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Abstract We study the existence of integer solutions to max-linear optimization prob-
lems. Specifically, we show that, in a generic case, the integer max-linear optimization
problem can be solved in strongly polynomial time. This extends results from our pre-
vious papers where polynomial methods for this generic case were given.

Keywords Max-linear optimization problem · Integer vector · Max-linear system
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1 Introduction

In the max-algebraic setting, we take maximization as our addition operation, addition
as our multiplication operation and work with the set of extended reals; the real num-
bers extended by −∞. Max-algebra (also called tropical linear algebra) is a rapidly
evolving area of idempotent mathematics, linear algebra, and applied discrete mathe-
matics. Its creation was motivated by the need to solve a class of non-linear problems
in mathematics, operational research, science, and engineering [1–4].

The question of finding integer solutions to max-linear systems of equations was
first addressed in [5]. Equations in max algebra are useful to model, for example,
scheduling problems; therefore, finding integer solutions is applicable to real world
examples.
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The two-sided system (TSS) in max-algebra is a matrix equation whose solution
can be used to describe, for example, the starting times of a synchronized system of
machines. The study of its solutions is also of interest since it is known that TSSs
in max-algebra are equivalent to mean payoff games [6,7]. Mean payoff games are a
well-known problem in NP ∩ co-NP and the existence of a polynomial algorithm for
finding a solution remains open. Combinatorial simplex algorithms for solving mean
payoff games were discussed in [8].

The problems of finding solutions to two-sided max-linear systems have been pre-
viously studied and one solution approach is to use the Alternating Method [9,10].
If A and B are integer matrices, then the solution found by this method is integer,
however, this cannot be guaranteed if A and B are real. The Alternating Method can,
however, be adapted [11] in order to find integer solutions to TSSs. These methods
find solutions in pseudopolynomial time if the input matrices are finite.

Note that various other methods for solving TSS are known [12–14], but none of
them has been proved polynomial and there is no obvious way of adapting them to
integrality constraints. In [11], a generic class of matrices was defined for which it
could be determined, in strongly polynomial time, whether an integer solution to a TSS
exists, and find one if it does. The current paper extends the use of this generic case
to max-linear optimization problems (MLOP) with constraints in the form of a TSS.

The MLOP is a problem seeking to maximize, or minimize, the value of a max-linear
function subject to a two-sided constraint. Note that in other literature this is also known
as a max-linear programming problem. Without the integrality constraint, solution
methods to solve the MLOP are known, for example in [9,15], a bisection method
is applied to obtain an algorithm that finds an approximate solution to the MLOP.
Solutions using simplex methods were described in [8]. Also, a Newton type algorithm
has been designed [16] to solve a more general, max-linear fractional optimization
problem by a reduction to a sequence of mean payoff games. For integer solutions,
a pseudopolynomial algorithm was described in [11]. In this paper, we describe a
strongly polynomial solution method in a generic case. It remains open to find a
polynomial algorithm to solve a general MLOP with two-sided constraints.

2 Defining the Problem

In max-algebra, for a, b ∈ R = R ∪ {−∞}, we define a ⊕ b := max(a, b), a ⊗ b :=
a + b and extend the pair (⊕,⊗) to matrices and vectors in the same way as in linear
algebra, that is (assuming compatibility of sizes),

(A ⊕ B)i j := ai j ⊕ bi j ,

(A ⊗ B)i j :=
⊕

k

aik ⊗ bkj and

(α ⊗ A)i j := α ⊗ ai j .

Except for computational complexity arguments, all multiplications in this paper are
in max-algebra and, where appropriate, we will omit the ⊗ symbol. Note that α−1

stands for −α.
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We will use ε to denote −∞ as well as any vector or matrix whose every entry is
−∞. Note that ε is the max-algebraic additive identity, and 0 is the max-algebraic
multiplicative identity. A vector/matrix whose every entry belongs to R is called finite.
A vector whose j th component is zero and every other component is ε will be called
a max-algebraic unit vector, and denoted e j . We use 0 to denote the all zero vector of
appropriate size. An n × n matrix in the max-algebra is called diagonal, and denoted
by diag(d1, . . . , dn) = diag(d), if and only if its diagonal entries are d1, . . . , dn ∈ R

and off diagonal entries are ε (that is −∞). The max-algebraic identity matrix of
appropriate size is I := diag(0, . . . , 0).

For a ∈ R, the fractional part of a is f r(a) := a − �a	, where �·	 denotes the
lower integer part. We extend these definitions to include ε = −∞ by defining

�ε	 := ε, 
ε� := ε and f r(ε) := ε.

For a matrix A ∈ R
m×n

, we use �A	 (
A�) to denote the matrix with (i, j) entry equal
to �ai j	 (
ai j�) and similarly for vectors.

In this paper, a vector x ∈ R
n

is understood to be a column vector. Its transpose is

denoted by xT ∈ R
1×n

. Similarly, for a matrix A ∈ R
m×n

, its transpose is AT ∈ R
n×m

.

A two-sided max-linear system is of the form

Ax ⊕ c = Bx ⊕ d

where A, B ∈ R
m×n

and c, d ∈ R
m

. If c = d = ε, then we say that the system is
homogeneous, otherwise it is called nonhomogeneous. Nonhomogeneous systems can

be transformed to homogeneous systems [9]. If B ∈ R
m×k

, a system of the form

Ax = By

is called a system with separated variables.
If f ∈ R

n
, then the function f (x) = f T ⊗ x is called a max-linear function.

MLOPs seek to minimize, or maximize, a max-linear function subject to constraints
given by max-linear equations described by TSS. Throughout this paper, the input of
an MLOP will always be finite matrices and vectors.

The integer max-linear optimization problem (IMLOP) is given by

f T ⊗ x → min or max

s.t. Ax ⊕ c = Bx ⊕ d, x ∈ Z
n

where A, B ∈ R
m×n, c, d ∈ R

m, f ∈ R
n . We will use IMLOPmin to mean the problem

minimizing f T x and IMLOPmax to mean the problem maximizing f T x .
One example of an application of the TSS and the IMLOP is the multiprocessor

interactive system (MPIS) [1,9], which can be described as follows.
Products P1, . . . , Pm are made up of a number of components which are prepared

using n processors. Each processor contributes to the final product Pi by producing
one of its components. We assume that processors work on a component for every
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product simultaneously and that work begins on all products as soon as the processor
is switched on.

