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Abstract

By 2015, there will be an estimated two billion smartphone users worldwide. This technology presents exciting
opportunities for cognitive science as a medium for rapid, large-scale experimentation and data collection. At present, cost
and logistics limit most study populations to small samples, restricting the experimental questions that can be addressed. In
this study we investigated whether the mass collection of experimental data using smartphone technology is valid, given
the variability of data collection outside of a laboratory setting. We presented four classic experimental paradigms as short
games, available as a free app and over the first month 20,800 users submitted data. We found that the large sample size
vastly outweighed the noise inherent in collecting data outside a controlled laboratory setting, and show that for all four
games canonical results were reproduced. For the first time, we provide experimental validation for the use of smartphones
for data collection in cognitive science, which can lead to the collection of richer data sets and a significant cost reduction as
well as provide an opportunity for efficient phenotypic screening of large populations.
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Introduction

Innovations such as large-scale genotyping, cohort studies and

clinical records linkage allow the analysis of unprecedented

amounts of data from exceedingly large numbers of research

participants. ‘Big data’, although in principle noisier and less well

controlled than small-scale laboratory studies, has the potential to

uncover subtle effects such as individual differences, temporal

trends and the influence of lifestyle and demographic factors on

performance.

In cognitive neuroscience, the conventional paradigm is

laboratory-based recruitment of extremely modest sample sizes.

Here we show the feasibility and power of a new method of data

collection. We developed an app named ‘The Great Brain

Experiment’ (www.thegreatbrainexperiment.com) for smartphones

that enabled participants to perform four standard experimental

paradigms presented in the guise of short games. We hypothesised

that the large sample size afforded by this form of mobile data

collection would outweigh the problems inherent in collecting data

outside a controlled laboratory setting. We also focused on making

the experiments quick and enjoyable to complete, in order to

maximise the number of completed plays to offset the smaller

amount of data that was collected with each play. Here we present

results from the app using four established paradigms to

demonstrate the feasibility, validity and power inherent in this

novel form of large scale cognitive science data collection. A strong

consideration in using this type of platform was the need to deploy

tasks that were both enjoyable and engaging. These four

paradigms were chosen out of many potential tasks because they

cover a range of cognitive domains (perception, action inhibition,

decision-making and short-term memory), they are easily con-

textualised within an enjoyable and competitive game framework,

and the experimenters had extensive experience in their use under

laboratory conditions.

Materials and Methods

The app
Initial experimental designs were devised by the study authors,

and the games were built for smartphone by an external developer

(White Bat Games) (fig. 1). The app was launched for iPhone and

Android in the middle of March 2013. Publicity was garnered

through blog posts and a number of print articles. The social

media sharing function within the app generated word-of-mouth

publicity.

Ethical approval for this study was obtained from University

College London research ethics committee, application number

4354/001. On downloading the app, participants filled out a short

demographic questionnaire and provided informed consent before

proceeding to the games. Each time a participant started a game, a

counter recording the number of plays was incremented. At

completion of a game, if internet connectivity was available, a

dataset was submitted to the server containing fields defining the

game’s content and the responses given. The first time a

participant completed any game the server assigned that device

a unique ID number (UID). All further data submissions from that
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Figure 1. Screenshot of the app, while playing the stop-signal reaction time game. Fruit fell from the tree and participants were asked to
tap simultaneously on both sides of the screen as the fruit passed through the circles. If a piece of fruit turned brown during its fall, participants had
to inhibit their response on that side.
doi:10.1371/journal.pone.0100662.g001
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device, as well as the demographic information from the

questionnaire, were linked to the UID. No personal identification

of users was possible at any time.

To maintain interest and enthusiasm in the app, participants

could compare their scores against those of other users. They

could also read some information about the background and

significance of each psychological paradigm.

