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Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating dif-
ferent Evolutionary Algorithms (EAs) to solve challenging numerical optimization prob-
lems. Particularly, PAP has shown significant advantages to single EAs when a number of
problems need to be solved simultaneously. Previous investigation on PAP reveals that
choosing appropriate constituent algorithms is crucial to the success of PAP. However,
no method has been developed for this purpose. In this paper, an extended version of
PAP, namely PAP based on Estimated Performance Matrix (EPM-PAP) is proposed. EPM-
PAP is equipped with a novel constituent algorithms selection module, which is based
on the EPM of each candidate EAs. Empirical studies demonstrate that the EPM-based
selection method can successfully identify appropriate constituent EAs, and thus EPM-
PAP outperformed all single EAs considered in this work.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

In the past decades, population-based algorithms, e.g., Evolutionary Algorithms (EAs), have been shown to be powerful
optimization techniques for various real-world problems. However, since the performance of EAs may vary greatly from
one problem to another, choosing the most appropriate EA is usually a non-trivial task. Algorithm selection will be even
more challenging when a practitioner needs to address multiple problems simultaneously, as it might be too tedious to fig-
ure out the best algorithm for each single problem. Hence, an algorithm that performs generally well on all these problems is
usually desirable. Motivated by this consideration, a general framework Population-based Algorithm Portfolios (PAP) has
been proposed [17].

Basically, PAP can be viewed as a combination of multiple EAs. When solving a single problem, PAP ‘‘invests’’ computa-
tional time to its constituent EAs, runs them in parallel and maintains interactions between them via a simple migration
scheme. In case of solving a set of problems, PAP utilizes the same settings for all problems considered, rather than trying
to identify the best algorithm for each single problem. Empirical studies showed that, by integrating the advantages of dif-
ferent EAs into one framework, PAP not only provides practitioners a unified approach for solving his/her problem set, but
also may lead to better performance than a single EA [17].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.03.105&domain=pdf
http://creativecommons.org/licenses/by/3.0/
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Despite the promising preliminary results, both empirical and theoretical analysis revealed that the performance of PAP is
sensitive to its constituent EAs [17]. In some cases, integrating multiple EAs even led to inferior performance in comparison
to a single EA. This phenomenon raises another research question. That is, how to select a few constituent algorithms for PAP
from those off-the-shelf EAs. Although some analyses have been conducted in [17] to give guidelines along this direction, no
approach has been developed.

This paper aims at further advancing the research on PAP by enabling it to select constituent algorithms automatically. An
extended version of PAP, named PAP based on Estimated Performance Matrix (EPM-PAP), is proposed. EPM-PAP incorporates
a novel and efficient approach for choosing constituent EAs. Given a problem set to address in a fixed time budget and a set of
candidate EAs, EPM-PAP first utilizes a portion of the time budget to establish an EPM, based on which the constituent EAs
are selected. After that, the constituent EAs will be used to construct a PAP instantiation to solve the problems with the
remaining time budget.

The rest of this paper is organized as follows. Section 2 introduces PAP and the constituent algorithms selection problem
associated to it. After that, details of EPM-PAP are described with discussion on related work in Section 3. Section 4 presents
the experimental studies that compare EPM-PAP to other relevant approaches. Finally, conclusions and discussions are given
in Section 5.
2. Preliminary background

2.1. Population-based Algorithm Portfolio

Generally speaking, the term algorithm portfolio refers to the idea of ‘‘investing’’ the entire time budget in multiple algo-
rithms rather than allocating it to a single algorithm. It concerns fully utilizing the advantages of these algorithms in order to
benefit a problem-solving episode. This idea has been explored for more than ten years, and early investigations are mainly
dedicated to combinatorial problems [10,11]. Recently, PAP was proposed to generalize this idea to numerical optimization,
with a focus on EAs [17]. More important, while the aim of most previous work is to boost performance on a single optimi-
zation problem, PAP mainly concerns the overall performance on a set of problems.

A typical instantiation of PAP consists of l EAs as its constituent algorithms, denoted as {ai|i = 1, 2, � � � , l}. Given a budget of
computation time (e.g., a total number of fitness evaluations), a PAP instantiation allocates the time budget to its constituent
EAs by holding m separate subpopulations and applying each constituent EA to one of them. During the evolution process,
information sharing is implemented by migrating promising individuals among subpopulations. PAP terminates when the
given fitness evaluations (FEs) are used up. The pseudo-code of PAP is shown in Fig. 1.