Let ai j be the time taken for the j th processor to complete its component for Pi

(i = 1, . . . , m; j = 1, . . . , n). Denote the starting time of the j th processor by x j

( j = 1, . . . , n). Then, for each product Pi , all components will be completed at time
max(x1 + ai1, . . . , xn + ain).

Further, k other processors prepare components for products Q1, . . . , Qm with
duration and starting times denoted by bi j and y j , respectively. The synchronization
problem is to find starting times of all n + k processors so that each pair (Pi , Qi )

(i = 1, . . . , m) is completed at the same time. This task is equivalent to solving the
system of equations

max(x1 + ai1, . . . , xn + ain) = max(y1 + bi1, . . . , yk + bik) (i = 1, . . . , m).

Additionally, we can introduce deadlines ci and di , writing the equations as

max(x1 + ai1, . . . , xn + ain, ci ) = max(y1 + bi1, . . . , yk + bik, di ) (i = 1, . . . , m),

or equivalently, Ax ⊕ c = By ⊕ d. For ci = di , this indicates that the synchronization
of Pi and Qi is only required after the deadline di . The case ci < di [ci > di ] is
similar, but additionally models the requirement that Pi [Qi ] is not completed before
time di [ci ].

When solving the MPIS, it may be required that the starting times are restricted to
discrete values, in which case we would want to look for integer solutions to the TSS.

In applications, it may also be required that the starting times of the MPIS are
optimized with respect to a given criterion. As an example, suppose that all processors
in an MPIS should begin as soon [late] as possible, that is, the latest starting time of a
processor is as small [big] as possible. In this case, we would set f = 0 and seek to
minimize [maximize] f T x = max(x1, . . . , xn).

With this extra requirement, we obtain the MLOP,

f T ⊗ x → min or max

s.t. Ax ⊕ c = Bx ⊕ d.

It is important to note that throughout this paper, an integer solution is a finite
solution, x ∈ Z

n , and so does not contain ε components. For the problems described
above, it would also be valid to ask when there is a solution with entries from Z∪ {ε},
but we do not deal with this task here.

3 Preliminary Results

We will use the following standard notation and terminology based on [1,9]. For
positive integers m, n, k, we denote M = {1, . . . , m}, N = {1, . . . , n}, and K =
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{1, . . . , k}. If A = (ai j ) ∈ R
n×n

, then λ(A) denotes the maximum cycle mean, that is,

λ(A) := max

{
ai1i2 + . . . + ait i1

t
: i1, . . . , it ∈ N , t = 1, . . . , n

}
.

The maximum cycle mean can be calculated in O(n3) time [17], see also [9]. If
λ(A) = 0, then we say that A is definite. For a definite matrix, we define

A∗ := I ⊕ A ⊕ A2 ⊕ . . . ⊕ An−1,

where I is the max-algebraic identity matrix. Using the Floyd–Warshall algorithm,
see, e.g., [9], A∗ can be calculated in O(n3) time.

If a, b ∈ R = R∪{+∞}, then we define a ⊕′ b := min(a, b). Moreover, a ⊗′ b :=
a + b exactly when at least one of a, b is finite, otherwise

(−∞) ⊗′ (+∞) := +∞ and (+∞) ⊗′ (−∞) := +∞.

This differs from max-multiplication where

(−∞) ⊗ (+∞) := −∞ and (+∞) ⊗ (−∞) := −∞.

For A ∈ R
m×n

, we define A j to be the j th column of A. Further

A# := −AT ∈ R
n×m

and A(−1) := −A ∈ R
m×n

.

Similarly, for γ ∈ R
n
, we denote γ (−1) = −γ ∈ R

n
. For a scalar α, there is no

difference between α−1 and α(−1).
Given a solution x to Ax = b, we say that a position (i, j) is active with respect

to x if and only if ai j + x j = bi , it is called inactive otherwise. It will be useful in
this paper to talk about the entries of the matrix corresponding to active positions and
therefore we say that an element/entry ai j of A is active if and only if the position
(i, j) is active. In the same way, we call a column A j active exactly when it contains an
active entry. We also say that a component x j of x is active in the equation Ax = Bx
if and only if there exists i such that either ai j + x j = (Bx)i or (Ax)i = bi j + x j .
Lastly, x j is active in f T x if and only if f j x j = f T x .

Next, we give an overview of some basic properties.

Proposition 3.1 [1,9] If A ∈ R
m×n

and x, y ∈ R
n
, then

x ≤ y ⇒ A ⊗ x ≤ A ⊗ y and A ⊗′ x ≤ A ⊗′ y.

Corollary 3.1 [9] If f ∈ R
n

and x, y ∈ R
n
, then

x ≤ y ⇒ f T x ≤ f T y.
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Lemma 3.1 [9] Let A, B ∈ R
m×n

, c, d ∈ R
m

. Then there exists x ∈ R
n satisfying

Ax ⊕ c = Bx ⊕ d if and only if there exists z ∈ R
n+1 satisfying (A|c)z = (B|d)z.

Theorem 3.1 [11] In IMLOPmin, with finite input, f min = −∞ if and only if c = d.

Theorem 3.2 [11] In IMLOPmax, with finite input, f max = +∞ if and only if there
exists an integer solution to Ax = Bx.

If A ∈ R
m×n

and b ∈ R
m , then, for all j ∈ N , define

M j (A, b) := {t ∈ M : at j b
−1
t = max

i
ai j b

−1
i }.

Proposition 3.2 [5] Let A ∈ R
m×n

, b ∈ R
m and

x̄ := A# ⊗′ b.

(a) An integer solution to Ax ≤ b always exists. All integer solutions can be described
as the integer vectors x satisfying x ≤ x̄ .

(b) If, moreover, A is doubly R-astic, then an integer solution to Ax = b exists if and
only if

⋃

j :x̄ j ∈Z

M j (A, b) = M.

If an integer solution exists, then all integer solutions can be described as the
integer vectors x satisfying x ≤ x̄ with

⋃

j :x j =x̄ j

M j (A, b) = M.

A vector x ∈ R
n

[x ∈ Z
n] satisfying Ax ≤ λx , x �= ε, is called an [integer]

subeigenvector of A with respect to subeigenvalueλ. Since integer vectors are finite, we
deal only with finite subeigenvectors here. The set of all finite [integer] subeigenvectors
with respect to subeigenvalue λ is denoted

V ∗(A, λ) := {x ∈ R
n : Ax ≤ λx}

[I V ∗(A, λ) := {x ∈ Z
n : Ax ≤ λx}].

