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A B S T R A C T

Verifying that taught modules are marked and taught to a common

standard is important but doing so by comparing mean module

marks is inadequate when students’ ability is not uniform across

these modules. For example, a module taken by a group of students

of above average ability may justifiably result in a high mean mark,

without implying that inconsistent standards have been applied.

We propose a modified version of the fixed effects regression that

provides direct estimates of module mark biases while conditioning

for student composition and requiring no additional, potentially

confidential, information on students or staff. We describe how this

modified fixed effects regression can be implemented on a set of

student marks and how the results can be interpreted. Increases in

student numbers and tuition fees have increased the preoccupation

with, and monitoring of, marks. We show how one can generate

statistics that are more informative of the biases in marking, while

being explicit about their limitations.
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1. Introduction

Within academic departments, discussions sometimes arise over the range of students’ marks
awarded across taught modules (Orr, 2007; Price, 2005) and whether instructors are marking and
teaching to a common, consistent1 standard. These discussions are sometimes informed by informal
comparisons of modules’ mean marks, as illustrated in the second column of Table 1. Sometimes the
comparisons are more formal, such as calculating how each module’s mean mark differs from the
overall average (the cohort mean), as illustrated in the third column of Table 1. However, upon
identifying modules with large mean mark biases we are still unable to, without confidential or difficult
to access data, separate out if these biases are due to:
� T
la
he average ability of each student in that module.

� T
he level to which students’ assessment has been marked.

� T
he standard to which students have been taught.

In this paper we show how to use fixed effects regressions to remove those parts of the module biases
that are due to the average ability of the students, the student fixed effects. Additional, simple
calculations can then be used to obtain the student-conditioned module biases. We also propose a minor
modification to the fixed effects regression which estimates these biases directly.

The resulting student-conditioned module biases provide more appropriate statistics upon which
outlier modules can be identified. For example, a module with a very high simple mean may in fact have
a very small student-conditioned module bias because it was taken by students of high average ability.
Though the student-conditioned module biases do not identify whether inconsistent marking or
teaching has taken place, these biases at least reflect instructor-related issues only. Instructors may
therefore be best placed to use confidential students’ and colleagues’ evaluations to identify marking
or teaching inconsistencies. Student-conditioned module biases may substantially mitigate the
incentive for instructors to mark towards the overall mean in an attempt to satisfy the monitoring,
although we cannot claim that this incentive is entirely eliminated. This gradual regression towards
the mean2 of the marks distribution can be an unintended consequence of comparing simple module
means.

One advantage of these fixed effects regressions is that they control for each students’ average
performance without requiring additional information on instructors or students. For the fixed effects
methods to improve upon a simple comparison of module means, each student’s overall ability must
have a significant impact on the marks they achieve in every module they take. For example, a student
who is good in Mathematics is also likely, though not certain, to be good in History. We feel this is a
reasonable assumption and, as we will see, statistical tests strongly support this in our dataset. In the
event that the student fixed effects make no significant contribution to the marks they achieve, the
student-conditioned module biases will offer no benefits over the comparison of simple module
averages. Although it may seem an anathema to compare marks between modules in different topics,
say Mathematics and History, module marks should nonetheless be comparable because they are
often used to arrive at an aggregate degree mark for each student. Another requirement for the fixed
effects estimators to work is that the weaker students share at least some modules with stronger
students. This method of analysis should therefore work for any cohort of students who share a large
proportion of modules. The students need not be on the same programme of study and they need not
all share any one module.

The concept of an outlier module necessarily requires comparison to a benchmark grade, for which
there are two obvious choices. One is simply a stated average target, of say 60%, set by departments or
the University. The benchmark we prefer, and therefore adopt, is the overall average mark, the cohort

mean. The cohort mean is a good benchmark because it can be viewed as the expected mark if all
students were of equal ability, exerted equal effort and if teaching staff taught and marked to the same
1 By consistency we mean a social agreement among things; rather than the statistical definition of asymptotic consistency in

rge data samples or the mathematical definition of internal consistency within a model.
2 This refers to the phenomenon of regression towards the mean as first proposed by Galton (1886).



Table 1
Mean module marks.