From the perspective of heuristic search, PAP can be viewed as a generic framework that utilizes different search biases.
This concept has been intensively investigated in the evolutionary computation community since 1990s, but most early
research focused on integrating multiple search operators (e.g., different mutation operators) into an EA, e.g., [1,13,14,18].
It is only recently that the integration of multiple EAs attracted more attention. For example, Vrugt et al. [25] proposed a
multi-algorithm genetically adaptive method (AMALGAM), which combines multiple EAs together. Besides, the emerging
research on Ensemble of Evolutionary Algorithms (EEAs) also employs the idea of combining multiple search techniques
[16,30]. Although these efforts might be conceptually similar to PAP in the aspect that they also involve multiple algo-
rithms/operators/parameters, like different ensemble approaches in machine learning, PAP was developed with a different
aim. To be specific, the motivation of PAP is to achieve good overall performance on a set of problem instances and reduce the
risk of failing to solve any single problem instance, while both AMALGAM and EEAs concern more about performance on sin-
Fig. 1. The general framework of a PAP instantiation.



Table 1
Main notations used in this paper.

A the set of candidates EAs from which constituent EAs are selectedeA a set of constituent EAs, or the corresponding PAP instantiation

m number of candidate EAs
l number of constituent EAs in a PAP instantiation
i index of constituent EAs of an PAP instantiation
j index of candidate EAs
ai and aj a constituent EA and a candidate EA, respectively
F the set of problems to solve
n number of problems to solve
k index of problems
fk a problem in set F
T total time budget for solving a set of problems
EPM estimated performance matrix
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gle instances. The objective of PAP is more realistic than seeking an approach that performs the best for all problem
instances, since such an approach may not even exists because of the no-free-lunch theorem [26].

2.2. Formulation of the constituent algorithms selection problem

Given a time budget T, PAP can be employed to solve a set of problems through two major steps. That is, determining the
constituent EAs, and then applying the obtained PAP instantiation1 to the problems of interest. Suppose F = {fk|k = 1, 2, . . . , n}
is a set of problems to solve. Let A = {aj |j = 1, 2, . . . , m} be a set of candidate EAs, from which a number of EAs will be selected as
the constituent EAs of PAP. The optimal set of EAs for the PAP can be written as:
1 Sin
eAopt ¼ arg maxeA # A

UðeA; F; TÞ ð1Þ
where UðeA; F; TÞmeasures the overall performance of a PAP instantiation eA on F within T. Following [17], UðeA; F; TÞ is defined
based on the pair-wise comparison of PAP instantiations, as given in Eq. (2):
PðeA > eA0jFÞ ¼ 1
n

Xn

k¼1

PðeAk > eA0kjfkÞ; f k 2 F ð2Þ
where eA and eA0 are different subsets of A and represent the corresponding PAP instantiations. eAk > eA0k means eA outperformseA0 on fk (i.e., eA obtained a better final solution than eA0). P denotes the probability of the event eAk > eAk0, which can be esti-
mated by running eA and eA0 on fk for multiple times. For each eA # A, UðeA; F; TÞ can be calculated by summing up Eq. (2) over alleA0 # A.

To summarize, the constituent algorithms selection problem aims to choose from A a number of algorithms ai, with which
a good PAP instantiation can be established using the framework given in Fig. 1. Moreover, from the viewpoint of practice,
the time budget T is provided for solving the whole problem set F, which consists of both the time for constituent algorithms
selection (a ‘‘set-up’’ procedure) and the time for executing the resultant PAP instantiation. Hence, the constituent algo-
rithms need to be selected in an efficient way in order to reserve sufficient time for solving the problems. For the sake of
clarity, the major notations used in this paper are listed in Table 1.

3. PAP based on estimated performance matrix

Although the constituent algorithms selection problems are defined in the form of a standard optimization problem in
Eqs. (1) and (2), it cannot be solved trivially. To be specific, given m candidate EAs, there exist 2m candidate constituent
EAs subsets (and thus the same number of different PAP instantiations). Hence, calculating Eq. (2) for all pairs of PAP instan-
tiations will be computationally prohibitive even when m is of moderate value. In this section, we first present a novel
approach for constituent EAs selection, which is based on Estimated Performance Matrix (EPM) and does not require exhaus-
tive comparison between PAP instantiations. After that, the EPM-PAP algorithm is summarized with a discussion on relevant
work.