Existence of [integer] subeigenvectors can be determined, and the whole set can be
described, in polynomial time using the following result.

Theorem 3.3 [5,9] Let A ∈ R
n×n

, λ ∈ R.

(i) V ∗(A, λ) �= ∅ if and only if

λ(λ−1 A) ≤ 0.
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(ii) If V ∗(A, λ) �= ∅, then

V ∗(A, λ) = {(λ−1 A)∗u : u ∈ R
n}.

(iii) I V ∗(A, λ) �= ∅ if and only if

λ(
λ−1 A�) ≤ 0.

(iv) If I V ∗(A, λ) �= ∅, then

I V ∗(A, λ) = {
λ−1 A�∗z : z ∈ Z
n}.

We will need the following immediate corollary.

Corollary 3.2 If A is integer and λ(A) ≤ 0, then

I V ∗(A, 0) = {A∗z : z ∈ Z
n}.

For any TSS, we can deduce a simple criterion for when no integer solution exists.
This idea is key in proving the main results of the paper.

Proposition 3.3 [11] Let A ∈ R
m×n

, B ∈ R
m×k

. If

(∃i ∈ M)(∀ j ∈ N , t ∈ K ) f r(ai j ) �= f r(bit ) and ai j , bit ∈ R,

then neither Ax = By nor (if n = k) Ax = Bx has an integer solution.

Observe that, if either matrix has an ε row, row i say, then the existence of an integer
solution would imply that the other matrix also has its i th row equal to ε. In this case,
the i th row of the equation Ax = Bx can be removed without affecting the existence
of integer solutions.

By Proposition 3.3, we can assume, without loss of generality, that in every row
there exists a pair of indices j, t for which the finite entries ai j , bit satisfy

f r(ai j ) = f r(bit ).

We will restrict our attention to matrices A and B that have exactly one pair of indices
j, t per row. (Note that, if we randomly generated real matrices A and B, it is likely
that (A, B) will have very few such pairs and so this assumption is not too restrictive,
provided that we are working with real valued, and not integer valued, matrices; of
course, for integer matrices, the existing methods [9] for finding real solutions to the
systems discussed will find integer solutions, and hence the interesting case to consider
is indeed when the input matrices are not integer). Given a pair of matrices with such
an assumption on the fractional parts of entries we define, for all rows i ∈ M , the pair
(r(i), r ′(i)) to be the indices such that

f r(ai,r(i)) = f r(bi,r ′(i)).
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Without loss of generality, we may assume that the entries (ai,r(i), bi,r ′(i)) are integer
and that no other entries in the equation for either matrix are integer (this is since we
may subtract a constant from each row of the system without affecting the answer to
the question).

We summarize this in the following definition.

Definition 3.1 Let A ∈ R
m×n

, B ∈ R
m×k

. We say that (A, B) satisfies Property
OneFP if, for each i ∈ M , there is exactly one pair (r(i), r ′(i)) such that

air(i), bir ′(i) ∈ Z, and

for all i ∈ M , if j �= r(i) and t �= r ′(i), then

ai j , bit > ε ⇒ f r(ai j ) �= f r(bit ).

Remark 3.1 Note that this definition allows for multiple ε entries in each row, for
example, the pair (I, I ) satisfies Property OneFP with r(i) = i = r ′(i) for all i .

Throughout this paper, we restrict our attention to pairs of matrices satisfying
Property OneFP.

Recall, from Proposition 3.3, that a necessary condition for an integer solution to
exist is that there is at least one pair of entries sharing the same fractional part in each
row. As mentioned above, if we randomly generated two real matrices A and B, then
we would expect there to be very few pairs of entries, (air(i), bir ′(i)), which share the
same fractional part. So, when given a random two-sided solvable system, the most
likely outcome is that there is at most one such pair of entries in each row. While this
discussion is not mathematically rigorous, it does allow us to conclude that (A, B)

having exactly one such pair per row represents a generic case for solvable systems.

Proposition 3.4 [11] Let A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. Then, the
entries ai,r(i) [bi,r ′(i)] are the only possible active entries in the matrix A [B] with
respect to any integer vector x [y] satisfying Ax = By.

Note that general systems can be converted into systems with separated variables
by Proposition 3.5 below and that this conversion will preserve Property OneFP. So
Proposition 3.4 holds accordingly for general systems.

Proposition 3.5 [11] Let A, B ∈ R
m×n

. The problem of finding x ∈ Z
n such that

Ax = Bx is equivalent to finding x ∈ Z
n, y ∈ Z

n such that

(
A
I

)
x =

(
B
I

)
y.

Hence we restrict our attention to the case of separated variables.
All integer solutions to TSS satisfying Property OneFP can be described by the

following.
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Theorem 3.4 [11] Let A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. For all i, j ∈
M, let

li j := a−1
i,r(i)
a j,r(i)� ⊕ b−1

i,r ′(i)
b j,r ′(i)�

and L := (li j ). Then, an integer solution to Ax = By exists if and only if λ(L) ≤ 0.
If this is the case, then Ax = By = γ (−1) where γ ∈ I V ∗(L , 0).

Corollary 3.3 [11] For A ∈ R
m×n

, B ∈ R
m×k

satisfying Property OneFP, it is
possible to decide whether an integer solution to Ax = By exists in

O(m3 + n + k)

time.

Remark 3.2 (i) The i th row of L , as defined in Theorem 3.4, is equal to H(i)T where

H(i) := (ai,r(i))
−1
Ar(i)� ⊕ (bi,r ′(i))

−1
Br ′(i)�.

(ii) Knowing Ax = γ (−1) = By for any γ ∈ I V ∗(L , 0), we can easily find x and y
using Proposition 3.2.

(iii) It follows from the definition that 
ε�ε−1 = (−∞)(+∞) = ε.