Module (ranked by mean) Module mean mark Module mark biasa Observations

1 49.34 �9.00 110

2 53.87 �4.47 38

3 53.89 �4.44 19

4 54.64 �3.69 14

5 54.75 �3.59 4

6 55.49 �2.84 126

7 56.71 �1.62 52

8 57.00 �1.34 11

9 57.42 �0.91 33

10 57.44 �0.90 82

11 58.21 �0.13 43

12 58.59 0.26 54

13 60.40 2.06 5

14 60.67 2.34 143

15 61.00 2.66 11

16 61.02 2.68 102

17 61.09 2.75 11

18 62.80 4.46 10

19 63.67 5.33 12

20 63.74 5.40 106

21 64.45 6.12 11

22 65.00 6.66 16

23 67.31 8.98 16

24 68.17 9.83 6

25 72.56 14.22 9

(Overall) cohort mean 58.336 1044 marks (awarded to 170 students)
a Module mean minus (overall) cohort mean.
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standard. In Section 3 we show how to ensure that the student-conditioned module biases are relative
to the cohort mean in the conventional fixed effects regressions and, in Section 4, how our modified
version estimates these biases directly. Our modified fixed effects regression offers four specific
advantages over the comparison of simple module averages:
� I
t controls for each individual student’s overall performance.

� I
t automatically calculates module biases relative to the overall cohort mean.

� I
t identifies if the module biases are statistically different from zero.

� I
t accounts for the number of students in each module when calculating this statistical difference by

giving more weight to modules with more students.

The final two features could also be achieved when comparing simple module means but they
would require additional statistical computations.

The dataset that we use in our empirical example is for a cohort of 170 Master’s level students on
various degree programmes within one academic department in one academic year. Most students
took seven modules and they shared a large proportion of these modules. Table 1 lists the module
mean marks for the example dataset, with modules ranked by mean mark to facilitate comparisons. As
we will see in Section 4, some modules that appear to be outliers in Table 1 are not outliers when
student effects are controlled for (and vice versa). To preserve the anonymity of the source data, no
programme or module names are given.

The paper proceeds as follows. Section 2 provides further motivation for analysing the consistency
of module marks. In Section 3 fixed effects regression is described and initial regression results are
provided. Section 4 presents our simple modification of the fixed effects estimator to obtain the
module biases directly and discusses the results for our example dataset. Section 5 deals with possible
statistical refinements and analytical extensions. A final section concludes.
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2. Background

In UK higher education, increases in student numbers and fees have created a need for formal
procedures to help reach agreement on the range of marks awarded. In the 1970s <20% of UK school-
leavers went into higher education and, with small student numbers, instructors could use informal
means to reach agreement on standards (Thomas, 1976). In 1997 the Labour Government adopted a
policy objective of raising higher education attendance to 50% of school-leavers. By 2010 that objective
was not quite achieved but numbers increased substantially by attracting students from outside the UK.
With such large numbers in higher education, informal agreement on marking standards has become
harder and formal procedures more necessary. In late 2010 the Coalition Government passed legislation
allowing substantial increases in higher education tuition fees. In England these fees in many cases
tripled to £9000 per year. These higher fees may increase the students’ demand for accountability in the
marking process and hence may increase the need for formal statistical verification. Higher fees may also
create more pressure from students to identify where the quality of teaching is significantly above or
below the average standard in that academic institution. Despite these pressures, Blackmore (2009)
suggests that instructors are shifting effort away from improving teaching and towards monitoring
assessment. These challenges are also faced by higher education institutions outside the UK where
student numbers or student fees can be very high.

Achieving consistent marks across different modules is of vital importance from a didactic
perspective because the wish is for students to choose their optional (elective) modules based on their
interests and career plans. Inconsistent marks create distorted incentives for students to select modules
where achieving a higher mark is perceived to be easier. Consistent marks are also important because
students’ perceptions of being assessed on the basis of merit influences their learning experience, see
Lizzio et al. (2002) and Nesbit and Burton (2006). Students’ increased preoccupation with their marks is
an inevitable consequence of increased fees and a competitive graduate job market.

In related research, the incentive for instructors to award high marks in tacit return for high
student evaluations of teaching (SET) has been documented by Isley and Singh (2005), McPherson
(2006), Nowell (2007) and others. Though related, the analysis in this paper is neither a substitute nor
a complement for the analysis of SET. The latter is covered by a large and growing literature. For a
recent empirical application of SET see Nowell et al. (2010). The potential exists for merging the
analysis of SET with our analysis of module bias to formally identify how the two interact. However, if
a causal relationship between the two is sought, the timing of the assessments and the SET should be
carefully modelled.

As discussed in Section 1, our proposed fixed effects analysis controls for the student effects when
comparing modules but it does not mitigate all of the undesirable incentives facing instructors who
are scrutinised using simple module means. The use of almost any statistical procedure to monitor
marks incentivises instructors to award marks that are very close to the expected cohort mean so that
their module mean does not stand out. Comparison of simple module mean marks can therefore lead
to a strong compression of the marks distribution. Instructors’ preoccupation with marking (Hadsell
and MacDermott, 2012) is already on the increase and qualitative monitoring of instructors in higher
education by peer observation of teaching is now widespread and its consequences have been
documented in Hammersley-Fletcher and Orsmond (2004). The proposed fixed effects regression can
therefore be seen as a simple but effective refinement to existing assessments of marking and
teaching. Even for instructors who simply wish to understand what standard is being applied when
awarding marks, the student-conditioned biases offer a metric that is more informative than the
simple use of module means. This may include instructors who are new to the teaching profession, see
Nicholls (2005) and Webber (2005), or instructors who have recently arrived to a new institution with
different marking practices, see Knight (2006).