3.1. Estimated performance matrix

Let A = {aj |j = 1, 2, . . . , m} and F = {fk|k = 1, 2, . . . , n} be the set of candidate EAs and the set of problems to solve, suppose
the total time consumed by the constituent selection procedure is t (t < T). The EPM is a matrix that records the performance
of each candidate EA aj e A. For each aj, the corresponding EPM, denoted by EPMj, is an r-by-n matrix. This matrix can be
ce a PAP instantiation is built on its constituent algorithms set, these two terms will be used interchangeably in the context of this paper.
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obtained by running aj on each of the n problems for r times. Each element of EPMj is the objective value of the best solution
that aj obtained on a problem in a single run. Since each element of EPMj is obtained with a small portion of T,2 it can be
viewed as a conservative estimate of the solution quality achieved by running aj with T on the same problem. Although the
accuracy of such an estimate is by no means guaranteed, it has been commonly employed in many other scenarios, e.g.,
fine-tuning the parameters of an EA [4], where the performance of an EA needs to be estimated.

3.2. EPM-PAP

The definition of EPM can be extended to PAP instantiations easily, i.e., by constructing an EPM for each candidate PAP
instantiation. However, this straightforward extension suffers from the fact that the number of potential PAP instantiations
increases exponentially with the number of candidate EAs. Consider the scenario that a time budget t is available for select-
ing the constituent algorithms of PAP from m candidate EAs. The average time available for constructing an EPM for each
possible subset of candidate EAs will be much less than that for constructing an EPM for a single candidate EA. As a result,
the EPMs in the former case will provide a much less accurate estimate on an algorithms’ performance and may lead to the
selection of an inappropriate constituent algorithms set. Hence, a more cost-effective way needs to be developed.

Recall that the basic idea of PAP is to combine different EAs to achieve superior performance than employing any single
candidate EA. Hence, it is natural to expect that a candidate EA, say aj, outperforms a good PAP instantiation with a small
probability. Under the assumption that constituent EAs of a PAP instantiation is run independently, the probability that a
PAP instantiation under-performs aj, on problem fk can be stated as Eq. (3):
2 t/m
Rk;j ¼
Yl

i¼1

1� Pk
i;j

� �
ð3Þ
where l is the number of constituent EAs of the PAP instantiation and Pk
i;j denotes the probability that the ith constituent EA of

the PAP instantiation outperforms aj. In practice, as constituent EAs of a PAP instantiation interact with one another via
migration, they are not truly independent. In this case, Eq. (3) does not hold and Rk,j can hardly be written explicitly due
to the difficulty of theoretically modeling the interactions between different constituent EAs. However, PAP only migrates
good solutions among constituent algorithms. Such migrations, as demonstrated by previous study on PAP as well as on dis-
tributed EAs, can enhance the quality of the final solution obtained. Hence, it is highly likely that Rk,j will decrease when
introducing the migration scheme into PAP. In other words, Eq. (3) can be viewed as an upper bound (though not a rigorous
one) of the true probability of the PAP instantiation being outperformed.

By averaging Eq. (3) over the candidate EA set A = {aj |j = 1, 2, � � � , m} and the problem set F = {fk|k = 1, 2, . . . , n}, we can re-
formulate the selection of constituent EAs as a minimization problem with the objective function given in Eq. (4):
R ¼ 1
mn

Xm

j¼1

Xn

k¼1

Yl

i¼1

1� Pk
i;j

� �
ð4Þ
The minimization problem defined by Eq. (4) aims to identify a set of constituent EAs that, when employed to construct a
PAP instantiation, are the least likely to be outperformed by any of the candidate EAs available for PAP. Suppose m EPMs have
been obtained for m candidate EAs and Eq. (4) needs to be computed for a PAP instantiation that employ l constituent EAs.
According to the definition of EPM, the k column of EPMj consists of r elements that are the best solution quality obtained in r
runs of aj on fk. Hence, Pk

i;j can be calculated based on the kth column of the EPMs corresponding to ai and aj. First, pair-wise
comparisons of the elements in the two columns are conducted (i.e., there are r2 comparisons in total). Then, Pk

i;j can be esti-
mated by dividing the times that a solution of ai beats a solution of aj with r2. By calculating Pk

i;j for all constituent algorithms
(ai) and candidate EAs (aj) on all the n problems, Eq. (4) can be obtained.

From the steps for calculating Eq. (4), it can be observed that the most important advantage of Eq. (4) is that it does not
require estimating the performance of any PAP instantiation, but can be calculated solely based on the EPMs of the m can-
didate EAs. In other words, it avoids constructing EPM for each potential PAP instantiation. When the set of candidate EAs is
of medium size (say 10), this advantage makes it possible to enumerate all potential PAP instantiations and identifying the
best one according to Eq. (4). In case that the number of candidate EAs is huge and direct enumeration becomes prohibitive,
Eq. (4) can still be integrated with some existing search method, say forward selection [12], to yield at least a sub-optimal set
of constituent algorithms within an acceptable time period.