4 Strongly Polynomial Method to Solve IMLOP for Systems with Property
OneFP

In [11], a polynomial algorithm for finding integer solutions to an IMLOP satisfying
Property OneFP was described. The aim of this paper is to develop strongly polynomial
methods for solving I M L O Pmin and I M L O Pmax under the assumption that Property
OneFP holds. Recall that IMLOP has the form,

f T ⊗ x → min or max

s.t. Ax ⊕ c = Bx ⊕ d, x ∈ Z
n (4.1)

where A, B ∈ R
m×n, c, d ∈ R

m, f ∈ R
n . We can write the constraints of the IMLOP

as

(
A|c)

(
x
0

)
= (

B|d) (
x
0

)
, x ∈ Z

n . (4.2)

4.1 Consequences of Property OneFP

Let z = (xT , 0)T ∈ Z
n+1. By Proposition 3.5, the constraint (4.2) is equivalent to the

condition that there exists y ∈ Z
n+1 such that (z, y) is an integer solution to A′z = B ′y

where
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A′ :=
(

A|c
I

)
∈ R

(m+n+1)×(n+1)
, B ′ :=

(
B|d

I

)
∈ R

(m+n+1)×(n+1)
.

This is since, if (z, y) is an integer solution to A′z = B ′y, then so is (z−1
n+1z, z−1

n+1 y)

where z−1
n+1z = (xT , 0)T and z−1

n+1 y = y−1
n+1 y = (xT , 0)T .

Proposition 4.1 Let A, B ∈ R
m×n, c, d ∈ R

m. If there exists a row in which the
matrices (A|c) and (B|d) do not have entries with the same fractional part, then the
feasible set of I M L O Pmin is empty.

Proof It follows from Proposition 3.3. ��
For the rest of the paper, we will assume that the pair ((A|c), (B|d)) satisfies

Property OneFP, and hence so does (A′, B ′). Note that an example is provided at
the end of this paper to clarify many of the concepts that will be introduced in what
follows.

Corollary 4.1 Let A′, B ′ be as defined above. Let

L := (li j ) ∈ Z
(m+n+1)×(m+n+1)

where, for all i, j ∈ {1, . . . , m + n + 1},

li j := (a′
i,r(i))

−1
a′
j,r(i)� ⊕ (b′

i,r ′(i))
−1
b′

j,r ′(i)�.

Then, a feasible solution to IMLOP exists if and only if λ(L) ≤ 0. If this is the case,
then

A′z = B ′z

where z j = γ −1
m+ j for any γ ∈ I V ∗(L , 0) and j ∈ {1, . . . , n + 1}.

Proof Existence follows from Theorem 3.4.
Assume that λ(L) ≤ 0, hence for all γ ∈ I V ∗(L , 0),

(
A|c
I

)
z = γ (−1) =

(
B|d

I

)
y.

Let μ ∈ Z
n+1 be defined by μ j = γm+ j , j = 1, . . . , n + 1, and note that since γ is

finite so is μ. Then,

I z = μ(−1) = I y.

��
Remark 4.1 (i) For A′, B ′ as defined above, L can be calculated in O((m +n)2) time,

λ(L) in O((m + n)3) time, and L∗ in O((m + n)3) time.
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(ii) Clearly, lii = 0 for all i ∈ {1, . . . , m +n +1}, and so λ(L) ≥ 0. Hence, an integer
solution to the TSS exists if and only if λ(L) = 0.

This matrix L , constructed from A′ and B ′, will play a key role in the solution of
the IMLOP. To construct the i th row of L , we only consider columns A′

r(i) and B ′
r ′(i).

From Remark 3.2, the i th row is equal to H(i)T for

H(i) = (a′
i,r(i))

−1
(
A′′

r(i)�
Ir(i)

)
⊕ (b′

i,r ′(i))
−1

(
B ′′
r ′(i)�

Ir ′(i)

)
, (4.3)

where A′′ := (A|c) and B ′′ := (B|d). Observe that,

H(i)t > ε for all i ∈ {1, . . . , m + n + 1}, t ∈ {1, . . . , m}

since A and B are finite. Further, when i ∈ {m + 1, . . . , m + n + 1}, i = m + j say,
then r(i) = j = r ′(i) and Ii,r(i) = 0 = Ii,r ′(i). Hence,

H(i) =
(
A′′

j�
I j

)
⊕

(
B ′′
j �

I j

)
=

(
A′′
j� ⊕ 
B ′′

j �
I j

)
.

Therefore, the matrix L ∈ Z
m+n+1

has the form

(
P Q
R I

)

where P ∈ Z
m×m , Q ∈ Z

m×(n+1)
, R ∈ Z

(n+1)×m , I ∈ Z
(n+1)×(n+1)

.
Moreover, each row of Q has either one or two finite entries, for a fixed i ∈

{1, . . . , m}, the entries li j , j ∈ {m + 1, . . . , m + n + 1} are obtained by calculating

max(
a′
j,r(i)� − a′

i,r(i), 
b′
j,r ′(i)� − b′

i,r ′(i)),

where

a′
j,r(i), j ∈ {m + 1, . . . , m + n + 1}

form a max-algebraic unit vector, as do

b′
j,r ′(i), j ∈ {m + 1, . . . , m + n + 1}.

Thus, at least one will be finite and, if r(i) �= r ′(i), there will be exactly two.
From Corollary 4.1, we have

(
x
0

)
= z = μ(−1)
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where μ is the vector of the last n + 1 entries of some γ ∈ I V ∗(L , 0). By Corollary
3.2, γ = L∗w for some integer vector w. Let V = (vi j ) be the matrix formed of the
last n + 1 rows of L∗, so that μ = V ⊗ w for w ∈ Z

m+n+1, equivalently

(
x
0

)
= z = V (−1) ⊗′ w(−1). (4.4)

Now, (4.4) can be split into two equations, one for the vector x and one for the
scalar 0. Further, we would like the second equation to be of the form mink wk = 0
for ease of calculations later. This leads to the following definition.

Definition 4.1 Let V (0) be the matrix formed from V (−1) by max-multiplying each
finite column j by vm+n+1, j , and then removing the final row (at least one finite column

exists by Property OneFP). Let U ∈ R
1×(m+n+1)

be the row that was removed.

Note that U contains only 0 or +∞ entries.

Proposition 4.2 Let A, B, c, d, V (0), and U be as defined in (4.1) and Definition 4.1.
Then, x ∈ Z

n is a feasible solution to IMLOP if and only if it satisfies

x = V (0) ⊗′ ν
where 0 = U ⊗′ ν for some ν ∈ Z

m+n+1.

