
 
 

Elucidation of a protein-protein interaction network
involved in Corynebacterium glutamicum cell wall
biosynthesis as determined by bacterial two-hybrid
analysis
Jankute, Monika; Byng, Charlotte V; Alderwick, Luke; Besra, Gurdyal

DOI:
10.1007/s10719-014-9549-3

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Jankute, M, Byng, CV, Alderwick, LJ & Besra, GS 2014, 'Elucidation of a protein-protein interaction network
involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis',
Glycoconjugate journal, vol. 31, no. 6-7, pp. 475-483. https://doi.org/10.1007/s10719-014-9549-3

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 13/10/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1007/s10719-014-9549-3
https://research.birmingham.ac.uk/portal/en/publications/elucidation-of-a-proteinprotein-interaction-network-involved-in-corynebacterium-glutamicum-cell-wall-biosynthesis-as-determined-by-bacterial-twohybrid-analysis(d8003c16-045a-4ff8-88c0-260c9bb4859d).html


Elucidation of a protein-protein interaction network
involved in Corynebacterium glutamicum cell wall biosynthesis
as determined by bacterial two-hybrid analysis

Monika Jankute & Charlotte V. Byng &

Luke J. Alderwick & Gurdyal S. Besra

# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Mycobacterium species have a highly complex and
unique cell wall that consists of a large macromolecular struc-
ture termed the mycolyl-arabinogalactan-peptidoglycan
(mAGP) complex. This complex is essential for growth, sur-
vival and virulence of the human pathogen Mycobacterium
tuberculosis, and is the target of several anti-tubercular drugs.
The closely related species Corynebacterium glutamicum has
proven useful in the study of orthologous M. tuberculosis
genes and proteins involved in mAGP synthesis. This study
examines the construction of a protein-protein interaction
network for the major cell wall component arabinogalactan
in C. glutamicum based on the use of a bacterial two-hybrid
system. We have identified twenty-four putative homotypic
and heterotypic protein interactions in vivo. Our results dem-
onstrate an association between glycosyltransferases, GlfT1
and AftB, and interaction between the sub-units of
decaprenylphosphoribose epimerase, DprE1 and DprE2.
These analyses have also shown that AftB interacts
with AftA, which catalyzes the addition of the first
three arabinose units onto the galactan chain. Both AftA and
AftB associate with other arabinofuranosyltransferases, in-
cluding Emb and AftC, that elongate and branch the arabinan
domain. Moreover, a number of proteins involved in
arabinogalactan biosynthesis were shown to form dimers or
multimers. These findings provide a useful recourse for un-
derstanding the biosynthesis and function of the mycobacte-
rial cell wall, as well as providing new therapeutic targets.
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Corynebacteria . Mycobacteria . Protein-protein interactions

Abbreviations
AG arabinogalactan
Araf arabinofuranosyl
ArafT arabinofuranosyltransferase
BACTH bacterial adenylate cyclase two-hybrid
DP decaprenyl phosphate
DPA decaprenylphosphoryl-D-arabinofuranose
DPPR decaprenylphosphoryl-5-phosphoribose
DPR decaprenyl-5-phosphoribose
Galf galactofuranosyl
GalfT galactofuranosyltransferase
mAGP mycolyl-arabinogalactan-peptidoglycan
PG peptidoglycan
TB tuberculosis

Introduction

Mycobacterium tuberculosis the causative agent of tubercu-
losis (TB), remains a major cause of mortality and morbidity
from a single infectious organism. In 2012, approximately 8.6
million people developed TB and 1.3 million died from the
disease [1]. Emergence of multidrug-resistant [2], extensively
drug resistant [2] and recently reported totally drug-resistant
[3–5] clinical isolates has prompted the need for new drugs
and drug targets. M. tuberculosis and other bacteria in the
suborder of Corynebacterineae are characterized by a highly
complex cell envelope. This cell wall is comprised of a
cross-linked peptidoglycan (PG), covalently linked to
arabinogalactan (AG) chains, which are further esterified by
mycolic acids [6–8]. This macromolecular structure is often
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referred to as the mycolyl-arabinogalactan-peptidoglycan
(mAGP) complex [9].