3. Indirect estimation of student-conditioned module biases using standard fixed effects
regressions

A fixed effects model can either be estimated using simple ordinary least squares (OLS) regression
upon an equation such as (1), where the fixed effects are specified using binary variables, or using fixed
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effects regression on an equation such as (4), where the data are transformed so that the fixed effects
are differenced out. Both OLS and fixed effects estimation will provide identical parameter estimates for
the remaining parameters in the model. In this section we show how to estimate models of module
marks that include student fixed effects and how to derive the fixed effects estimator.

Fixed effects estimators are often available as ready-written routines within statistical software
packages and only require a one-line command. The detailed description in this section is included to
aid the understanding of how these fixed effects estimators are implemented in our example (see
Greene, 2012, Section 11.4 for a generic discussion) and to provide a basis for understanding our
modified fixed effects estimator in Section 4. Readers who are familiar with the fixed effects estimator
can look at the results in Table 2 and then go straight to Section 4.

As explained in Section 1, the dataset under analysis is for a cohort of Master’s level students that
contains the following variables:
� M
Ta
Fi
ark: This is the dependent variable in our analysis and it records the final percentage mark
awarded to each student in each completed module.
ble 2
xed effects regressions on Marks awarded.

Estimation

method:

OLS regression with

student effects (Eq. (1))

Fixed effects regression

(Eq. (4))

Student cond. module

biases (Eqs. (5) and (6))

Parameters s.e. Parameters s.e.

Constant (b0) 49.97 0.82**

Module_1 �8.36

Module_2 6.74 1.62** 6.74 1.62** �1.62

Module_3 1.45 2.29 1.45 2.29 �6.91

Module_4 1.09 2.68 1.09 2.68 �7.27

Module_5 5.72 4.67 5.72 4.67 �2.65

Module_6 5.86 1.08** 5.86 1.08** �2.51

Module_7 8.12 1.44** 8.12 1.44** �0.25

Module_8 4.04 2.99 4.04 2.99 �4.33

Module_9 9.89 1.70** 9.89 1.70** 1.53

Module_10 7.61 1.23** 7.61 1.23** �0.75

Module_11 5.49 1.77** 5.49 1.77** �2.88

Module_12 9.39 1.39** 9.39 1.39** 1.03

Module_13 8.83 4.13* 8.83 4.13* 0.46

Module_14 11.5 1.07** 11.5 1.07** 3.14

Module_15 8.04 2.99** 8.04 2.99** �0.33

Module_16 10.37 1.18** 10.37 1.18** 2.01

Module_17 6.83 3.00* 6.83 3.00* �1.53

Module_18 7.99 3.10* 7.99 3.10* �0.37

Module_19 8.56 3.00** 8.56 3.00** 0.20

Module_20 14.61 1.11** 14.61 1.11** 6.24

Module_21 11.51 2.91** 11.51 2.91** 3.15

Module_22 10.28 2.51** 10.28 2.51** 1.91

Module_23 19.75 2.44** 19.75 2.44** 11.39

Module_24 21.42 3.90** 21.42 3.90** 13.06

Module_25 14.94 3.15** 14.94 3.15** 6.58

Student effects Included but not reported Differenced out

Overall-R2 0.6336 Cohort mean:

Within-R2 0.2554 Mark ¼ 58:336

Observations 1044 1044

Two-way ANOVA: Effects Partial sum of squares F-statistics

(Eq. (7)) Model overall effects 96,953.2048 F(193,850) =7.62**

Student fixed effects 75,255.1511 F(169,850) =6.75**

Module fixed effects 19,230.0015 F(24,850) =12.15**

R2 =0.6336 Observations 1044
* p<0.05.
** p<0.01.
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� M
odule_1 to Module_M: These are zero-one module dummy variables identifying all of the M=25
modules taught by the Department to that cohort of students.

� S
tudent_1 to Student_N: These are zero-one student dummy variables identifying all of the N=170

students in the cohort.

Each observation is uniquely identified by two indices:
� id
: This is a student-specific identifier. Most academic institutions already assign anonymous
numeric identifiers to aid in the impartial treatment of students.

� m
d: This identifies which module was taken by the student. The data panel is ‘unbalanced’ as

students do not all take the same modules.