In addition to its computational advantages, Eq. (4) also bears some interesting interpretations. Consider the case of a PAP
with two constituent EAs, say a1 and a2, we may find that
R ¼ 1
mn

Xm

j¼1

Xn

k¼1

1� Pk
1;j

� �
1� Pk

2;j

� �
¼ 1

m

Xm

j¼1

1þ 1
n

Xn

k¼1

Pk
1;jP

k
2;j �

1
n

X1

n

Pk
1;j �

1
n

X1

n

Pk
1;j

 !
¼ 1

m

Xm

j¼1

1� P1;j
� �

ð1� P2;jÞ þ
1
n

Xn

k¼1

Pk
1;j � P1;j

� �
Pk

2;j � P2;j

� �" #
ð5Þ
nr if the time budget for selection procedure is allocated to each run evenly.



98 K. Tang et al. / Information Sciences 279 (2014) 94–104
where P1;j ¼ 1
n

Pn
k¼1Pk

1;j and P2;j ¼ 1
n

Pn
k¼1Pk

2;j. From Eq. (5), it can be observed that our selection method favors candidate EAs
with large P1;j and P2;j. That means, each constituent EA should be competitive in comparison to other candidate EAs. More

important, the second term, i.e., 1
n

Pn
k¼1

Pk
1;j � P1;j

� �
Pk

2;j � P2;j

� �
requires the two constituent EAs to be complementary. More

precisely, the performance of a1 on a problem is desired to be above its ‘‘average’’ performance over the problem set when
the performance of a2 is below its ‘‘average’’ performance and vice versa. Due to this property, our constituent EAs selection
method intends to select candidate EAs that behave differently, and thus leads to overall good performance over the whole
problem set.

With the above-described approach for selecting constituent EAs, EPM-PAP solves a set of problems following the major
steps described below:

1. First, each candidate EA aj is applied to each problem for r independent runs. The final population obtained in each
run is stored. An EPM is constructed for each aj based on the quality of the best solution it obtained in each run. This
step consumes a part of the total time budget T (in terms of fitness evaluations).

2. All possible subset of A is enumerated and the corresponding R is calculated using Eq. (4) and the EPMs. The subset
with the smallest R is selected as the constituent algorithms for PAP.

3. A PAP instantiation is constructed by embedding the selected constituent algorithms into the framework given in
Fig. 1. When initializing the population for each constituent algorithm, the best solution obtained in Step 1 is first
inserted into the population. Then, the other initial individuals are randomly picked from the r populations stored
during Step 1.

4. Finally, the PAP instantiation is run on all the problems to solve until the remaining total time budget is used up.

3.3. Related work on algorithm selection

To the best of our knowledge, the constituent algorithms selection problem has not been investigated in the literature.
Nevertheless, it is closely related to the algorithm selection problem, which has attracted a lot of attentions in the past
few years. Hence, we review the related work on algorithm selection in this sub-section. It is interesting to note that almost
all algorithm selection methods [4,9,15,16,19,25,30] could be adapted easily to select operators or parameters as well,
although not every paper has stated this explicitly.

Generally speaking, algorithm selection aims to identify the best-performing algorithm from a set of candidate algo-
rithms. It is thus different from the constituent algorithms selection problem, which aims to select multiple algorithms to
form a PAP instantiation. Existing approaches for algorithm selection can be divided into two main categories, i.e., the so-
called inter-problem methods and the intra-problem ones.

An inter-problem approach usually focuses on selecting algorithm for a given problem class. For example, statistical rac-
ing [4,29] is a general-purpose tool to find an algorithm that performs as well as possible on a problem class. First, a number
of problem instances are sampled and used as the training instances. Then, candidate algorithms are evaluated on the train-
ing instances. The algorithms that perform poorly will be discarded sequentially as soon as statistically sufficient evidence is
gathered against them. Some recently developed approaches, such as Meta-Learning techniques [9,24], Mapping method
introduced in [23] and Empirical Hardness Models [15], also utilize a set of problem instances for training. By applying
all candidate algorithms to the training instances, these approaches establish models to characterize the relationship
between problem features and algorithms’ performance. Given a new coming problem instance, the models are then
employed to predict which candidate algorithm will perform the best on the new problem instance. Since all the above-men-
tioned approaches make use of a training set of problem instances, they implicitly assume that the knowledge (e.g., the best
algorithm or the model built) obtained from the training instances can ‘‘generalize’’ well to other problem instances in the
same class. Such an assumption holds only in case that the training instances are related to other problem instances to solve.
As PAP does not assume any relationship between problems (or problem instances), the inter-problem approaches are not
suitable for the constituent algorithms selection.

