbc. A, chemical shift perturbations were monitored in the 15N-labeled AKAP
DH�PH domain after addition of dihexanoyl phosphatidylserine (PtdSer) (5
mM), PtdIns(4,5)P2 (1 mM), or PtdIns(3,4,5)P3 (0.57 mM). The absence of specific
interaction was shown by the lack of any significant of chemical shift pertur-
bations after each addition. The dotted line indicates significant chemical shift
perturbations for a positive control protein (FAPP1-PH). Cross-sections of
selected amide proton peaks extracted from the heteronuclear single quan-
tum coherence spectra are compared for samples at the start (black) and end
of the titration (red). The peaks are labeled with the corresponding residue.
Thechemicalshiftperturbations(�
)werecalculatedasfollows:�
�[(�
H)2
(0.15
�
N)2]1/2 where �
H and �
N are the differences of chemical shift in ppm
between the start and the end of the titration for the amide proton and nitro-
gen resonances, respectively. B, prediction of membrane interaction sites
using MODA and PIER software packages (28, 29). The NMR structure of the
DH�PH solution structure and crystal structures of ARHGEF-1, -11, and -12
were used as inputs for predictions. The residues with high (purple) and
medium (orange) propensities for membrane or protein interaction as pre-

dicted by MODA and PIER, respectively, are shown as follows: for onco-Lbc,
PIER: 2287, 2299, 2302, 2303, 2308, 2310 (purple), 2277, 2278, 2286, 2288,
2306, 2307, 2309, 2312 (orange); MODA: none; for ARHGEF1, PIER: 445, 448,
449, 451, 539, 658, 704, 713–716, 726, 728, 736, 737, 739 (purple), 47, 66, 401,
403, 406, 431, 434, 441, 444, 447, 450, 482, 486, 514, 535, 538, 542, 543, 659,
691, 692, 710, 712, 717–720, 724, 730, 734, 735, 752, 756 (orange); MODA:
none; for ARHGEF11, PIER: 749, 881, 1046, 1047, 1044, 1055 (purple), 743–745,
747, 748, 751, 752, 755, 877, 880, 884, 888, 927, 975, 1021, 1022, 1031–1037,
1048, 1049, 1052–1055, 1058 (orange); MODA: 1032, 1034, 1037–1038, 1046,
1048 –1051, 1054, 1056 (red), 1047, 1052 (orange); for ARHGEF12, PIER: 793,
794, 797, 798, 801, 805, 808, 998, 1029, 1059, 1078, 1084, 1091, 1092, 1095,
1102, 1103, 1105, 1120 –1122, 1125, 1128, 1129, 1131 (purple), 802, 936, 999,
1007, 1010, 1028, 1030, 1060, 1061, 1075–1077, 1080, 1085–1090, 1098, 1101,
1107–1111, 1124 (orange); MODA: 868, 918 –920, 922–924, 1106 –1108, 1088
(purple), 921, 1108 (orange). The proteins are predicted to associate with
membrane-bound RhoA-GTP via the right-hand surfaces of their depicted PH
domain orientations.
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and Asn2322, appears to overlap that proposed for inhibitor of
NF-�B kinase subunit � (48).

The PH domain of onco-Lbc was found by surface plasmon
resonance to associate tightly with the product of the reaction
(Fig. 9, A–C). The specific interaction of RhoA-GTP was fur-
ther demonstrated by NMR and mutational analysis. These
results are consistent with previous studies showing that muta-
tions within the hydrophobic patch of the PH domain (F2299A
and I2301E) reduce the association with RhoA-GTP (21). The
dramatic reduction of the GEF activity observed for mutations
within this exposed hydrophobic PH patch correlates with the
decrease of RhoA-GTP binding. However, the detailed mecha-
nism needs further investigation to resolve how RhoA-GTP
association enhances the GEF activity. Conceivably the PH
domain could be involved in clearing product from the active
site or by transiently forming a multimeric complex such as
suggested by the ARHGEF11 crystal structure (42).

Within cells, onco-Lbc colocalizes along actin stress fibers
(49), whereas the isolated PH domain of AKAP-Lbc translo-
cates from the cytosol to the plasma membrane upon stimula-
tion with platelet-derived growth factor (18). The latter trans-
location depends on phosphoinositide 3-kinase (PI3K) activity,
suggesting a phosphoinositide binding function. However, this
translocation could also be indirectly caused by polymerization
of peripheral actin due to PtdIns(3,4,5)P3 production. More-
over, no lipid binding specificity is apparent within the isolated
PH domains of AKAP-Lbc or its relatives ARHGEF2,
ARHGEF18, and ARHGEF28, although that of ARHGEF3 does
exhibits a discernible preference for PtdIns(3,4,5)P3 in vitro.
Similarly, the PH domain of ARHGEF12 does not appear to
bind phospholipids in PIP strip assays (50), and the PH domain
of ARHGEF1 lacks phosphoinositide binding (51, 52). Because
of limitations of these assays, which use lipids adsorbed to
nitrocellulose rather than embedded in membrane-like envi-
ronments, we chose to investigate the interactions using NMR
titration and activity assays in liposomes. We found that the
AKAP-Lbc PH domain was not affected by liposomes and did
not bind directly to PtdIns(4,5)P2, PtdIns(3,4,5)P3, or phos-
phatidylserine with any significant affinity despite their pres-
ence in the membranes to which it localizes (Fig. 10A). More-
over, we note that no member of this ARHGEF family contains
a canonical phosphoinositide binding motif in their PH domain
(53). Finally, the MODA software, which predicts novel mem-
brane docking surfaces, does not identify any likely membrane
binding site on the relevant PH or DH-PH structures (Fig. 10B).
Together these findings indicate that the ARHGEF proteins
including AKAP-Lbc do not directly bind membranes through
their PH domains. This does not rule out long range electro-
static complementarity that could orient the rigid DH-PH tan-
dem near a membrane to pick up a RhoA molecule, consistent
with PDZRhoGEF studies (43). Indeed the electrostatic surface
potentials of the onco-Lbc structures and those of related Rho-
GEFs suggest that an appropriate electropositive patch is con-
served next to the RhoA docking site. Unlike full-length
AKAP13, which may localize to membranes via its C1 domain,
we propose that onco-Lbc remains soluble as its PH domain
does not directly interact with membranes. Instead the DH
domain dominates the long range electrostatic membrane

attraction alongside its protein interactions complemented by
bilayer insertion of the C-terminal prenylated CAAX box of
RhoA. A previous study (21) has shown that only the mem-
brane-associated activated RhoA can induce a positive feed-
back effect of ARHGEF11. Thus, further studies using the
membrane-bound RhoA are needed to resolve the role of mem-
branes in regulating the catalytic activity of onco-Lbc.

Protein phosphorylation does not appear to play a direct role
here in that no appropriate sites on the DH-PH tandem of Lbc
are apparent. Instead mitotic cell cycle-dependent phosphory-
lation of Thr2398 and Ser2400 is detectable by mass spectromet-
ric analysis of HeLa cell extracts (54) and is found in an unstruc-
tured region following the C-terminal helix of the PH domain.

Cancer-linked mutations have been identified that would be
predicted to alter Lbc function (55) as shown in Fig. 7. The
elucidation of functional sites here provides a basis for future
studies of the specific pathological effects and precise mecha-
nisms of action of such cancer-linked mutations. The insights
will aid in the structure-based design of targeted therapeutic
agents and allow future investigations into the intriguing roles
of allostery and membrane association.
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