Working Memory Task
In the working memory (WM) game, participants were asked to

remember the positions of red circles that appeared in different

positions on a 464 grid. Each trial ended with the presentation of

an empty grid and participants were asked to click on the positions

in which the red circles had appeared. There were various

conditions, but here we focus on two. In the ‘‘no distraction’’

condition the grid containing the red circles appeared for 1 s,

followed by a delay period during which the empty grid was

displayed for 1 s before the app would accept the participant’s

response. The ‘‘distraction’’ condition was identical except that

two yellow circles (distractors) were presented in the grid during

the delay period. The number of red circles (WM load) increased

in line with performance (one red circle was added each time a

trial of that condition was successfully completed). When a

participant failed on two successive trials of a certain condition, the

game continued without that condition. The WM load of the last

successfully completed trial was used as a measure of performance.

Data was removed from 832 participants who failed two successive

trials of WM load 2 in any condition, leaving data from 8987

participants. We focussed on participants aged 18–29 years

(‘‘young adults’’; N = 3247) and 50–69 years (‘‘older adults’’;

N = 1281). The extent to which participants were affected by the

distractors (‘‘distraction cost’’) was determined by calculating the

percentage difference in performance between the two conditions.

Attentional blink task
In the attentional blink task, participants were required to

identify the second of two target images in a rapid serial visual

presentation (RSVP) [1]. The experimental screen showed a pull-

down projection screen, an old-fashioned projector in the

foreground, and a cartoon scientist character indicating that

participants should pay attention to the projection screen. Each

trial started with a fixation cross, displayed in the centre of the

projection screen for 400 ms. The RSVP contained 14 images.

The first target image (T1) was displayed at serial positions 3–7,

and the second target image (T2) followed it by 1–5 serial positions

(lags 1–5). Images were taken from a stock photo website and were

cropped to a square shape and converted to sepia tone. Images fell

into one of seven categories - people, chairs, trees, flowers, llamas,

fruit and birds. Target images were identified as members of a

particular category; the instruction at the beginning of each trial

was ‘Watch for the second [category]!’. The rest of the RSVP

consisted of random non-target images, with the stipulation that

images from the same category could not fall within 3 serial

positions of each other. At the end of the RSVP, a fixation cross

was presented followed by a screen repeating the instruction and

offering a choice of four images from the target category (not

including T1). Participants tapped on the image to give their

answer.

The ISI between images was 199 ms, 166 ms, 133 ms or 99 ms

in the four consecutive levels. These values were determined by

the temporal resolution of the smartphone devices, some of which

have a maximum refresh rate of 33 ms. Each level consisted of 10

trials; two each at each T2 lag. A score of less than 40% (25%

representing chance) in any level terminated the game early.

Target categories and images were randomised.

10,503 users completed 14,907 plays in total. Plays which were

terminated early were removed from the data, leaving 9,749 users

who completed 12,522 plays in total. Proportion correct was

calculated for each time lag and each ISI (level). P-values were

obtained by calculating the z-test for a proportion, using the

formula:

z~
p1{p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1,2(1{p1,2)
1

n1

z
1

n2

� �s

where p1,2 is the total proportion correct across the two test

proportions.

Selective stop-signal task
The stop-signal task measures inhibitory ability. Participants

were presented with two pieces of fruit at the top of the screen.

After a delay sampled from a uniform distribution between 1000

and 3000 ms, both fruits started to fall towards the bottom of the

screen. Participants were instructed to tap both sides of the screen

as fruit passed over a shaded area, which corresponded to a

window of 500–800 ms after onset of the fall. Upon responses

within the time window a green checkmark appeared to indicate a

successful trial. Out of 32 trials in the experiment, a random draw

of 12 trials (37.5%) were ‘selective stop trials’ on which one of the

fruits turned brown, indicating the corresponding side of the

screen should not be tapped. Erroneous responses (outside the

response window, lack of response, or tapping a bad fruit) were

followed by appropriate feedback (‘You touched too soon!’, ‘You

touched too late!’, ‘Touch the fruit inside the circles!’, ‘Don’t touch

the bad fruit!’). On 16 out of 32 trials a glowing circle around one

of the fruits indicated to the participant only that fruit could turn

brown that trial (which it would do in 6 out of 16 trials, i.e. 37.5%).