This is a panel dataset in a non-conventional sense insofar as the module identifier md replaces the
usual time dimension t. In some statistical software packages one of the identifiers must be the time
dimension and these packages can be persuaded into accepting the dataset as a panel by pretending
that the md identifier is the time dimension.

OLS can be used to estimate Eq. (1) that includes student fixed effect dummies:

Markid;md ¼
XM
i¼2

biModule iid;md þ
XN

j¼1

a jStudent jid;md þ eid;md (1)

where the aj are the individual students’ fixed effects, the bi are the individual module effects and e is
the error term. To avoid perfect multi-collinearity, both the constant and any one of the Module_i

dummies are excluded because the student identifiers sum to one. We have excluded the variable for
Module_1, hence the first summation term starts at i=2. The first regression in Table 2 reports the
estimates of Eq. (1). These estimates reflect how the student-conditioned module means deviate from
Module 1’s mean. However, as there is no constant to capture Module 1’s level we cannot compute the
module biases relative to the cohort mean (or any other reference level). We can see that the overall fit
of the model is good with an R2 of 0.6336 showing that over half of the variation in marks is explained
by this simple model.

The standard fixed effects estimator, derived below and defined in Eq. (4), eliminates the need to
estimate the numerous individual fixed effects and provides an estimate the constant that is missing
from OLS estimates of Eq. (1). This makes it possible for us to calculate module mark biases with
respect to any chosen reference level, such as the cohort mean. This is done using three
transformations of Eq. (1). The first takes student-average values of the variables to give:

¯Markid̄;md ¼
XM
i¼2

biModule īid̄;md þ
XN

j¼1

a jStudent jid;md þ ēid̄;md (2)

where the over-lines indicate student-based averages for each variable. So, for example, for any one
student, every entry for the variable ¯Markid̄;md is that student’s mean mark across all of her/his own
modules. Note that in Eq. (2) there are no over-lines on the student dummies because they are already
equal to their own individual means ðStudent jid;md ¼ Student j̄id̄;mdÞ.

The second transformation takes the overall cohort average value of Eq. (1):

¯̄Markid̄;md̄ ¼
XM
i¼2

bi
¯̄Module iid̄;md̄ þ

XN

j¼1

a j
¯Student j̄id̄;md̄ þ ¯̄eid̄;md̄

This can be simplified further because all its elements are constants and can therefore be expressed
without id and md subscripts, and because the sum of the student effects across all students and all
modules is equal to a constant term denoted by b0 and hence:

¯̄Mark ¼
XM
i¼2

bi
¯̄Module i þ b0 þ ¯̄e (3)
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The final transformation defines the fixed effects equation (4) by subtracting (2) and adding (3) to

Eq. (1) where v is just a composite of the other error terms:

Markid;md � ¯Markid̄;md þ ¯̄Mark ¼ b0 þ
XM
i¼2

biðModule iid;md � Module īid̄;md þ ¯Module īÞ

þ vid;md (4)

The fixed effects estimator is obtained by applying OLS to Eq. (4). The paradox is that the fixed
effects estimator does not actually estimate these fixed effects; it differences them out so that they do
not need to be estimated, though they are controlled for. This is very convenient when there are a large
number of individuals thus eliminating the need to estimate a large number of parameters.

The second regression in Table 2 reports the results from estimating Eq. (4). Notice that the same
parameters as before are estimated but with the useful addition of an estimated constant b0. Although
the within-R2 is only 0.2554 this is after the variation due to the student effects has been differenced
out. This therefore indicates that this model is explaining about one quarter of the variation in marks
after the variation explained by student fixed effects has been removed. An important aspect of the
fixed effects estimators is that they properly account for the degrees of freedom in the regression by
including the number of fixed effects that have been differenced out of the model, 170 in this example.
This is why the standard errors in the two regressions in Table 2 are identical to one another even
though 194 parameters have been estimated in Eq. (1) while only 25 have been estimated in Eq. (4).

With the estimated constant now at our disposal, we can calculate the implied student-
conditioned module biases for these marks by using the overall cohort mean mark as a reference. The
student-conditioned bias for the control module (Module 1) is simply the difference between the
estimated constant and the cohort mean, Eq. (5), and the student-conditioned bias for each of the
remaining modules is the estimated module parameter plus the bias for the control module, Eq. (6):

Bias 1 ¼ b̂0 � ¯̄Mark (5)
Bias i ¼ b̂i þ b̂0 � ¯̄Mark for i ¼ 2 to M (6)

These module biases are reported in the final column of Table 2. From these we see that Module 1
has the largest negative student-conditioned module bias at �8.36 which is not very different from its
simple module bias of �9.00 in Table 1. Module 25 has a positive student-conditioned module bias of
6.58 which, though large, is less than half that of its simple bias of 14.22 in Table 1. We could test
whether Eqs. (5) and (6) are statistically different from 0 using simple t-tests. However this would
require us to find additional information on the covariances between our estimated parameters. We
prefer to specify a modified fixed effects estimator, as outlined in Section 4, that estimates these
student-conditioned module biases directly and that requires just a simple degrees of freedom
adjustment to the standard errors. Simple t-tests of significance on these parameter estimates, using
the adjusted standard errors, will directly identify outlying modules.