Proof By Corollary 4.1, x is feasible if and only if (xT , 0)T = μ(−1) where μ is the
vector containing the last n + 1 components of some γ ∈ I V ∗(L , 0). By the above
discussion, this means that

(
x
0

)
= V (−1) ⊗′ w(−1) =

(
V (0)

U

)
⊗′ ν.

��
We will first consider, in Subsect. 4.2, solutions to I M L O P when L∗, and hence

also V (0) and U , is finite. In Subsects. 4.4.1 and 4.4.2 we deal with the case when L∗
is not finite.

Before this we summarize key definitions and assumptions that will be used through-
out the remainder of the paper, for easy reference later.

Assumption 4.1 We assume that the following are satisfied.

(i) A, B ∈ R
m×n, c, d ∈ R

m .
(ii) A′′ := (A|c), B ′′ := (B|d) and

A′ :=
(

A|c
I

)
, B ′ :=

(
B|d

I

)
.

(iii) The pair (A′′, B ′′) satisfies Property OneFP (and therefore also (A′, B ′)).
(iv) L is constructed from A′, B ′ according to Corollary 4.1.
(v) Without loss of generality, λ(L) = 0.

(vi) V is the matrix containing the last n + 1 rows of L .
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4.2 Finding the Optimal Solution to IMLOP when L∗ is Finite

Theorem 4.1 Let A, B, c, d satisfy Assumption 4.1 and V (0) be as in Definition 4.1.
If L∗ is finite, then the optimal objective value f min is attained for

xopt = V (0) ⊗′ 0.

Proof By Proposition 4.2, we know that any feasible x satisfies x = V (0) ⊗′ ν where,
by the finiteness of L∗ (and also V (0)), we have U T = 0 and hence

ν1 ⊕′ . . . ⊕′ νm+n+1 = 0.

Therefore, x ≥ V (0) ⊗′ 0 for any feasible x and further V (0) ⊗′ 0 is feasible. The
statement now follows from the isotonicity of f T x , see Corollary 3.1. ��

Theorem 4.2 Let A, B, c, d satisfy Assumption 4.1 and V (0) be as in Definition 4.1.
If L∗ is finite, then the optimal objective value f max is equal to

f T ⊗ V (0) ⊗ 0.

Further, let y := V (0) ⊗ 0 and j be an index such that f max = f j y j . If i is such that

y j = V (0)
j i , then an optimal solution is xopt = V (0)

i .

Proof By Proposition 4.2, we know that any feasible x satisfies x = V (0) ⊗′ ν where,
by the finiteness of L∗ (and also V (0)), we have U T = 0 and hence

ν1 ⊕′ . . . ⊕′ νm+n+1 = 0.

If ν j = 0, then x ≤ V (0)
j and therefore all feasible x satisfy x ≤ y = V (0) ⊗ 0. Note

that y may not be feasible.
By isotonicity, f T y ≥ f T x for any feasible x . We claim that there exists a feasible

solution x for which they are equal. Suppose that f T y = f j y j . Let i be an index such

that v
(0)
j i = y j . By setting νi = 0 and all other components to large enough integers,

we get a feasible solution x̄ such that x̄ j = y j . In fact, x̄ = V (0)
i . Hence,

f j x̄ j = f j y j = f T y ≥ f T x̄ ≥ f j x̄ j ,

which implies f T y = f T x̄ as required. ��

It follows from Theorems 4.1 and 4.2 that, if λ(L) ≤ 0 and L∗ is finite, then an
optimal solution to IMLOPmin and IMLOPmax always exists.
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4.3 Criterion for Finiteness of L∗

Theorems 4.1 and 4.2 provide explicit solutions to IMLOP, which can be found in
O((m + n)3) time by Remark 4.1, in the case when L∗ is finite. We now consider
criteria for L∗ to be non-finite, and show how we can adapt the problem in this case
so that IMLOP can be solved using the above methods in general.

Proposition 4.3 Let A, B, c, d satisfy Assumption 4.1.

Let e j ∈ R
m+n+1

be the j th max-algebraic unit vector. The following are equiva-
lent:

(i) L∗ contains an ε entry.
(ii) There exists j ∈ {1, . . . , n + 1} such that L∗

m+ j = em+ j .
(iii) There exists j ∈ {1, . . . , n + 1} such that Lm+ j = em+ j .
(iv) There exists j ∈ {1, . . . , n + 1} such that neither A′′

j nor B ′′
j contain an integer

entry.

Further, the index j satisfies the condition in (ii) if and only if j satisfies the condition
in (iii) if and only if j satisfies the condition in (iv).

Proof Recall that L has the form

(
P Q
R I

)

where P ∈ Z
m×m , Q ∈ Z

m×(n+1)
, R ∈ Z

(n+1)×m , I ∈ Z
(n+1)×(n+1)

.
(ii)⇒(i): Obvious.
¬(iii)⇒ ¬(i): Assume that, for all j , L j �= e j . We know that the first m columns

of L are finite and, by assumption, every column of Q contains a finite entry. This
means that L2 will be finite and thus so will L∗.

(ii)⇔(iii): We show Lm+ j = em+ j if and only if L2
m+ j = em+ j . Fix j such that

Lm+ j = em+ j . Then clearly, L2
m+ j = em+ j and hence (iii)⇒(ii). Although (ii)⇒

(iii) follows from above, we need to also prove that the same index j satisfies both
statements. To do this, we suppose that L2

m+ j = em+ j . Then, for all i ∈ {1, . . . , m}
with i �= j , we have

(
li,1 . . . li,m

) ⊗
⎛

⎜⎝
l1,m+ j

...

lm,m+ j

⎞

⎟⎠ ⊕ (
li,m+1 . . . li,m+n+1

) ⊗ I j = ε

where li,1, . . . , li,m ∈ R. Thus,

l1,m+ j = . . . = lm,m+ j = ε

and hence Lm+ j = em+ j .
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(iii) ⇔ (iv): By the structure of L , (iii) holds if and only if Q contains an ε column.
Fix j ∈ {1, . . . , n + 1}. Now, for any i ∈ M ,

qi j = ε

⇔ li,m+ j = ε

⇔ a′
m+ j,r(i) = ε = b′

m+ j,r ′(i)

⇔ r(i) �= j and r ′(i) �= j

⇔ a′′
i j , b′′

i j /∈ Z.