As such, some trials contained extra information concerning the

action that might require stopping, allowing the participant to

prepare for a selective stop. This contrasts with the other 16 trials

in which no hint was given, and which do not allow for proactive,

selective control [2]. Effects related to these differential cues were

not examined for this paper. The time at which the fruit turned

bad started at 300 ms after onset of falling, and was increased by

50 ms upon a successful stop, and reduced by 50 ms after a failed

stop (i.e. commission error). Such a staircasing procedure leads, on

average, to 50% success on stop trials [3]. We used separate

staircases for trials with and without information on the potential

stopping target. Information cues and stop signals were counter-

balanced over left and right.

Data collected from the same UID was concatenated, and we

discarded data from participants with no correct Go or Stop trials

or no failed Stop trials, as estimation of the stop-signal reaction

time (SSRT) is either impossible (with no correct Go trials), or

unreliable (with 0 or 100% successful stop trials). This left 10,773

out of 12,003 participants, or 90%. We computed the SSRT using

the quantile method [3,4]. All Go reaction times (RTs) were

arranged in descending order. The RT corresponding to the

participant’s probability of successfully stopping over all stop trials

was selected (e.g. for a p(stop) of 0.42 we selected the RT 42%

down the ordered list). From this value we subtracted the mean

time at which the fruit turned bad relative to onset of the start of

the fall to obtain the SSRT. As used throughout the literature, this

value represents the time it takes for the participant to successfully

respond to the stop signal and withhold a response. A fast SSRT,
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then, allows a participant to inhibit their response even if the fruit

turns bad close to the onset of the response. In contrast, higher

SSRTs have been associated with impulse control disorders [3,4].

Decision-making task
The decision-making task allowed us to measure economic

preferences including loss aversion, i.e. greater sensitivity to

potential losses than equivalent gains. Participants started with

500 points and made 30 choices between certain outcomes and

lotteries with potential gains and losses displayed as numbers of

points on the left and right side of a circular spinner. Gambles

were chosen by tapping the spinner which spun for 4.4 s before

stopping on the outcome. Participants were also asked every 2–3

trials to answer ‘How happy are you right now?’ by marking a

point on a line, making 12 ratings including one at the beginning

and end of the task. In each play there were 11 gain-only trials (a

choice between a points gain and a gamble with a larger potential

gain or 0), 11 loss-only trials (a choice between a certain loss or a

gamble with a larger potential loss or 0), and 8 mixed trials (a

choice between 0 points or a gamble with a gain or loss). Trials

were randomly drawn from lists of 60 gain-only trials, 60 loss-only

trials, and 30 mixed trials. The gain-only trials list consisted of 4

certain amounts {30,35,45,55} and gamble gain amounts were

determined by a multiplier on the certain amount varying from

1.63 to 4 selected to accommodate a wide range of risk sensitivity.

The loss-only trials list consisted of 4 certain amounts {230, 235,

245, 255} and the same multipliers as the gain-only trials list.

The mixed trials list consisted of 3 gamble gain amounts

{40,55,75} and the corresponding loss amounts determined by a

multiplier on the gain amount varying from 0.5 to 5 to

accommodate a wide range of loss sensitivity. Participants could

gain or lose up to 220 points in a single trial. Our task design and

model estimation procedure were similar to a prior study [5].

9,799 participants (5,839 female) completed the task with 3,463

participating more than once (range, 1–187 plays). We estimated

risk aversion and loss aversion using a nonlinear choice model

where the utility u(x) of each gain amount x was computed as xr

and the utility of each loss amount was computed as 2l(2x)r

where r captures risk sensitivity and l captures loss sensitivity. The

experimental design accommodated a range of risk sensitivity from

approximately r= 0.5–1.4 and a range of loss sensitivity from

approximately l= 0.5–5. The probability that the participant

chose the gamble was computed using the softmax function as:

1

1ze{m(u(gamble){u(certain)zg)

where m is the sensitivity of choice probability to the utility

difference and g captures an overall bias to gamble independent of

option values. We estimated parameters for each subject using the

method of maximum likelihood.