AG is composed predominantly of arabinofuranosyl (Araf)
and galactofuranosyl (Galf) residues [10] and is covalently
attached to PG via a specialized linker unit, L-Rhap-(1→
4)-α-D-GlcNAc [7]. The galactan domain of AG is composed
of approximately 30 alternating β (1→5) and β (1→6) Galf
residues connected in a linear fashion [11]. Three similar D-
arabinan chains comprising roughly 30 Araf residues each are
attached to the galactan chain [12]. Since the AG structure is
essential to M. tuberculosis, many gene deletion studies in-
vestigating AG have been performed in the closely related
Corynebacterium genus, where aspects of AG biosynthesis
are non-essential. Deletion studies in C. glutamicum demon-
strated that the arabinan chains of AG are attached distinctive-
ly to the 8th, 10th, and 12th residue of the linear galactan chain
[12]. Unlike most bacterial polysaccharides, AG lacks repeat-
ing units and is composed of a few distinct structural motifs,
notably the terminal Ara6 motif, with the 5-OH of the t-Araf
and 2-Araf residues representing sites for mycolylation [11, 8].
Collectively, AG, PG, and mycolic acids with additional outer
layer lipids result in an exceptionally robust and hydrophobic
cell wall structure. Importantly, a number of anti-TB drugs,
such as ethambutol [13–15] and isoniazid [16, 17], target the
biosynthesis of the mAGP complex.

The biosynthesis of AG involves the formation of the
linkage unit synthesized on a decaprenyl phosphate lipid
carrier (DP). Firstly, WecA transfers GlcNAc-1-P from the
substrate UDP-GlcNAc-1-P onto the DP carrier [18, 19]. The
rhamnosyltransferase WbbL then attaches the rhamnosyl res-
idue to the DP-P-P-GlcNAc forming the full linker unit of AG,
DP-P-P-GlcNAc-Rha [18, 20]. The linker unit serves as an
acceptor for the sequential addition of roughly 30 Galf resi-
dues. Bifunctional galactofuranosyltransferase (GalfT) GlfT1
recognizes the linkage unit and transfers two Galf residues to
DP-P-P-GlcNAc-Rha yielding DP-P-P-GlcNAc-Rha-Galf2
[21]. GlfT2 then attaches further Galf residues acting both as
a UDP-Galf: β-D-(1→5) GalfT and a UDP-Galf:β-D-(1→6)
Gal fT [22–24] . Arabinan biosynthes is employs
decaprenylphosphoryl-D-arabinofuranose (DPA), the only
known donor of Araf residues in AG biosynthesis. The as-
sembly of DPA has been recently investigated in detail [25,
26]. DPA biogenesis begins with UbiA transferring 5-
phosphoribosyl-1-pyrophosphate to a DP forming
decaprenylphosphoryl-5-phosphoribose (DPPR) [26]. DPPR
is then dephosphorylated to decaprenyl-5-phosphoribose
(DPR) by a putative phospholipid phosphatase [27]. DprE1
and DprE2 then catalyze the epimerization of DPR to DPA,
consequently forming the essential sugar donor DPA [28–30].
A specialized arabinofuranosyltransferase (ArafT) AftA trans-
fers the first Araf residue from the substrate molecule DPA
onto the 8th, 10th and 12th Galf residues of the galactan chain
[12]. Further α (1→5)-linked Araf residues are added by

EmbA and EmbB in M. tuberculosis [31] or Emb in
C. glutamicum [26]. Branching α (1→3) ArafTs, AftC and
AftD, are responsible for α (1→3)-linked Araf residues of the
arabinan domain [32–35]. Finally, the terminal β (1→2) Araf
residues are transferred from DPA onto the arabinan domain
by AftB [36, 37].

The structure and biogenesis of AG has been fairly
well described, however, certain aspects of its biosyn-
thesis remain poorly understood. For instance, the char-
acterization of multi-protein complexes has been ex-
tremely limited, perhaps due to a number of cell wall
biosynthesis proteins being transmembrane or mem-
brane bound. In this study, we attempted to investigate
the associations between C. glutamicum proteins in-
volved in the assembly of AG by using the bacterial
adenylate cyclase two-hybrid (BACTH) system [38].
This system is based on the functional complementa-
tion between two fragments of the adenylate cyclase to
restore a cAMP signaling cascade in Escherichia coli.
Importantly, BACTH is able to detect physical interac-
tions between both cytoplasmic as well as membrane
proteins [39–43].