A two-way analysis of variance (ANOVA), as specified by Eq. (7), provides yet another way of
analysing this dataset:

Markid;md ¼ b0 þ
XM
i¼2

biModule iid;md þ
XN

j¼2

a jStudent jid;md þ eid;md (7)

A two-way ANOVA provides us with an indication as to the significance of the student effects and
the module effects in predicting the marks achieved. A standard two-way ANOVA is defined by the OLS
estimation of Eq. (7) and then reporting the significance of the contribution made by the modules and
the students as illustrated at the base of Table 2. We see that the F-statistic for the overall model is 7.62
showing a strong overall significance for the model. The F-statistic for the student effects is 6.75 and
that for the module effects is 12.15 showing that each is statistically significant, well beyond the 1%
significance level, in predicting the marks obtained by students. Although Eqs. (1), (4) and (7) are
statistically equivalent to one another in terms of overall fit, they provide slightly different results as
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they use different reference points for the constant b0.The equivalence in overall fit for Eqs. (1) and (7)
is shown by their identical R2 of 0.6336.

4. Direct estimation of student-conditioned module biases using a modified fixed effects
regression

In this section we show how to modify Eq. (4) to define an alternative fixed effects regression that
estimates the student-conditioned module biases directly, without recourse to other calculations.
However, the resulting standard errors need to be corrected for the appropriate degrees of freedom.

Eq. (8) illustrates our modified fixed effects estimator. It presents two modifications upon Eq. (4).
The first is that the constant b0 has been excluded and the first module effect is therefore included
alongside the others.3 Applying only this first modification would estimate the student-conditioned
module means. The second modification is not to add the overall cohort mean on the left-hand side
variable. Applying both modifications directly estimates the student-conditioned module biases with
respect to the cohort mean:

Markid;md � ¯Markid̄;md ¼
XM
i¼1

biðModule iid;md � Module īid̄;md þ ¯Module īÞ þ vid;md (8)

We are not aware of any software commands that will implement our modified fixed effects
estimator directly. We therefore make the appropriate transformations to the data and apply OLS. The
estimated student-conditioned module biases are reported in column 3 of Table 3 and we can see that,
as expected, they are exactly the same as those calculated in the last column of Table 2.

The reported standard errors have been corrected for the appropriate degrees of freedom in the
fixed effects estimator in Eq. (8). That is, the extra N student effects that have been differenced out.
This is akin to the automatic adjustment made in the standard fixed effects estimator in Eq. (4). The
corrected standard errors for the modified fixed effects estimator can be calculated by re-weighting
the automatically reported erroneous OLS standard errors using the following formula:

s:e:ðb̂iÞFE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Obs � M

Obs � M � N þ 1

s
� s:e:ðb̂iÞOLS for i ¼ 1 to M (9)

This simply multiplies out the incorrect degrees of freedom and re-divides by the correct degrees of
freedom. The fifth column reports the corrected t-statistics and, at the bottom of the table, the critical
values needed to determine statistical significance.

To understand why the adjustment in Eq. (9) is appropriate, consider that the OLS covariance
matrix is varðbÞ ¼ ŝ2

X0X
� ��1

where X is the matrix of explanatory variables. OLS estimation of Eq. (8)
erroneously calculates ŝ2

OLS ¼ RSS=ðObs � MÞ where RSS is the residual sum of squared residuals and
Obs is the total number of observations. However, under fixed effects estimation this should be
ŝ2

FE ¼ RSS=ðObs � M � N þ 1Þ so that the N student effects are also accounted for. The fact that the N

student effects add up to the constant adds 1 back into the total. The correct estimated error variance
can therefore be calculated as:

ŝ2
FE ¼

Obs � M

Obs � M � N þ 1
� ŝ2

OLS (10)

The results in Table 3 show that the size, and ranking, of the module biases can be very different
under the student-conditioned (fixed effects) analysis than under the simple module bias analysis.

Modules 1, 3, 4, 6 and 11 have statistically significant negative student-conditioned biases.
Hence, these modules are outliers suggesting they have either been marked too harshly or that poor
student learning experiences led to low assessment scores. Interestingly, outlier Module 11 has a
simple bias of just �0.13 and would therefore not have been identified as an outlier if comparing
simple module means. Module 2 has a small, insignificant student-conditioned bias of �1.62
3 We are grateful to an anonymous referee for this suggestion.