Results

User demographics
In the first month after release, 44,373 users downloaded the

app and 20,800 users (8,355 male) played at least one game to

completion and submitted data (approximately 5 minutes). Here

we present data from participants over 18 years of age (16,233

users). Upon installing the game, users provided demographic

information (age, sex, education, location, and a rating of overall

life satisfaction (fig. 2)). 25% used the Android version of the app,

the rest used an identical version for iPhone and iPad.

Data from a small fraction of games were lost due to early

termination or lack of internet coverage at the time of game

completion. For the working memory task, users had started an

average of 1.177 games by the time they submitted their first score,

according to the app’s internal counter; for the stop signal task, the

average number of games before submission was 1.225; for the

attentional blink it was 1.123 and for the decision-making task this

number was 1.107.

Working memory task
Performance was significantly lower when distractors were

included (F1,4526 = 893.97, p,0.001, gp
2 = 0.165). As expected

[6,7], WM performance decreased with age (F1,4526 = 1221.33, p,

0.001, gp
2 = 0.213) for both conditions (no distraction:

t1848 = 24.68, p,0.001, Cohen’s d = 0.929; distraction:

t2122 = 29.00, p,0.001, Cohen’s d = 1.007, fig. 3). Furthermore,

there was a significant interaction between age and condition

(F1,4526 = 65.80, p,0.001, gp
2 = 0.014), such that older adults

were more adversely affected by distractors (mean distraction cost

for YA: 4.89%; for OA: 9.23%; t1889 = 26.12, p,0.001, Cohen’s

d = 0.227), supporting the idea of a decline in distractor filtering

ability with age [8,9].

Considering only the younger group, there was a significant

difference between the distraction and no distraction conditions

(t3246 = 21.77, p,0.001, Cohen’s d = 0.418). This result replicates

a laboratory study [10] in which 21 participants (ages 20–29)

performed both distraction and no distraction conditions. Perfor-

mance was greater for the ‘‘no distraction’’ condition, although the

difference did not reach significance (t20 = 1.87, p = 0.076,

Cohen’s d = 0.370).

Selective stop-signal task
Our data satisfy a prediction of the independent race model

[11], the most widely used method for analysis of stop-signal data:

stopFail RTs are shorter than Go RTs and thus represent the fast

part of the entire Go RT distribution (stopFail RT , Go RT,

t10772 = 57.8, p,0.001, Cohen’s d = 0.56). The effect size was

considerably lower than that collected in a similar task under

laboratory conditions (Cohen’s d = 1.81) [12], possibly reflecting

the small number of data points from which the RT measures

were derived. We calculated the stop-signal reaction time (SSRT)

using the quantile method, which is a robust approach that

accounts for inter-individual variability in probability of successful

stopping. The SSRT was relatively high compared to the literature

(mean (SD): 361.9 (67.7) ms) (fig. 3), indicating participants were

relatively slow to inhibit their responses. This potentially reflects

the lack of training in our participants, or the uncontrolled

environment in which the task was performed. However, the

standard deviation of scores was not increased [13,14]. Note that

the SSRT in selective inhibition is known to be longer than in

global inhibition, contributing to the relatively high SSRT

reported here [15].

Attentional blink task
The proportion of correct responses for each serial position and

each lag is shown in fig. 3. Overall 74% of trials elicited a correct

response. For all ISIs, identification of the T2 was significantly

impaired at lags 2–4 compared with lag 5 (all p,0.001). ‘Lag 1

sparing’, preserved performance when T2 directly follows the T1

[16], was with ISIs of 133 ms and 99 ms (both p,0.001).

Potter et al. [17] report T2 response independently of T1

detection. They report a lag 5 accuracy of 82% and a 20-

percentage-point difference between lag 5 and lag 2, at an ISI of

120 ms. Linear interpolation suggests that from our data we would

Crowdsourcing Data Using Smartphones
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expect a lag 5 accuracy of 73% and 13-percentage-point difference

between lag 5 and lag 2 at this ISI.