Differently from inter-problem approaches, a typical intra-problem method aims to select the best algorithm for a single
problem instance rather than a problem class. A representative method in this category is the so-called ‘‘racing multiple algo-
rithms on a single problem’’ approach proposed by Yuan and Gallagher [29], which is an extension of statistical racing. For a
given problem, this approach first executes all the candidate algorithms on the problem and compares the different algorithms
with a pre-defined statistical test. Candidate algorithms that perform significantly poorly (in statistical sense) will be elimi-
nated. Then, the remaining candidate algorithms are applied to the problem again to further eliminate some candidate
algorithms. This procedure is repeated until only one candidate is left or the time budget is used up. Another intra-
problem method that is worthy of mention is the intra-problem Adaptive Online Time Allocation (intra-AOTA) approach
[8]. As shown by its name, intra-AOTA does not directly select the best algorithm, but iteratively allocates the time budget
to a set of candidate algorithms. To be specific, intra-AOTA divides the given time budget into several slots. Each slot corre-
sponds to an iteration. At the first iteration, the time slot is allocated to all the candidate algorithms according to some prior
distributions or rules. Then, the average fitness of solutions obtained by each algorithm on the problem is recorded. Then, a
linear model that maps the time allocation scheme to expected performance improvements is built and employed to
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determine the time allocation scheme for the next iteration. This procedure is repeated until the total time budget is used up. In
the extreme case, intra-AOTA can also be used for algorithm selection by allocating all the time to a single candidate algorithm
at each iteration. AMALGAM [25] and EEAs [16,30] also adopted a similar adaptation strategy as intra-AOTA. Since the moti-
vation of PAP framework is to establish a combination of EAs for a set of diverse problems, while the intra-problem methods
tend to select different algorithms for different problems, they are not directly applicable for constituent algorithms selection.

To summarize, although more or less related, previous work on algorithm selection do not address the constituent algo-
rithms selection task. Hence, the existing approaches cannot be employed in the context of PAP directly.
4. Experimental studies

To evaluate the effectiveness of EPM-PAP, experimental studies have been carried out. Four existing EAs, including self-
adaptive differential evolution with neighborhood search (SaNSDE) [27], particle swarm optimizer with inertia weight
(wPSO) [19], generalized generation gap (G3) model with generic parent-centric recombination (PCX) operator (G3PCX)
[6] and covariance matrix adaptation evolution strategy (CMA-ES) [2], were chosen as the candidate EAs. These candidate
EAs can be used to implement 6 instantiations of PAP with two distinct constituent algorithms and 4 instantiations of
PAP with three constituent algorithms. Accordingly, our experiments involved two variants of EPM-PAP, referred to as
EPM-PAP-2 and EPM-PAP-3, respectively. In EPM-PAP-2, two constituent algorithms were selected to construct a PAP instan-
tiation, while 3 constituent algorithms were selected for EPM-PAP-3. The purposes of our experimental studies are twofold:

(1) To assess whether EPM-PAP provides a competitive approach for solving a set of problems within a given time budget.
(2) To verify whether the constituent algorithm selection method proposed in this paper can truly identify the best con-

stituent algorithms for constructing a PAP instantiation.

4.1. Problem set and compared approaches

All the experimental studies were conducted on 27 benchmark functions. The first 13 functions were selected from the
classical benchmark functions used in [28], denoted as f1 � f13. The other 14 functions were selected from the benchmark
functions of the special session on real-parameter optimization of the 2005 IEEE Congress on Evolutionary Computation
(CEC2005) [21], denoted as fcec1 � fcec14. These 27 functions span a diverse set of problem features, such as multi-modality,
ruggedness, ill-conditioning, and interdependency. More details of these functions can be found in [21,28]. In our experi-
ments, all the functions were solved in 30-dimensions.