Therefore, Q contains an ε column if and only if neither A′′ = (A|c) nor B ′′ =
(B|d) contains an integer entry. ��

Observe that, for each j ∈ {1, . . . , n + 1}, either L∗
m+ j = em+ j or L∗

m+ j is finite.
Further L∗

t is finite for all t ∈ M since P and R are finite.

Corollary 4.2 Let A, B, c, d satisfy Assumption 4.1. L∗ is finite if and only if, for all
j ∈ {1, . . . , n + 1}, either (A|c) j or (B|d) j contains an integer entry.

4.4 IMLOP when L∗ is Non-Finite

Theorems 4.1 and 4.2 solve IMLOP when L∗ is finite. In this case, U T = 0 and
we took advantage of the fact that νi ≥ 0 held for every component of ν. However,
if L∗

m+ j = em+ j for some j ∈ N , then U j = +∞ and so ν j will be unbounded.

This suggests that feasible solutions x = V (0) ⊗′ ν are not bounded from below and
introduces the question of whether f min = ε in these cases. We define the set J to be

J := { j ∈ N : Neither A j nor B j contain an integer entry}.

Clearly, this definition of J is independent of whether or not c and d contain integer
entries, this is necessary because, by the discussion above, only values ν j with j ∈ N
may be unbounded (note that Um+n+1 = 0 regardless of whether or not L∗ is finite).
In the following sections, we will use it to identify “bad” or inactive columns of A and
B, which can be removed from the system. First, we consider the case J = ∅, under
which all νi are bounded even though L∗ may not be finite.

Observe that J = ∅ if and only if U T = 0. Further, it can be verified that, the
results in Theorems 4.1 and 4.2 hold when the assumption that L∗ is finite is replaced
by an assumption that U T = 0, in fact, the same proofs apply without any alterations.
The case J = ∅ is therefore solved as follows.

Proposition 4.4 Let A, B, c, d satisfy Assumption 4.1 and V (0) be as defined in Def-
inition 4.1. Suppose J = ∅.

(1) For IMLOPmin, the optimal objective value f min is attained for

xopt = V (0) ⊗′ 0.
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(2) For IMLOPmax, the optimal objective value f max is equal to

f T ⊗ V (0) ⊗ 0.

Further, let y := V (0) ⊗ 0 and j be an index such that f max = f j y j . If i is such

that y j = V (0)
j i , then an optimal solution is xopt = V (0)

i .

It remains to show how to find solutions to I M L O Pmin and I M L O Pmax in the
case when U T �= 0, i.e., when L∗ is not finite and J �= ∅. We do this in the following
subsections.

4.4.1 IMLOPmin when L∗ is Non-Finite

If J �= ∅, then we aim to remove the “bad” columns A j , B j , j ∈ J from our problem
and use Theorem 4.1 to solve it. The next result allows us to do this when J ⊂ N .
It will turn out that, in this case, under Assumption 4.1, an optimal solution always
exists; this will be shown in the proof of Proposition 4.7 below. The case J = N will
be dealt with Proposition 4.8.

Proposition 4.5 Let A, B, c, d satisfy Assumption 4.1 and f ∈ R
n.

Suppose ∅ �= J ⊂ N. If an optimal solution x exists, then f min = f j x j for some
j ∈ N − J .

Proof Suppose x is a feasible solution of I M L O Pmin such that f T x = f min, but
f min �= fl xl for any l ∈ N − J . Let

J̄ := {t ∈ J : f min = ft xt }.

Observe that, for all t ∈ J̄ , neither At nor Bt contains an integer entry and so, by
Proposition 3.4, xt is not active in the equation Ax ⊕ c = Bx ⊕ d. Thus, the vector x ′
with components

x ′
j =

{
x j if j /∈ J̄

x jα
−1 otherwise

for some integer α > 0 is also feasible but f T x ′ < f T x , a contradiction. ��
Hence, we can simply remove all columns j ∈ J from our system and solve

this reduced system using previous methods. Formally, let g be obtained from f by
removing entries with indices in J . Let A−, B− be obtained from A and B by removing

columns with indices in J , so A−, B− ∈ R
m×n′

where n′ = n −|J |. By IMLOP1 and
IMLOP2, we mean the IMLOPs

(I M L O P1) min f T ⊗ x = f (x)

s.t. Ax ⊕ c = Bx ⊕ d, x ∈ Z
n (4.5)
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and

(I M L O P2) min gT ⊗ y = g(y)

s.t. A−y ⊕ c = B−y ⊕ d, y ∈ Z
n′

(4.6)

where, by assumption, the pair ((A|c), (B|d)) satisfies Property OneFP, and therefore
so does ((A−|c), (B−|d)).

To differentiate between solutions to IMLOP1 and IMLOP2, the matrices L , L∗,
V (0), U will refer to those obtained from A, B, c, d . When they are calculated using

A−, B−, c, d, we will call them L̂ , L̂∗, ˆV (0), Û .
In order to prove that an optimal solution always exists, we recall the following

results which tell us that, for any IMLOP, the problem is either unbounded, infeasible
or has an optimal solution. Let

I S = {x ∈ Z
n : Ax ⊕ c = Bx ⊕ d},

Smin = {x ∈ I S : f (x) ≤ f (z) ∀z ∈ I S} and

Smax = {x ∈ I S : f (x) ≥ f (z) ∀z ∈ I S}.

From Theorems 3.1 and 3.2,

f min = −∞ ⇔ c = d and f max = +∞ ⇔ (∃x ∈ Z
n)Ax = Bx .

Proposition 4.6 [11] Let A, B, c, d, f be as defined in (4.1). If I S �= ∅, then f min >

−∞ ⇒ Smin �= ∅ and f max < +∞ ⇒ Smax �= ∅.

Proposition 4.7 Let A, B, c, d satisfy Assumption 4.1 and f ∈ R
n. Let A−, B−, g

be as defined in (4.6). Suppose ∅ �= J ⊂ N. Then f min = gmin, xopt can be obtained
from its subvector yopt by inserting suitable “small enough” integer components and
IMLOP2 can be solved by Theorem 4.1.

Proof First, observe that an optimal solution to IMLOP2 always exists since Û T = 0,
so all components of ν are bounded below. This implies that feasible solutions to
IMLOP2, and therefore also IMLOP1, exist. So, by Proposition 4.6, IMLOP1 either
has an optimal solution or f min = ε. If f min = ε, then, by Theorem 3.1, c = d which,
under Property OneFP, means that c, d ∈ Z

m and there are no integer entries in A or
B. This is impossible since J �= N .