Decision-making task
Participants finished the experiment with mean (SEM) 571.4

(2.2) points, more (p,0.001) than a random strategy player (mean,

514 points). Participants chose the option with the higher expected

payoff 60.6 (2.2)% of the time, significantly more than chance (p,

0.001). We fit choice data with a model where the parameter l
captures the degree of loss aversion and loss averse participants

have l.1. The mean model fit pseudo-r2 = 0.378. The mean loss

aversion parameter in our participants was l= 1.376 (0.013),

indicating that the group was loss averse on average. Additional

model parameter estimates were m = 0.241 (0.003), r= 0.955

Figure 2. Demographic characteristics of app users. (a) Gender and age breakdown. Young women were the primary app users. (b) Location.
Most users originated from outside the UK, where at app was developed, and users from the UK were not concentrated in any single region. (c) The
app reached participants with higher education degrees as well as those without. Only participants over 25 years of age were included in this analysis
as those younger than 25 may not have completed their education. (d) Life satisfaction rated on a scale from 0–10. This information was recorded for
follow-up analyses in relation to the decision-making task and is not further analysed here.
doi:10.1371/journal.pone.0100662.g002
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Figure 3. Data from the games in this app. (a) Working memory performance in ‘no distraction’ (remember red circles) and
‘distraction’ (remember red circles and ignore yellow circles) conditions, for younger and older participants. Performance deteriorated
with age and distraction, and distraction had a more detrimental effect for older compared to younger adults. (b) Stop-signal reaction time, which
measures inhibitory ability, could be estimated from participant’s data. (c) Probability of successful identification of T2 in the attentional blink task, for
each ISI and lag. T2 recognition was significantly impaired 150–500 ms after T1 presentation, but preserved T2 recognition at lag 1 (‘Lag-1 sparing’)
was noted for shorter ISIs.
doi:10.1371/journal.pone.0100662.g003
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(0.003), and g = 0.822 (0.012). For 3,463 subjects who played more

than once, we estimated l separately for first and second plays and

estimates were correlated across the two plays (Spearman’s

r= 0.25, p,0.001) despite the small number of choices in each

play, suggesting that the model captures stable difference in

economic preferences across our population, allowing participants

who are more or less loss averse to be distinguished.

The degree of loss aversion was similar to in a comparable

laboratory-based study [5], which reported mean loss aversion

l= 1.40 (0.15) for 30 subjects. Participants in that laboratory

experiment each completed 140 choices, more than most of our

participants. Examining just our first 60 (of 9,799) participants,

who completed an average of 60 trials (2 plays) each, yields a

similar estimate of loss aversion: l= 1.35 (0.15), with an identical

variance to the laboratory sample.

Discussion

These data demonstrate that canonical experimental results can

be replicated using smartphone games, despite the relatively

uncontrolled environment when compared to laboratory testing.

We present data from 16,233 participants, gathered over one

month, representing a sixteen-fold increase in the rate of data

collection over a previous attempt at smartphone data collection.

We speculate this increase might potentially be due to the

‘gamification’ of the experimental paradigms [18] and efforts to

package the app in a stylish, engaging format. The app was

extensively discussed on Twitter and reviewed favourably on blogs

such as the Wall Street Journal Speakeasy blog [19], recruiting

further participants. We believe this capturing of attention through

social media, which was enabled by making the app both attractive

and presenting it as a citizen science project, was responsible for

bringing the app to the attention of a large proportion of the

eventual users.