In [17], it has been shown that the best PAP instantiation can outperform any single EA in the candidate set. However, this
observation is obtained by implicitly assuming that the constituent algorithms of the PAP instantiation are selected in
advance and does not consume any computational time. Such an assumption can hardly hold in practice. For EPM-PAP,
the constituent algorithms selection procedure is integrated in the problem-solving process and consumes part of the com-
putational time. In other words, after the constituent algorithms are chosen, the corresponding PAP instantiation will have
less time to search for good solutions. Although this is a more realistic setting, the quality of the final solution obtained by
EPM-PAP may not be as good as the best results presented in [17]. Therefore, we compare EPM-PAP with the four candidate
EAs, i.e., SaNSDE, wPSO, CMA-ES and G3PCX, in our experiments to verify whether EPM-PAP is still advantageous to single
EAs. Furthermore, EPM-PAP is also compared to the ‘‘racing multiple algorithms on a single problem’’ approach and the intra-
AOTA approach introduced in Section 3.3. This comparison is to answer a more general research question. That is, given a
number of candidate EAs and a fixed time budget for solving a set of problems, is EPM-PAP a promising approach that per-
forms overall well on the problem set? Although the racing approach and intra-AOTA approach cannot be employed to select
constituent algorithms for PAP, they can be utilized in the above scenario as well and were hence involved. Concretely, both
the approaches can be employed by addressing the problems one by one. When solving each problem, the intra-AOTA
approach assigns computational time dynamically to the above-mentioned 4 candidate EAs, while the racing approach first
identifies the best candidate EA for the problem and then runs the best EA with the remaining time budget. In our experi-
ments, the racing approach employs the Friedman two-way analysis of variance by ranks [5,20] with significance level 0.05
as its statistical test, and will be referred to as F-Race hereafter.

4.2. Experimental settings

All the algorithms were compared under three different settings of total time budget, i.e., T1 = 27�4e05 FEs, T2 = 27�8e05
FEs and T3 = 27�1.2e06 FEs. Accordingly, the computational time for solving each benchmark problem was set to T1 = 4e05
FEs, T2 = 8e05 FEs and T3 = 1.2e06 FEs, respectively.

EPM-PAP consists of three types of parameters. That is, the parameters associated with the construction of EPMs, the
migration parameters (i.e., migration_size and migration_interval), and the control parameters of the constituent algorithms.
To obtain the EPMs for candidate EAs, EPM-PAP requires running each candidate EA on each problem for r independent runs.
It should be noted that the construction of EPMs is a part EPM-PAP. Hence, the FEs consumed for constructing EPMs are con-
sidered in the total FEs used by EPM-PAP. That is, part of the above-mentioned computational time was actually used for
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algorithm subset selection, and the remaining time was used to search for solutions to each problem. In our experiments, r
was set to 8. For the three settings of total time budget, each independent run is assigned with 25,000, 50,000 and 75,000 FEs,
respectively. The migration parameters migration_size and migration_interval were set to 1 and MAX_GEN/20, respectively.
Here, MAX_GEN stands for the maximum generation number of the PAP instantiation.

To make a fair comparison, the control parameters of each candidate EA were not fine-tuned to favor the PAP framework,
but were directly set as suggested in the original publications. Concretely, we used all the parameter settings suggested in
[27] when implementing SaNSDE. According to [19], a linearly decreasing inertia weight over the course of the search is
employed in wPSO. The two coefficients of wPSO were both set to 1.49445. For G3PCX and CMA-ES, we simply used the
source code of G3PCX and CMA-ES provided by their inventors (the codes are available online) and the parameters were
set according to [2,3,6]. There exist a few variants of PCX operator. As suggested in [19], the variant that employs the best
individual in the population as the main parent for generating offspring was used. Furthermore, restart strategy has been
used in G3PCX and CMA-ES to prevent them from terminating before the total time budget was used up. To make a fair com-
parison, the settings of control parameters of all four candidate EAs remained unchanged throughout all experiments.

Similar to EPM-PAP, F-Race also requires running the candidate EAs on each benchmark problem for several times. The
time consumed by an algorithm on a problem for a single independent run was set to 10,000 FEs, 20,000 FEs, 30,000 FEs, in
accordance with T1, T2 and T3, respectively. For intra-AOTA, the size of the shifting window used for the regression procedure
was set to 4. The time consumed in each cycle DT was set to 10,000 FEs, 20,000 FEs, 30,000 FEs, in accordance with T1, T2 and
T3, respectively. Furthermore, intra-AOTA was initialized to first allocate the time equally among all the candidate
algorithms.
4.3. Comparison between EPM-PAP and the other approaches

All the results presented in this paper were obtained by executing 25 independent runs for each compared approaches,
i.e., EPM-PAP2, EPM-PAP3, SaNSDE, wPSO, CMA-ES, G3PCX, F-Race and intra-AOTA, on the benchmark problems. These
approaches are compared from the perspective of solution quality, i.e., the quality of the best solution obtained by an
approach in each run. Since all test functions used in this paper are minimization problems, the quality of a solution was
measured by its function error value, and the function error value for the optimal solution is 0.