Our data supports interactions between various proteins
involved in AG biosynthesis. Moreover, we demonstrate a
number of novel interactions between these proteins.
Altogether, these results suggest that proteins involved in
AG assembly are associated to one another through multiple
interactions.

Materials and methods

Bacterial strains and growth conditions

All cloning steps were performed in E. coli XL-1 Blue cells
(Invitrogen). The E. coli cya strain BTH101 ((F−, cya-99,
araD139, galE15, galK16, rpsL1 (Strr), hsdR2, mcrA1,
mcrB1) was used for the bacterial two-hybrid screen
(Euromedex). E. coli strains were grown in Luria-Bertani
(LB) medium at 30 °C or 37 °C as specified in the text.
Plasmids were maintained with ampicillin (100 μg/ml) or
kanamycin (50 μg/ml). LB agar reporter plates contained
streptomycin (100μg/ml), ampicillin (100μg/ml), kanamycin
(50 μg /ml ) , 5 -b romo-4 - ch lo ro -3 - i ndo ly l -β -D -
galactopyranoside (X-gal; 40 μg/ml) and isopropyl β-D-1-
thiogalactopyranoside (IPTG; 0.5 mM). MacConkey plates
(DifcoTM) contained streptomycin (100 μg/ml), ampicillin
(100 μg/ml), kanamycin (50 μg/ml), IPTG (0.5 mM) and
maltose (1 %). M63 minimal media plates [44] were supple-
mented with streptomycin (50 μg/ml), ampicillin (50 μg/ml),
kanamycin (25 μg/ml), X-gal (40 μg/ml), IPTG (0.5 mM) and
maltose (0.2 %).
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Plasmid construction

All recombinant DNA methods were performed using stan-
dard protocols. Briefly, the genes involved in C. glutamicum
AG biosynthesis were amplified from genomic DNA of
C. glutamicum ATCC 13032. The plasmids have been con-
structed by inserting gene sequences of interest in pKT25
(T25 fusion at N-terminus), pKNT25 (T25 fusion at C-termi-
nus), pUT18 (T18 fusion at C-terminus) and pUT18c (T18
fusion at N-terminus) [38], using oligonucleotides provided in
Supplementary Table S1. The bacterial BACTH system kit
was obtained from Euromedex and contained empty vectors
together with positive control plasmids pKT25-zip and
pUT18c-zip.

Bacterial two-hybrid system

Two plasmids expressing recombinant proteins bearing N- or
C- terminal T25 and T18 fusions were co-transformed into
E. coli BTH101 cells (Table S2). Cells were spread on LB
plates containing streptomycin (100 μg/ml), ampicillin
(100 μg/ml), kanamycin (50 μg/ml) and incubated at 30 °C
for 48 h. Several colonies were picked and used to inoculate
3 ml of LB supplemented with appropriate antibiotics and
0.5 mM IPTG. Cultures were grown overnight at 30 °C with
shaking. Overnight cultures were washed three times in min-
imal media and spotted (2 μl) onto LB, MacConkey or M63
minimal media agar plates supplemented with appropriate
antibiotics and nutrients. The β-galactosidase assay was per-
formed as described elsewhere [44]. The values presented are
the mean of 3 independent activity assays.

Statistical analysis

The results are expressed as the means±S.D. and were ana-
lyzed using a Student’s t-test to determine significant differ-
ences (p<0.01) between samples.