Table 3
Student-conditioned module biases.

Simple module

biases (Table 1)

Student conditioned results

Module biases (Eq. (8)) Corrected statistics (Eq. (9))

bi s.e. t-stats Outliers Obs.

Module_1 �9.00 �8.36 0.82** �10.232 Largest t-stat 110

Module_2 �4.47 �1.62 1.44 �1.126 38

Module_3 �4.44 �6.91 2.09** �3.309 Negative 19

Module_4 �3.69 �7.27 2.48** �2.935 Negative 14

Module_5 �3.59 �2.65 4.56 �0.580 4

Module_6 �2.84 �2.51 0.75** �3.325 Negative 126

Module_7 �1.62 �0.25 1.22 �0.204 52

Module_8 �1.34 �4.33 2.81 �1.541 11

Module_9 �0.91 1.53 1.53 1.001 33

Module_10 �0.90 �0.75 0.97 �0.777 82

Module_11 �0.13 �2.88 1.45* �1.984 Negative 43

Module_12 0.26 1.03 1.18 0.874 54

Module_13 2.06 0.46 4.01 0.116 5

Module_14 2.34 3.14 0.69** 4.530 Positive 143

Module_15 2.66 �0.33 2.81 �0.117 11

Module_16 2.68 2.01 0.85** 2.364 Positive 102

Module_17 2.75 �1.53 2.82 �0.542 11

Module_18 4.46 �0.37 2.93 �0.128 10

Module_19 5.33 0.20 2.82 0.070 12

Module_20 5.40 6.24 0.83** 7.547 Positive 106

Module_21 6.12 3.15 2.73 1.153 11

Module_22 6.66 1.91 2.31 0.830 16

Module_23 8.98 11.39 2.26** 5.041 Positive 16

Module_24 9.83 13.06 3.77** 3.462 Largest bias 6

Module_25 14.22 6.58 2.99* 2.198 Positive 9

Within-R2 0.2554 1044

t5%
Obs�M�Nþ1 ¼ �1:963

t1%
Obs�M�Nþ1 ¼ �2:582

* p<0.05.
** p<0.01.
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despite a simple mean-based bias of �4.47. This implies Module 2 is not an outlier, with appropriate
marks and students who on average also performed poorly in other modules. Under the system of
comparing simple module means, the Module 2 marker may have come in for unfair criticism.
Module 8 has a student-conditioned bias that, though large, is not statistically significant. This is
because the weight of statistical evidence is a combination of the bias size and the sample size, and
in this case the combined evidence is insufficient.

Modules 14, 16, 20, 23, 24 and 25 have statistically significant positive student-conditioned biases.
These biases suggest the modules have either been marked too generously or that good student
learning experiences led to high scores. Module 22 has a large simple module mean bias of 6.66 but the
student-conditioned bias is small at 1.91 and statistically insignificant, suggesting the marks are
consistent for this cohort. Module 22 may have been erroneously identified as one with generous
marks when comparing simple means. Module 21 has a large student-conditioned bias of 3.15 but this
is statistically insignificant because it was only taken by 11 students and we therefore have
insufficient statistical evidence to say that its bias is significant. Modules 14 and 16 would be unlikely
to come under scrutiny based on comparing simple module means, but the student-conditioned bias
analysis shows them to be outliers.

Given the large number of modules, it seems unsurprising that some of them are outliers at the 5%
level. A random draw from 25 unbiased modules would on average generate 1.25 biased modules
(25�5%=1.25). However, eleven (nearly half) of the modules appear to have statistically significant
biases at the 5% level. This is important because the student-conditioned module biases suggest that
issues to do with marks may need to be addressed.
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It is possible to identify five broad scenarios when comparing any one module’s simple mean-based
bias with its student-conditioned module bias:
� N
th
either the simple bias nor the student-conditioned bias identify a module as an outlier and
therefore no issues of marking inconsistency arise4 (e.g. Module 12).

� B
oth the simple bias and the student-conditioned bias identify a module as an outlier. One may wish

to explore if this bias is due to marking standards or teaching features (e.g. Module 1).

� T
he simple bias suggests an outlier module but the student-conditioned bias does not. The marking

is probably consistent and the high (or low) marks in the module are probably due to the module
being taken by students who performed better (or worse) than the student cohort as a whole (e.g.
Module 2).

� T
he simple bias does not indicate an outlier but the student-conditioned bias does. This

suggests there is a hidden source of bias, for example, the module may have been taken by
students who overall performed well but the marking or teaching led to low scores (e.g.
Module 11).