Citizen science projects have harnessed the goodwill of internet

users to undertake complex data analysis, such as classifying the

shapes of galaxies [20], finding optimal protein folding configu-

rations [21], tracking neurons through the retina [22] and

deciphering archived manuscripts [23]. Other authors have used

Mechanical Turk [24], a service which allows crowdsourcing of

short computer-based tasks, to generate human psychological and

psychophysical data. They have similarly found that effect sizes are

relatively uncompromised [25]. While web-based (e.g. Mechanical

Turk) experiments are usually longer and do not require an

experimenter to render the tasks engaging, they carry a major

disadvantage in so far as their cost scales with the number of

participants, whereas the costs of a smartphone app are fixed by

the cost of development. It is worth noting that the distinction

between our app and Mechanical Turk is the recruitment and

motivations of the participants rather than the platform – we could

easily create a web-based version of our app, and this could be

explored in later developments of the project. However, the use of

a smartphone-specific UID theoretically allows for more reliable

longitudinal and cross-study data linkage, as data from multiple

timepoints and tasks can be associated with a single user with a

reasonable level of certainty. In future additions to the app, the

wide range of functionality offered by smartphones, including

cameras, motion sensors and location-tracking abilities, could

potentially be exploited further. Previous work has usefully

exploited these characteristics of smartphones in the form of

experience sampling [26], and this could usefully be combined

with behavioural tasks in future work.

Accuracy of smartphones
What are the practical limitations of today’s smartphones for

use in cognitive science experiments? Consistent delivery of

visually presented stimuli and collection of timed responses

depends on a multitude of factors, key considerations being the

performance of the smartphone’s screen, processors and careful

engineering of the experimental software.

Here, as is typical in computer games design, a central block of

software (the ‘game loop’) is executed by the smartphone at high

frequency (hardware manufacturers and software developers

recommend up to 60 Hz [27,28]). Each time it is executed, the

game loop prepares any changes to the stimuli on screen, and

delivers them to the graphics hardware for rendering and display.

It is straight forward, therefore, for the experimenter to guarantee

the minimum display time for each stimulus: the game loop

displays the stimulus, and then it continues looping without

making changes to the screen until a predetermined number of

seconds has elapsed.

There is, however, an inherent level of inaccuracy in the

maximum display time for each stimulus. The precision of this is

determined by the performance of the smartphone. For instance, if

the game loop operates at 60 Hz, maximum stimulus display times

will be accurate to 16.67 ms (1/60 seconds). If the smartphone can

only run the game loop at 30 Hz, the maximum stimulus display

time will be accurate to 33.33 ms (1/30 seconds). Additional

inaccuracies may occur if the experiment requires particularly

rapid display of stimuli, and if the smartphone cannot prepare the

stimuli quickly enough. To avoid these problems we did not

include experiments with ultra-fast stimulus durations (the fastest

being the attentional blink task, with stimuli delivered up to

10.1 Hz). Note also that these issues are not specific to

smartphones, and also apply to regular computer-based stimulus

delivery.

Effect size comparison
The motivation for carefully controlled laboratory studies is that

they increase the effect size of the effect of interest, reducing the

number of participants needed to demonstrate the effect. One

concern about the use of smartphones is that they will reduce the

effect size below the level which can be compensated for by

recruitment of additional participants. However, this was not the

case for our experiments.

Effect size was not substantially smaller than for a study

performed in the laboratory for the working memory task. In this

case, although the effect sizes are comparable, the larger number

of participants using the app allowed demonstration of the

significance of a subtle effect not seen in the laboratory.

Effect size was substantially reduced for the stop-signal task,

however this was more than compensated for by the increased

sample size. A typical laboratory sample size is 16, which gives

80% power to detect an effect size of d = 1 (a very large effect) at

the p = 0.05 two-tailed level. Even if the effect was reduced to just

d = 0.2 (an effect of only marginal interest) by translation to

smartphones – a much more dramatic decrease in effect size than

that seen here – the sample size required to give the same power

would be 400, which represents only 4% of the sample sizes

achieved by this app.

Comparison of effect sizes in the attentional blink task was

challenging because most studies in the literature report the

percentage of T2 correctly identified given correct identification of

T1, rather than unconditional T2 identification, in order to

control for trial-to-trial fluctuations in attention. This partly

explains the (apparently) much more dramatic attentional blink

effects seen in conventional studies [1]. However, our attentional
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blink effect was somewhat reduced even when compared with

unconditional T2 reports in laboratory studies [2]. The reduction

of the attentional blink effect is likely to be caused by the more

general reduction in performance, presumably due to increased

distraction in the non-lab environment. Asking for a report of T1

might reduce this problem, but would make the game less

playable.