Non-parametric multiple-comparison statistical test described in [7] has been conducted to analyze the performance of
all the compared algorithms. Specifically, two sets of tests have been carried out. In the first set of statistical tests, the aver-
age performance (i.e., solution quality) of the algorithms on each function was firstly obtained. Then, statistical tests were
conducted to check whether EPM-PAP performed significantly different from the other algorithms on the all the 27 test func-
tions in general. The Friedman test with significance level 0.05 was first employed to compare the general performance of all
the algorithms. If the null hypothesis that all the methods performed the same was rejected, the Nemenyi’s test with signif-
icance level 0.05 was employed to identify the pairwise differences between algorithms. The rankings of each algorithm, the
Friedman p-value, and the Nemenyi’s critical differences between rankings are presented in Tables 2 and 3. It can be
observed that the Friedman test clearly indicated significant differences between the compared algorithms. Although the
Nemenyi’s critical difference showed that neither EPM-PAP-2 nor EPM-PAP-3 significantly outperformed all the other algo-
rithms, EPM-PAP achieved the highest ranking in most of the cases. The only exception is the case for EPM-PAP-2 with T1,
where EPM-PAP is slightly worse than Intra-AOTA. This observation is consistent with our expectation that EPM-PAP’s per-
formance will degrade when less time budget is allocated for algorithm subset selection. Nevertheless, the superiority of PAP
Table 2
Comparison between EPM-PAP-2 (with different time budgets) and the other algorithms on the 27 test functions (Friedman test followed by the Nemenyi’s test
was employed). The test was conducted on the whole test function set based on the average performance of each algorithm. A smaller ranking indicates better
performance.

Time budget EPM-PAP-2 SaNSDE wPSO G3PCX CMA-ES F-Race Intra-AOTA p-Value Critical difference

T1 3.185 3.370 5.130 5.926 3.722 3.537 3.130 4.59E�09 1.733
T2 3.278 3.407 4.907 5.889 3.648 3.481 3.389 3.44E�08 1.733
T3 3.204 3.389 4.944 5.759 3.852 3.407 3.444 9.05E�08 1.733

Table 3
Comparison between EPM-PAP-3 (with different time budgets) and the other algorithms on the 27 test functions (Friedman test followed by the Nemenyi’s test
was employed). The test was conducted on the whole test function set based on the average performance of each algorithm. A smaller ranking indicates better
performance.

Time budget EPM-PAP-3 SaNSDE wPSO G3PCX CMA-ES F-Race Intra-AOTA p-Value Critical difference

T1 3.019 3.407 5.148 5.926 3.741 3.574 3.185 2.57E�09 1.733
T2 3.296 3.463 4.907 5.889 3.648 3.426 3.370 3.70E�08 1.733
T3 2.870 3.537 5.019 5.759 3.870 3.426 3.519 1.01E�08 1.733



Fig. 2. Critical diagrams of the first set of multiple-comparison statistical tests. Figures (a–c) corresponds to EPM-PAP-2, with time budget T1, T2 and T3,
respectively. Figures (d–f) corresponds to EPM-PAP-2, with time budget T1, T2 and T3, respectively.
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over the 4 candidate EAs clearly demonstrates that effectiveness of the constituent algorithms selection procedure. In addi-
tion, the critical diagrams for each case of EPM-PAP (i.e., with different time budgets and different number of constituent
algorithms) are presented in Fig. 2.

In the second set of tests, we separately compared all the algorithms’ performance on each test function. That means, the
test was repeated for 27 times for all the 27 test functions. Such tests allowed us to evaluate the performance of EPM-PAP
from a different perspective. For each test function, the test is not conducted based on the performance of each algorithm in
each run. Similar to the first set of tests, the Friedman test with significance level 0.05 was first employed to compare the
general performance of all the algorithms. If the null hypothesis that all the methods performed the same was rejected,
the Nemenyi’s test with significance level 0.05 was employed as the post hoc test to identify the algorithms that performed
the best on this function. For each compared algorithm, the number of functions on which it performed the best is given in
Tables 4 and 5. It can be observed from the table that both EPM-PAP-2 and EPM-PAP-3 outperformed all the compared algo-
rithms for all three settings of total time budget. Therefore, the results of this set of tests further confirmed EPM-PAP’s advan-
tages over the compared algorithms.