Results and discussion

Network analysis of AG biosynthetic proteins

We initially aimed to identify whether any of the proteins
involved in cell wall assembly have been predicted or dem-
onstrated to make a functional network. Focusing on the list of
proteins associated with AG biosynthesis we used the
STRING database of interactions [45] to reveal a
putative protein association network, with GlfT2 chosen as the
network node (Fig. 1). The interaction patterns of proteins had a
high confidence score (>0.7) and served as a basis for selection
of C. glutamicum proteins that were further analyzed using the

in vivo BACTH system. The generated network contained
ABC family transporters (RfbD and RfbE), GT-A type
GalfTs GlfT1, and proteins involved in rhamnose sugar donor
formation, all centered on GlfT2. Transmembrane ArafT Emb
showed a strong evidence for interaction with AftA and AftB,
as well as the uncharacterized protein NCgl2596. The network
also contained a putative phospholipid phosphatase
NCgl2782 and proteins involved in DPA synthesis: DprE1,
DprE2 and UbiA.

Bacterial two-hybrid analysis of AG proteins

To characterize the physical interactions between components
of the C. glutamicum cell wall biosynthetic machinery, the
following full-length proteins WecA, WbbL, GlfT1, GlfT2,
AftA, AftB, AftC, AftD, Emb, UbiA, DprE1, and DprE2,
were tested systematically for pair-wise interactions using
BACTH. The known or predicted function of proteins is
shown in Table 1. Each protein was fused to the fragment of
the catalytic domain of chimeric adenylate cyclase (T25 or
T18) of Bordetella pertussis at either the C- or N-terminus
(Table S2). Interaction between two hybrid proteins leads to
reconstitution of the fragments of adenylate cyclase resulting
in restoration of cAMP production in a E. coli cyamutant [38].
The resulting cAMP forms a complex with the catabolite
activator protein and binds to various promoters, thus regulat-
ing transcription of several genes, including the lactose and
maltose operons. The activation of these operons can be
detected on selective agar plates or using a β-galactosidase
assay. Importantly, this bacterial two-hybrid system was
shown to be suitable to detect interactions between
cytoplasmic, as well as transmembrane or membrane
associated proteins [46, 47].

Despite several attempts, we did not succeed in construct-
ing pKT25 and pUT18 derivatives expressing UbiA and AftD
proteins, respectively. This is probably due to the toxicity of
hybrid proteins to bacterial cells when expressed at high
levels, which is especially true of membrane proteins.
Moreover, the UbiA-T18N and UbiA-T18C hybrid proteins,
when co-expressed with several other hybrid proteins, ap-
peared to reduce down bacterial cell growth suggesting that
overproduction of UbiA is toxic to E. coli cells.

To examine putative interactions between the hybrid pro-
teins, E. coli BTH101 cells were co-transformed with pairs of
recombinant plasmids (Table S2). In total, 577 pairs were
screened for protein-protein interactions in vivo. All co-
transformants, together with the positive and negative con-
trols, containing either pKT25-zip/pUT18c-zip or empty
pKT25/pUT18, were then spotted onto selective agar plates
and the coloration of the colonies observed after 48 h of growth
at 30 °C. In the absence of association between T25 and T18
fragments colonies appear white, whereas they are blue or red
when functional complementation occurs. Representative
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plates from the screening are shown in Fig. 2 and
Supplementary Fig. S1-S13. Efficiency of the functional com-
plementation between T25 and T18 domains was quantified by
measuring β-galactosidase activity (Fig. S1-S13). Ultimately,
50 pairs of hybrid proteins resulted in a positive signal
representing 24 putative homotypic and heterotypic protein-
protein interactions. The interaction results from the assays are
summarized in Table 2.

Self-association of C. glutamicum cell wall biosynthesis
proteins

Among all the tested proteins, dimerization or multimerization
ofWecA, GlfT1, GlfT2, AftA, AftB, AftC, DprE1, and DprE2
have been demonstrated employing BACTH. Co-expression
of transmembrane WecA-T25C and WecA-T18C hybrid pro-
teins restored a cya+ phenotype and synthesis of cAMP in the
E. coli cells, resulting in blue and red colonies on LB/M63-
Xgal and MacConkey media, respectively (Fig. S1a-c). The
β-galactosidase assay revealed a significant increase in β-
galactosidase activity (487±47 Miller units) when compared

Fig. 1 Network of C. glutamicum proteins found to be important for cell wall assembly round the GlfT2 protein as determined by STRING analysis.
Lines connecting the nodes indicate various interaction data supporting the network, colored by evidence type