� A
 fifth, unlikely, scenario may emerge where the simple bias and the student-conditioned bias are in

opposite directions but both are significant outliers. For example, a module may have been taken by
students who on average were poor performers but the marking or teaching led them to achieve
high scores, and this module might warrant closer analysis (though insignificant, Module 17 has
biases in opposite directions).

The analysis of this dataset has shown that student-conditioned biases may identify different
modules as outliers than a simple module mean comparison. Therefore, we suggest that calculating
student-conditioned module biases is useful if we want to identify outliers more effectively.

5. Extensions

The fixed effects regression analysis proposed in this paper can be extended in a number of ways,
some statistical and some in the modelling. The statistical extensions are relatively straightforward.
The modelling extensions may enable a better understand of why the module biases arise. We are
unable to implement these with our dataset due to data confidentiality restrictions and such
additional data may not be easily available within many academic settings. In addition, we also
mention other applications for our modified fixed effects technique.

A simple statistical extension is to produce parsimonious regression results by a step-wise removal
of statistically insignificant module dummies. Typically, the removal process is stopped when the
parameter on the least significant variable achieves a 5% or 1% significance level. The resulting
parsimonious regression retains the significant outlier module dummies and the diagnostic statistics
gain power due to the omission of the insignificant ones. Step-wise regression was first proposed by
Gorman and Toman (1966) based on a suggestion by Efroymson (1960).

An alternative statistical approach is to estimate a random effects regression where the student
fixed effects are assumed to have a normal distribution (see Greene, 2012, Section 11.5). This implies
that student ability, or effort, is normally distributed thus imposing a structure on the otherwise freely
determined fixed effects. The results of the random effects regression is reported in Table 4. We can see
from the last two columns of this table that the implied module biases in the random effects model
and the fixed effects model are similar to one another. Though the standard errors indicate much
greater statistical significance for the parameters estimated by random effects, the Hausman tests at
the bottom of Table 4 indicate that the structure implied by this random effect model is rejected and
the fixed effects model is preferred. To be more precise, both Hausman tests reject the hypothesis that
the always more efficient random effects estimator is in this case consistent and instead selects the
always consistent, but less efficient, fixed effects estimator. In this case at least, the biases implied by
the fixed effects estimators are more reliable.
4 Subject to the caveat that these modules have not been both marked harshly and taught unusually well (or vice versa) so that

e two effects cancel each other out.



Table 4
Random effects regression on Marks awarded.

Random effects regression results

bi s.e. R.E. module biases

(Eqs. (5) and (6))

F.E. module biases

(Tables 2 and 3)

Constant (b0) 49.51 1.02**

Module_1 �8.83 �8.36

Module_2 5.89 1.63** �2.93 �1.62

Module_3 2.45 2.27 �6.38 �6.91

Module_4 2.38 2.63 �6.45 �7.27

Module_5 5.88 4.65 �2.94 �2.65

Module_6 5.95 1.10** �2.88 �2.51

Module_7 8.05 1.46** �0.77 �0.25

Module_8 5.35 2.94 �3.48 �4.33

Module_9 9.58 1.72** 0.75 1.53

Module_10 7.72 1.25** �1.10 �0.75

Module_11 6.76 1.71** �2.07 �2.88

Module_12 9.32 1.42** 0.50 1.03

Module_13 9.86 4.14* 1.04 0.46

Module_14 11.34 1.08** 2.52 3.14

Module_15 9.35 2.94** 0.52 �0.33

Module_16 10.68 1.19** 1.86 2.01

Module_17 8.77 2.94** �0.05 �1.53

Module_18 9.50 3.05** 0.67 �0.37

Module_19 11.10 2.87** 2.27 0.20

Module_20 14.54 1.14** 5.72 6.24

Module_21 12.89 2.89** 4.06 3.15

Module_22 12.05 2.47** 3.23 1.91

Module_23 19.67 2.43** 10.84 11.39

Module_24 21.17 3.87** 12.35 13.06

Module_25 16.83 3.14** 8.00 6.58

Within-R2 0.2531 0.2554

Observations 1044 1044

Hausman tests of fixed effects versus random effects

Hausman (1978) matrix-difference method: H=71.60**

Arellano (1993) regression method: H=71.50**

Both Hausman tests reject the hypothesis that the R.E. estimator is in this case consistent and instead select the F.E.

estimator.
* p<0.05.
** p<0.01.
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The first proposed modelling extension is to add individual instructor dummies to check if there is
an instructor effect in the marking. One of the instructor dummies would have to be excluded in order
to avoid collinearity. These instructor effects can be added to either regression equations (1), (4) or (8),
and in the first case this becomes:

Markid;md ¼
XS

s¼2

gsInstructor Sid;md þ
XM
i¼2

biModule iid;md þ
XN

j¼1

a jStudent jid;md þ eid;md

where the gs are the instructor effects. The estimation is only viable if no single instructor teaches just
one module, otherwise the instructor dummy would be collinear with the module dummy bi in which
they teach.