In the decision-making task, increased experimental noise might

be expected to increase the variance around parameter estimates.

However, the population loss aversion parameter could be

estimated with similar variance to the laboratory estimate after a

smaller total number of plays, suggesting that the uncontrolled

environment had little or no effect on behaviour in this game.

These data suggest that apps have real potential to uncover

small and subtle psychological effects which could not easily be

captured in the laboratory, even under ideal experimental

conditions. Future work must explore smartphones’ ability to find

more subtle cognitive effects before they can be fully validated as

data-gathering tools. The loss of power is not as significant as

might be expected, and can be easily recouped with the much

higher potential participant numbers.

Demographics of the users
The users recruited were of a broader range of ages, education

and geographic location to subjects typically recruited for

laboratory experiments from the local University subject pool.

85% of users registered on the subject pool are current university

students; of the app users, only 65% of users aged above 24 had

completed a degree. 91% of subject pool participants are aged

below 32, compared with 35% of app users aged below 30. In

addition, only London-based participants can be recruited through

the subject pool, whereas the app was downloaded across the UK

and internationally.

This approach therefore shares the documented advantages of

Web-based research – e.g. the far larger sample size and cost-

efficiency, the greater variation amongst participants, etc – and

some of the disadvantages, e.g. higher dropout rates and hence a

need for shorter and simpler experiments, and the potential lack of

one-to-one mapping of users to devices. The statistical power

afforded by the former can compensate for the latter in web-based

research [29], and we have demonstrated that this is likely to also

be the case for smartphone experiments.

What experiments can be translated to smartphone
games?

All four of the experiments we chose had to carefully

compromise between obtaining good experimental data and

providing an enjoyable user experience. An initial consideration

was that the strategy which produced optimal experimental data

should be congruent with the category giving a high score. For

example, in the stop-signal reaction time experiment the effect size

will be maximal when participants are performing as well as they

can as differences between performance will not be masked by

general increases in reaction time caused by lack of attention or

motivation. Attentive, motivated playing is also rewarded by a

high points score, meaning the participant is incentivised to

produce good experimental data. This might not be the case in, for

instance, an experiment looking at the perception of visual

illusions, where participants could maximise their points by

feigning veridical perception once they understood the nature of

the illusion. This is particularly important given the potential non-

naiveté of participants [30].

We aimed to ensure that the average time to complete each

game was less than 5 minutes, and we observed that the quickest

game (the stop-signal reaction time) yielded, and continues to

yield, the highest number of plays. Each game was played twice by

at least 1,500 participants, indicating that incentives to play

multiple times might be an effective way of increasing the size of

individual datasets.

All games were extensively piloted for pace and difficulty. We

chose to introduce two of the games – attentional blink and

working memory – with a very easy level which did not yield much

interesting data due to ceiling effects. However, starting with a

very easy level reduces the need for complicated explanations of

the experiment and encourages participants to persevere with the

game. Forced delays were kept to a minimum to maintain

attention and interest.

In short, a successful smartphone experiment will be short, fast-

paced, easy at the beginning, and performing the experiment in

line with the experimenter’s objectives will be rewarded with a

high points score.

Limitations of smartphone experiments
The clear potential of smartphone experiments is to gather data

from a large number of potentially very diverse participants, and

link datasets across time and tasks. However, the use of a

smartphone app must be carefully considered. Although direct

experimenting time was eliminated in this project, the recruitment

and retention of participants required commitment to maintain

the high profile of the app through both traditional and social

media. Development of the app constituted a fixed investment of

time and money, which resulted in good value compared to

traditional laboratory experiments because of the number of

participants recruited. However, if fewer participants are antici-

pated to be recruited, or fewer are needed, a web-based or in-

house study might prove more time- and cost-effective. The

development of an app is substantially more technically specialised

than producing a similar experiment in dedicated psychophysics

software, meaning the process likely needs to be outsourced,

increasing development time (though reducing direct work by the

experimenter). However, adding new games to an existing app is a

much simpler process, reducing costs in all these domains.