Table 1 Predicted topology and function of C. glutamicum proteins
described in this study

Protein Predicted topology Function

WecA transmembrane UDP-GlcNAc-1-phosphatetransferase

WbbL soluble α-3-L-rhamnosyltransferase

GlfT1 soluble UDP-galactofuranosyltransferase

GlfT2 soluble UDP-galactofuranosyltransferase

AftA transmembrane arabinofuranosyltransferase

AftB transmembrane arabinofuranosyltransferase

AftC transmembrane arabinofuranosyltransferase

AftD transmembrane arabinofuranosyltransferase

Emb transmembrane arabinofuranosyltransferase

DprE1 soluble decaprenylphosphoryl-α-D-ribose
2'-oxidase

DprE2 soluble decaprenylphosphoryl-D-2-keto erythro
pentose reductase

UbiA transmembrane decaprenyl-phosphate
5-phosphoribosyltransferase

Glycoconj J



to the negative control (86±11Miller units), containing empty
pKT25, pKNT25, pUT18, and pUT18c plasmids (Fig. S1d).
Importantly, the transmembrane fusions have to be correctly
inserted into the plasma membrane with the T18 and T25
domains facing the cytoplasm in order an interaction to be
detected. Therefore, suggesting that the C- terminus of
GlcNAc-1-phosphate transferase WecA is cytoplasmic. This

is in agreement with the predicted topology of WecA [48].
Physical self-dimerization or multimerization in vivowas also
demonstrated for GlfT1 and GlfT2. Consistently, GlfT1-T25N

and GlfT1-T18C, GlfT1-T25N and GlfT1-T18N, GlfT1-T25C

and GlfT1-T18N, GlfT2-T25N and GlfT2-T18C, and GlfT2-
T25C and GlfT2-T18N hybrids restored lac+ and mal+ pheno-
types and resulted in significant β-galactosidase activity

Fig. 2 BACTH analysis of interactions between AftA and AftB proteins
from C. glutamicum. The genes encoding full-length proteins were fused
in framewith adenylate cyclase T25 or T18 fragments at N- or C-terminus
and expressed in E. coli cya− BTH101. a Co-transformants containing
two plasmids encoding putative interaction partners were spotted onto
selective MacConkey agar supplemented with appropriate antibiotics,
0.5 mM IPTG and 1 % maltose. Plates were incubated at 30 °C for
48 h. Protein-protein interactions are indicated by red colonies through
the reconstitution of adenylate cyclase catalytic domain. A strain co-
expressing T25 and T18 fragments fused to leucine zipper domain was

used as positive control (+), whereas empty pKT25-pUT18, pKT25-
pUT18c, pKNT25-pUT18, and pKNT25-pUT18c were used as negative
controls (−). b The efficiencies of functional complementation between
hybrid proteins were quantified by measuring β-galactosidase activities
in suspensions of toluene treated E. coli BTH101 harboring the
corresponding plasmids. Results are expressed in Miller units and
are the mean±standard deviation of at least three independent
experiments. Statistical significance was determined by Student’s
t-test (p<0.01)

Table 2 Protein-protein interactions between C. glutamicum AG biosynthetic proteins determined by BACTH

WecA WbbL GlfT1 GlfT2 AftA AftB AftC AftD UbiA DprE1 DprE2 Emb

WecA ✓

WbbL - -

GlfT1 - - ✓

GlfT2 - - - ✓

AftA - - - - ✓

AftB ✓ - ✓ - ✓ ✓

AftC ✓ - - - ✓ ✓ ✓

AftD - - - - - - - -

UbiA ✓ ✓ - - ✓ ✓ ✓ - -

DprE1 - - - - - - - - - ✓

DprE2 - - ✓ - ✓ ✓ ✓ - - ✓ ✓

Emb ✓ - - - ✓ ✓ - - - - - -

The positive interaction is indicated as (✓), whereas the lack of interaction is marked as (−)
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ranging from 266±69 to 679±118 Miller units (Fig. S1e-h).
Recently, the structure of the polymerizing GlfT2 orthologue
inM. tuberculosis has been solved revealing its assembly as a
homotetramer [23], thus supporting the results obtained in this
BACTH study.