Another extension is to analyse a dataset that spans more than one cohort of students. Again, we
could achieve this by modifying regression equations (1), (4) or (8), and in the first case this would
become:

Markid;md;t ¼
XT

t¼2

ttYear tid;md;t þ
XM
i¼2

biModule iid;md;t þ
XN

j¼1

a jStudent jid;md;t þ eid;md;t
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where the estimated parameters tt identify if there are any cohort effects on the marks and t indexes
the year. The advantage of the multi-cohort analysis is the increase in data-points and the
identification of long-term module biases.

Sometimes it is felt that students perform less well in compulsory modules. This can be modelled
by including a zero-one dummy C that indicates if a particular student was compelled to take a
particular module, using the regression:

Markid;md ¼ dCid;md þ
XM
i¼2

biModule iid;md þ
XN

j¼1

a jStudent jid;md þ eid;md

Identifying the compulsion to take a module may not always be straightforward because some
modules may be compulsory for some students but optional for others.

Developing innovative teaching methods, such as problem-solving exercises, and evaluating their
impact is an important aspect of teaching development. Buckridge and Guest (2007) debate the
tradeoffs between different teaching approaches. One practical contribution to the above debate
would be to identify teaching methods, traditional or innovative, that provide the most ‘value added’.
To compare all modules where teaching is purely by traditional lectures to those using innovative
methods one could simply insert identifier dummies. However, it may be that only a proportion of a
module is taught using innovative methods and we should allow for the fact that mixing traditional
and innovative methods may lead to learning outcomes that are greater (or lower) than the sum of
their parts. A flexible modelling strategy is therefore to estimate a regression equation such as:

Markid;md ¼ r1Pid;md þ r2P2
id;md þ

XM
i¼2

biModule iid;md þ
XN

j¼1

a jStudent jid;md þ eid;md

where P is the proportion of the module taught using innovative teaching methods and its square P2 is
included to allow for a non-linear response. For example, a small proportion of innovative teaching
may bring positive benefits but as this proportion grows the additional benefits diminish until they
become detrimental. The exact form of this response is determined by the shape of the function
implied by estimates of r1 and r2. Of course, additional teaching methods can be analysed by
including additional ratios in the regression equation but variation may also be due to variations in the
methods of assessment. For example, Krieg and Uyar (2001) identify how student performance is
affected by multiple choice versus essay-based tests and Tian (2007) identifies how performance is
affected by take-home assignments versus in-house examinations. One sometimes also comes across
contradictory arguments on whether students do better on technical modules. This too can be
modelled by including a variable that indicates the technicality of modules but it raises the question as
to whether technical content can be captured by a zero-one dummy, an index, or a continuous
variable.

The fixed effects approach in Eq. (4) or (8) may also have other applications where a metric varies
along two categorical dimensions. For example, in Section 2 we mentioned the widespread use of
student evaluation of teaching to monitor instructors’ performance. Simply comparing average
instructor scores can cause similar distortions to the comparison of mean module marks as discussed
in the Introduction. If an academic institution was able to link each student’s teaching evaluations to
one another while still guaranteeing their anonymity from the instructors, it could control for the
student fixed effects because any one student may systematically provide high or low evaluations.

6. Conclusion

Monitoring the consistency of marks is obviously important because of the incentives that
inconsistent marks creates for students and because of the challenges facing instructors due to
increasing student numbers and fees. Fixed effects regression, and the resulting student-conditioned
module mark biases, provides a useful tool for checking the consistency of marks in each module.
These biases offer a statistical analysis that is more sophisticated than the comparison of simple
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module means because they use student fixed effects to accommodate individual students’ overall
performance. Any remaining statistically significant module bias will be instructor-related only, i.e.
due to teaching standards or marking level, and instructors may then be best placed to decide what
action to take. For example, a module with high marks may have been marked consistently if it was
taken by students who also achieved high scores in their other modules.

In summary, we suggest estimating our modified fixed effects regression equation (8) and using the
corrected standard errors in Eq. (9) to test the significance of the student-conditioned module module
biases. The dataset used in this paper indicates the extent to which the student-conditioned module
mark biases can identify modules as being outliers. Some modules that seemed outliers in the simple
comparison of module means were not so under the student-conditioned analysis. Conversely, some
modules that were not outliers in the simple analysis do appear to be outliers when student ability is
controlled for. This highlights that in practice it is important to account for student performance when
evaluating the consistency of module marks.
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