Smartphone experiments will never be able to offer guaranteed

one-to-one mapping of users to devices. Confidentiality issues and

incomplete internet coverage mean some data will always be lost,

while the potential for distracting factors is greatly multiplied

compared to in-house experiments. The limitation on the length of

games necessarily limits the precision of any individual subject

estimates, while variation in the technical specifications of

smartphone models might mean smartphones are not a suitable

medium for certain psychophysical experiments where physical

stimulus properties are important.

Nonetheless, smartphones are a unique avenue through which

members of the general public can be engaged with and

participate in scientific research. Research funding organisations

are increasingly recognising the importance of ‘public engage-

ment’ – informing and exciting people outside of the scientific

community about scientific research. Apps appeal to an increasing

public interest in science and an increasing desire to actively

participate in science, and we are hopeful that they can also help

build trust and mutual understanding between researchers and the

public.

Conclusion
We are currently extending the capabilities of the app, adding

further experiments in the auditory and motor domains, as well as

allowing researchers to invite participants for laboratory-based

research based on their performance in the app. We suggest apps
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could thus be used as a screening tool for studies that aim to

characterize extremes of the population. These participants might

then be further assessed using neuroimaging techniques.

There are currently over one billion smartphones in use

worldwide, and this number is predicted to rise to two billion by

2015 [31]. Smartphone users represent a participant pool far

larger and more diverse than could ever be studied in the

laboratory. In time, data from simple apps such as this one might

be combined with medical, genetic or lifestyle information to

provide a novel tool for disease risk prediction and health

monitoring, in addition to helping uncover the links between

psychological characteristics, demographics, and wellbeing.
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18. Dufau S, Duñabeitia JA, Moret-Tatay C, McGonigal A, Peeters D, et al. (2011),
Smart phone, smart science: how the use of smartphones can revolutionize

research in cognitive science. PLoS One 6:e24974.

19. Wall Street Journal Speakeasy Blog. Available: http://blogs.wsj.com/
speakeasy/2013/04/17/game-theorys-top-10-android-games/?mod = google_

news_blog. Accessed 13/06/2014.
20. Clery D (2011). Galaxy evolution. Galaxy zoo volunteers share pain and glory of

research. Science. 333(6039):173–5.
21. Khatib F, Cooper S, Tyka MD, Xu K, Makedon I, et al. (2011). Algorithm

discovery by protein folding game players. Proc Natl Acad Sci U S A.

108(47):18949–53
22. Eyewire website. Available: eyewire.org. Accessed 13/06/2014.

23. von Ahn L, Maurer B, McMillen C, Abraham D, Blum M (2008).
reCAPTCHA: human-based character recognition via Web security measures.

Science. 321(5895):1465–8.

24. Crump MJ, McDonnell JV, Gureckis TM (2013) Evaluating Amazon’s
Mechanical Turk as a tool for experimental behavioral research. PLoS One

28:e57410.
25. Sprouse J (2011) A validation of Amazon Mechanical Turk for the collection of

acceptability judgments in linguistic theory. Behav Res Methods 43(1):155–67.
26. Mackerron G, Mourato S (2013). Happiness is greater in natural environments.

Global Environmental Change 23(5):992–1000.

27. Cabrera PJ, Bakhirev P, Marsh I, Smith B, Wing E, et al. (2010) Beginning
iPhone Games Development. New York: Apress.

28. Buck E. (2012) Learning OpenGL ES for iOS: A Hands-on Guide to Modern
3D Graphics Programming. Harlow: Addison-Wesley.

29. Birnbaum MH (2004) Human research and data collection via the internet.

Annu Rev Psychol. 55:803–32.
30. Chandler J, Mueller P, Paolacci G (2013) Nonnaı̈veté among Amazon
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