Transmembrane AftA, AftB and AftC, proteins also tested
positive for self-association. Co-expression of AftA-T25N and
AftA-T18N, AftB-T25N and AftB-T18N, AftC-T25C and
AftC-T18C combinations yielded β-galactosidase activity of
714±92, 1185±265, and 398±23 Miller units, respectively
(Fig. S2). The C-terminal region of AftA and AftB is predicted
to be directed towards the periplasm [37, 12], therefore the
lack of interaction between fusion pairs carrying C-terminal
T25 or T18 fragment was expected. In addition, BACTH
experiments propose that the N- termini of AftA and AftB
are cytoplasmic. In contrast to AftA and AftB, AftC is char-
acterized by the absence of a periplasmic C- terminal exten-
sion [33]. Hence it is unsurprising that multimerization of
AftC is observed with the fusion proteins tagged at the
C - t e rm inu s . I n t e r e s t i ng l y, no ev idence fo r
homodimerization could be obtained for Emb and
AftD. Finally, DprE1 and DprE2, both involved in
DPA synthesis, appeared positive for self-interaction.
DprE1-T25N and DprE1-T18C, DprE1-T25C and
DprE1-T18N fusions, as well as all four pairs of hybrid
proteins co-expressing DprE2 led to a strong lacZ in-
duction (ranged between 291±33 and 1156±54 Miller
units), significantly exceeding the negative control
(Fig. S3).

In vivo interaction network among AG proteins

Next, we examined the interactions between different
proteins involved in AG biosynthesis. Our results indi-
cate that in addition to homodimerization, WecA is also
able to interact with multiple partners of AG biosyn-
thesis (Table 2). WecA-T18C hybrid, when co-expressed
with AftB-T25N, AftC-T25C, Emb-T25N, and UbiA-
T25C yielded significant β-galactosidase activities
1082±268, 1047±186, 1346±217, and 1018±137
Miller units, respectively (Fig. S4-5). BACTH also
revealed an interaction with the rhamnosyltransferase
WbbL, when UbiA hybrids were used as the bait. Co-
transformation of WbbL-T18C or WbbL-T18N together
with UbiA-T25C led to a restoration of cAMP cascade
with β-galactosidase activities of 1094±93 and 1195±
78 Miller units, respectively (Fig. S6a-d). Our studies
have demonstrated the physical interaction between
GlfT1 and AftB (Fig. S6e-h), as well as the DprE2
involved in DPA formation (Fig. S7a-d). Recent studies
reported the physical interaction between GlfT1 and
Rv3789, a small multidrug resistance-like transporter
[49]. Rv3789 was proposed to target and stabilize the
membrane associated GlfT1 [49]. Further experiments
demonstrated evidence for a physical interaction be-
tween UbiA and AftA-T25N (387±22 Miller units)
(Fig. S8), AftB-T25N (1015 ± 185 Miller units)
(Fig. S10) and AftC- T25C (755±118 Miller untis)
(Fig. S12), responsible for the biosynthesis of

Fig. 3 An interaction network of
C. glutamicum proteins involved
in AG biosynthesis generated
using yEd graph editor software.
The circular arrows indicate self-
association
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the arabinan domain of AG. Most of these ArafTs could
also establish multiple interactions with each other.
AftA, which primes the galactan chain of AG, associ-
ated with Emb, AftC and AftB (Fig. S7-9). In addition,
AftB also interacted with Emb and AftC hybrid pro-
teins (Fig. S10-11). Finally, C. glutamicum DprE1 was
also found to strongly interact with DprE2. DprE1-
DprE2 association has been identified with seven dif-
ferent plasmid combinations resulting in a significant
β-galactosidase activity ranging between 637±52 and
1027±86 Miller units (Fig. S13). Previous studies re-
ported that orthologues of DprE1 and DprE2 in
M. tuberculosis were able to catalyze the epimerization
reaction in vitro, however, neither protein alone was
sufficient to support this activity [49]. Thus, strongly
suggesting that DprE1 and DprE2 work in concert to
catalyze the conversion of DPR to DPA. However, when
the same M. tuberculosis orthologues were experimentally
tested for interaction using BACTH, co-transformants yielded
negative results [49].