Suppose xopt is an optimal solution to IMLOP1 and let y′ be obtained from xopt by
removing elements with indices in J . Using Property OneFP, we know that components
xopt

j , j ∈ J are inactive in Ax ⊕ c = Bx ⊕ d. Further, from Proposition 4.5, we can

assume also that xopt
j , j ∈ J are inactive in f min (can decrease their value if necessary

without changing the solution). Hence,

f min = f T xopt = gT y′
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and

A−y′ ⊕ c = Axopt ⊕ c = Bxopt ⊕ d = B−y′ ⊕ d.

So y′ is feasible for IMLOP2. If y′ is not optimal, then gmin = gT y′′ < f min for some
feasible (in IMLOP2) y′′ . But letting x ′ = (x ′

j ) where, for j ∈ J , x ′
j corresponds to

y′′
j and x ′

j , j /∈ J , are set to small enough integers, we obtain a feasible solution to

IMLOP1 satisfying f T x ′ = gmin < f min, a contradiction. Therefore, y′ = yopt . A
similar argument holds for the other direction.

We now show how to solve IMLOP2. By Proposition 4.2, feasible solutions to
IMLOP2 satisfy

y = V̂ (0) ⊗′ ν,

0 = Û ⊗′ ν, ν ∈ Z
m+n′+1.

Case 1: There exists an integer entry in either c or d.
Observe that IMLOP2 can be solved immediately by Theorem 4.1 since L̂∗ is finite.
Case 2: Neither c nor d contains an integer entry.
Now L̂∗ is not finite. However, Û is finite and

V̂ (0)

m+n′+1 =
⎛

⎜⎝
+∞

...

+∞

⎞

⎟⎠ .

All other columns of V̂ (0) are finite. The single +∞ column contains no finite entries
and will never be active in determining the value of a feasible solution. Hence, any
feasible solution y still satisfies y ≥ V̂ (0) ⊗′ 0 and yopt = V̂ (0) ⊗′ 0 as in the proof of
Theorem 4.1. ��

Corollary 4.3 Let A, B, c, d satisfy Assumption 4.1 and f ∈ R
n. Let A−, B−, g,

and V̂ (0) be as defined in (4.6). If ∅ �= J �= N, the optimal objective value f min of
IMLOP1 is equal to gT yopt for

yopt = V̂ (0) ⊗′ 0.

The final case for IMLOPmin is when J = N .

Proposition 4.8 Let A, B, c, d satisfy Assumption 4.1 and f ∈ R
n. Suppose J = N.

If c = d, then f min = −∞. If, instead, c �= d, then I M L O Pmin is infeasible.

Proof Follows from Theorem 3.1 and the fact that entries in columns with indices in
J are never active. ��
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4.4.2 IMLOPmax when L∗ is Non-Finite

We will now discuss I M L O Pmax when J �= ∅. The case when neither c nor d contains
an integer is trivial and will be described in Proposition 4.10. We first assume that either
c or d contains an integer entry. Here, we cannot make the same assumptions about
active entries in the objective function as in the minimization case, as demonstrated
by the following example.

Example 4.1 Suppose we want to maximize (0, 1)T x subject to

(
0 −1.5

−0.5 −1.5

)
x ⊕

(−0.5
0

)
=

(
0 −1.6

−0.6 −1.6

)
x ⊕

(−0.6
0

)
.

Note that J = {2}. It can be seen that the largest integer vector x which satisfies this
equality is (0, 1).

Therefore, f max = 2, the only active entry with respect to f T x is x2 and 2 ∈ J .

Instead, we give an upper bound y on x , for which f max = f T y and we can find a
feasible x ′ where f T x ′ attains this maximum value. For all j ∈ J , we have U j = +∞
and also V (0)

j non-finite since L∗
m+ j = em+ j . We will therefore adapt the matrix V (0)

to reflect this.

Definition 4.2 Let V̄ be obtained from V (0) by removing all columns j ∈ J .

Proposition 4.9 Let A, B, c, d satisfy Assumption 4.1 and f ∈ R
n. Let V̄ be as

defined in Definition 4.2. Suppose either c or d contains an integer and ∅ �= J ⊆ N.
Then, the optimal objective value f max is equal to f T y for

y = V̄ ⊗ 0.

Further, let j be an index such that f max = f j y j and i satisfy y j = V̄ ji . Then, an
optimal solution is xopt = V̄i .

Proof From Proposition 4.2, any feasible x satisfies

x = V (0) ⊗′ ν
0 = min

i∈T
νi , ν ∈ Z

m+n+1

where

T = {1, . . . , m + n + 1} − {m + j : j ∈ J }.

Note that T is the set of indices t for which Ut = 0 and |T | = m + n + 1 − |J |.
Consider an arbitrary feasible solution x ′ = V (0) ⊗′ ν′. Let μ′ be the subvector of

ν′ with indices from T . Then,

x ′ = V (0) ⊗′ ν′ ≤ V̄ ⊗′ μ′ ≤ V̄ ⊗ 0 = y
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since mini μ′
i = 0. Therefore, f T x ′ ≤ f T y.

We claim that there exists a feasible x such that f T x = f T y and hence it is
an optimal solution with f max = f T y. Indeed, let j ∈ N be any index such that
f T y = f j y j . Let i ∈ T be an index such v

(0)
j i = y j . Then, by setting νi = 0 and

ν j , j �= i to large enough integers, we obtain a feasible solution x̄ = V (0)
i which

satisfies f T x̄ = f T y. ��
Proposition 4.10 Let A, B, c, d satisfy Assumption 4.1 and f ∈ R

n. Suppose neither
c nor d contains an integer entry. If there exists x ∈ Z

n such that Ax = Bx, then
f max = +∞. If no such x exists, then I M L O Pmax is infeasible.

Proof Follows from Theorem 3.2 and the fact that c �= d since they do not have any
entries with the same fractional part. ��

We conclude by noting that all methods for solving the IMLOP under Property
OneFP described in this paper are strongly polynomial.

Corollary 4.4 Given input A, B, c, d satisfying Assumption 4.1 and f ∈ R
n, both

IMLOPmin and IMLOPmax can be solved in O((m + n)3) time.