Conclusions

The majority of bacterial cell wall surface polysaccharides are
built on a carrier lipid in the cytosolic side of the plasma
membrane. Although it is not fully clear how and when these
polymers are translocated to the periplasm, one could specu-
late that anchoring these macromolecules to the membrane
positions them closely to the transporters and glycosyltrans-
ferases, therefore, promoting productive export across the
plasma membrane. Formation of multi-protein complexes,
that contain glycosyltransferases, enzymes forming its sugar
nucleotides and transporters, is expected to be beneficial for
the bacterial cell, since the tight arrangement of the biosyn-
thetic reactions would retain productivity and accuracy of the
polymerization process. We have demonstrated that the pro-
teins responsible for the formation of the AG linker unit,
We c A a n d W b b L , f o r m a c o m p l e x w i t h
decaprenylphosphoryl-5-phosphoribose synthase UbiA at
the cytoplasmic membrane (Fig. 3). WecA and UbiA directly
employ DP for the linker unit and DPPR formation, respec-
tively [18, 30, 50]. Proximal interactions between WecA,
WbbL and UbiA could perhaps facilitate synchronized utili-
zation of DP for coordinated AG biosynthesis. In addition,
UbiA show evidence for physical interaction between AftA,
AftB and AftC proteins, which utilize DPA as a substrate
(Fig. 3). It is possible that this multi-protein complex forma-
tion assists a mechanism similar to substrate channeling,
where intermediary metabolic products of one enzyme are
passed directly to another enzyme. Other DPA forming pro-
teins, DprE1 and DprE2, showed evidence for a physical
interaction. Interestingly, while both DprE1 and DprE2 are

required for the epimerization reaction, there is evidence that
C. glutamicum NCgl1429 may play a similar function to
DprE2 [28]. Investigation into potential DprE1-NCgl1429
complexes could provide insight into this gene redundancy.
Notably, GT-A glycosyltransferases GlfT1 and GlfT2 showed
evidence for homodimerization using BACTH. GlfT1 trans-
fers the first two Galf residues to the linker unit, whereas
GlfT2 is responsible for addition of approximately 30 Galf
residues in a linear chain. The recent crystal structure of
M. tuberculosis GlfT2 in its apo-form and in complex with
UDP, established its homotetrameric architecture [23]. Finally,
AftA, AftB, AftC and Emb proteins involved in the assembly
of arabinan domain in AG, indeed form a multi-protein com-
plex at the inner membrane (Fig. 3). One could speculate that
such a sophisticated complex would maintain the efficiency
and fidelity of AG polymerization.

BACTH is a powerful technique for the investigation of
protein-protein associations, however, several important notes
should be highlighted regarding the significance of the inter-
action data obtained from BACTH. Firstly, the lack of lacZ
induction might be a result of plasmid instability, insoluble or
dissipating fusions, and not the lack of direct physical inter-
action. Therefore, the hybrid proteins that test negative for
interactions may still interact in vivo. Moreover, since the
output of the interaction – cAMP – requires to be generated
in the cytoplasm, these negative results may also result from
the incorrect topological orientation of functional T25 and
T18 domains into plasma membrane. In addition, using
BACTH, the fusion proteins are overexpressed when com-
pared to the expression levels of native cells. Under these
conditions, BACTH could have revealed a number of weak
interactions between AG biosynthetic proteins. Although such
associations would not take place at low protein concentra-
tions, they can still occur when AG is being synthesized,
where the local concentrations of proteins should be signifi-
cantly higher. Finally, it is possible that some of the indentified
interactions are a consequence of non-specific interactions
initiated by endogenous E. coli host proteins that act as a
tethering agent. These indirect associations, caused by a third
protein, cannot be simply rejected.

In conclusion, our findings here suggest that enzymes
involved in C. glutamicum cell wall assembly and precursor
formation form complicated multi-protein complexes. We
have identified 24 interactions in vivo between 12 proteins
responsible for AG biosynthesis using BACTH. The chal-
lenge for the future will be to discover precisely how each of
these multi-protein complexes form and function to synthesize
and translocate AG.
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