Proof From A, B, c, d, we can calculate V (0), V̄ , and U in O((m + n + 1)3) time by
Remark 4.1. Then V (0) ⊗′ 0, V (0) ⊗ 0 or V̄ ⊗ 0 can be calculated in O(n(m + n + 1))

time. From this we can calculate f min or f max in O(n) time. Finally, for IMLOPmax,
we can find an optimal solution in O(m + n + 1) time.

In the cases described in Proposition 4.10, we can perform the necessary checks in
O((m + n)3) time. ��

4.5 An Example

Suppose we want to find f min and f max subject to the constraints x ∈ Z
4 and

(
3 0.5 −1.7 −2.5

−3.7 −1.9 −2.1 −3.7

)
x ⊕

(−0.3
−1

)
=

(
1.4 1.1 1 −1.3
0.8 1 −1.3 −2.2

)
x ⊕

(−0.2
−2.4

)
.

Note that J = {4} and

A− =
(

3 0.5 −1.7
−3.7 −1.9 −2.1

)
and B− =

(
1.4 1.1 1
0.8 1 −1.3

)
.

We first construct A′ and B ′, these are

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0.5 −1.7 −2.5 −0.3
−3.7 −1.9 −2.1 −3.7 −1

0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.4 1.1 1 −1.3 −0.2
0.8 1 −1.3 −2.2 −2.4
0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Then,

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 −3 ε −1 ε ε

1 0 ε −1 ε ε 1
3 1 0 ε ε ε ε

2 1 ε 0 ε ε ε

1 −1 ε ε 0 ε ε

−1 −2 ε ε ε 0 ε

0 −1 ε ε ε ε 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and L∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 −3 −3 −1 ε −1
1 0 −2 −1 0 ε 1
3 1 0 0 2 ε 2
2 1 −1 0 1 ε 2
1 −1 −2 −2 0 ε 0

−1 −2 −4 −3 −2 0 −1
0 −1 −3 −2 −1 ε 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that λ(L) = 0 and hence feasible solutions exist, further L∗
2+4 = e2+4 as

expected from Proposition 4.3. Now, using Definitions 4.1 and 4.2,

V̄ =

⎛

⎜⎜⎝

−3 −2 −3 −2 −3 −2
−2 −2 −2 −2 −2 −2
−1 0 −1 0 −1 0
1 1 1 1 1 1

⎞

⎟⎟⎠ and V̂ (0) =
⎛

⎝
−3 −2 −3 −2 −3 −2
−2 −2 −2 −2 −2 −2
−1 0 −1 0 −1 0

⎞

⎠

(recall that V̂ (0) is calculated from A−, B− as defined in (4.6)).
Suppose f T = (0,−1, 1, 0). We first look for f min. By Corollary 4.3, we have that

gmin = (0,−1, 1) ⊗ (V̂ (0) ⊗′ 0) = (0,−1, 1) ⊗ (−3,−2,−1) = 0.

Hence, f min = 0 and xopt = (−3,−2,−1, x4)
T for any small enough x4.

Now we look for f max. By Proposition 4.9, we have that

f max = f T ⊗ y = (0,−1, 1, 0) ⊗ (−2,−2, 0, 1)T = 1.

Following the proof of this proposition, we see that the optimum is attained either
for i = 3 or i = 4. For i = 3, this relates to columns 2, 4, or 6 of V̄ and hence
the optimal solution can be obtained by setting either ν2, ν4, or ν6 to 0. This yields
xopt = (−2,−2, 0, x4)

T for any small enough x4. If we instead choose i = 4, then
we conclude that any column of V̄ admits an optimal solution.

Finally, observe that V̂ (0) can be obtained from V̄ by removing rows with indices
in J . This is since A− and B− differ from A and B only in columns with indices from
J , meaning that L̂ = L[N − J ] and L̂∗ = L[N − J ]∗.

5 Conclusions

In this paper, we presented a strongly polynomial method to determine whether an
integer optimal solution exists to a max-linear optimization problem when the input
matrices satisfy Property OneFP. We gave a necessary condition for existence of an
integer feasible solution and, further, showed that, under this condition, an integer opti-
mal solution always exists. We described how to find an optimal solution in strongly
polynomial time. Our solution methods can be used to describe many possible integer
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optimal solutions to the system. It remains open to determine necessary and sufficient
conditions for the existence of an integer solution to a TSS/IMLOP when Property
OneFP does not hold. This is one direction for possible future work, as is the con-
struction of a polynomial time algorithm to find integer solutions to the TSS, or prove
that no such algorithm exists.

We restricted our attention to finding integer solutions without −∞, the zero entry
in the max-algebraic semiring, as this is more applicable to a real world example.
However, it would be interesting to study the set of integer solutions that do allow
−∞ entries, it is expected that the generic case described in this paper will also allow
for integer solutions with −∞ to be found in strongly polynomial time.

At the time of writing, for TSSs which do not satisfy the generic property, it is
unknown whether an integer solution can be found in polynomial time. If we remove
the integrality requirement, then it is known that finding a solution to a max-algebraic
TSS is equivalent to finding a solution to a mean payoff game [6]. Mean payoff games
are a well-known class of problems in NP ∩ co-NP; it is expected that a polynomial
solution method will be found in the future.
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15. Butkovič, P., Aminu, A.: Max-linear programming. IMA J. Manag. Math. 20(3), 233–249 (2009)
16. Gaubert, S., Katz, R.D., Sergeev, S.: Tropical linear-fractional programming and parametric mean-

payoff games. J. Symb. Comput. 47, 1447–1478 (2012)
17. Karp, R.M.: A characterisation of the minimum cycle mean in a digraph. Discret. Math. 23, 309–311

(1978)

123


	A Strongly Polynomial Method for Solving Integer Max-Linear Optimization Problems in a Generic Case
	Abstract
	1 Introduction
	2 Defining the Problem
	3 Preliminary Results
	4 Strongly Polynomial Method to Solve IMLOP for Systems with Property OneFP
	4.1 Consequences of Property OneFP
	4.2 Finding the Optimal Solution to IMLOP when L* is Finite
	4.3 Criterion for Finiteness of L*
	4.4 IMLOP when L* is Non-Finite
	4.4.1 IMLOPmin when L* is Non-Finite
	4.4.2 IMLOPmax when L* is Non-Finite

	4.5 An Example

	5 Conclusions
	Acknowledgments
	References