In addition to the non-parametric multiple-comparison statistical test that supports the overall superior performance of
EPM-PAP, two-sided Wilcoxon rank-sum tests with significance level 0.05 have also been conducted to compare EPM-PAP-2
and EPM-PAP-3 with the other algorithms separately. Table 6 summarizes the results of the Wilcoxon tests over the 27 test
functions. Here, the results are presented in form of win-draw-lose, standing for the numbers of functions on which EPM-
PAP is superior, comparable (i.e., statistical insignificant), and inferior to the compared approach.

The results in Table 6 are generally consistent with those presented in Tables 2–5. It can be found that the advantage of
EPM-PAP over wPSO and G3PCX is quite obvious. When compared to SaNSDE and CMA-ES, the advantage of EPM-PAP is rel-
atively marginal, especially in the case of EPM-PAP-2 (i.e., only two candidate EAs were selected for constructing the PAP
instantiation). The reason is that a PAP instantiation will behave similarly to its best constituent algorithm when it only con-
sists of 2 constituent algorithms [17]. In addition, SaNSDE and CMA-ES are in general more powerful than wPSO and G3PCX,
and thus are more likely to be selected in our experiments. Hence, EPM-PAP-2 may perform similarly to these two
algorithms.

Second, both EPM-PAP-2 and EPM-PAP-3 performed better than F-Race for all three settings of total time budget. It is
interesting to mention that F-Race and EPM-PAP represent two distinct strategies for solving a set of problems. Given a pool
of candidate EAs, the former tries to find the best algorithm for each problem. The latter, on the other hand, resorts to iden-
tifying a combination of candidate EAs that can overall perform well on all the problems. Despite the popularity of racing
approaches in the literature, the promising results of EPM-PAP suggest that the latter might be a better alternative.
Table 4
Comparison between EPM-PAP-2 and the other algorithms on the 27 test functions (Friedman test followed by the Nemenyi’s test was employed). The number
in each cell stands for the number of functions on which the corresponding algorithm performed the best.

Time budget EPM-PAP-2 SaNSDE wPSO G3PCX CMA-ES F-Race Intra-AOTA

T1 25 20 9 6 18 20 20
T2 25 21 11 5 17 19 21
T3 26 21 11 5 16 20 20

Table 5
Comparison between EPM-PAP-3 and the other algorithms on the 27 test functions (Friedman test followed by the Nemenyi’s test was employed). The number
in each cell stands for the number of functions on which the corresponding algorithm performed the best.

Time budget EPM-PAP-2 SaNSDE wPSO G3PCX CMA-ES F-Race Intra-AOTA

T1 24 20 9 6 19 20 20
T2 24 20 11 5 17 19 20
T3 26 21 11 5 17 19 19

Table 6
Comparison between EPM-PAP-2 and EPM-PAP-3 and all the other approaches (Two-sided Wilcoxon rank-sum tests with significance level 0.05 was
employed). Results are presented in the form of WIN-DRAW-LOSE, standing for the numbers of functions on which the corresponding PAP instantiation is
superior, comparable and worse than the compared algorithm.

Time budget SaNSDE wPSO G3PCX CMA-ES F-Race Intra-AOTA

EPM-PAP-2 T1 8-14-5 17-10-0 21-6-0 8-13-6 9-14-4 6-15-6
T2 7-14-6 16-10-1 20-7-0 9-14-4 7-15-5 5-18-4
T3 6-15-6 17-9-1 21-6-0 10-14-3 7-14-6 6-18-3

EPM-PAP-3 T1 9-11-7 19-7-1 21-5-1 10-10-4 10-13-4 5-17-5
T2 8-17-2 17-9-1 20-7-0 9-12-6 9-12-6 5-20-2
T3 9-16-2 17-10-0 21-6-0 9-14-4 9-14-4 6-20-1



Table 7
The performance ranking of all instantiations of EPM-PAP-2 and EPM-PAP-3.

PAP Rank Time budget = T1 Time budget = T2 Time budget = T3

With 2 constituent algorithms 1 SaNSDE + CMA-ES SaNSDE + CMA-ES SaNSDE + CMA-ES
2 wPSO + CMA-ES wPSO + CMA-ES wPSO + CMA-ES
3 SaNSDE + wPSO SaNSDE + wPSO SaNSDE + wPSO
4 SaNSDE + G3PCX SaNSDE + G3PCX SaNSDE + G3PCX
5 G3PCX + CMA-ES G3PCX + CMA-ES G3PCX + CMA-ES
6 wPSO + G3PCX wPSO + G3PCX wPSO + G3PCX

wIth 3 constituent algorithms 1 SaNSDE + wPSO + CMA-ES SaNSDE + wPSO + CMA-ES SaNSDE + wPSO + CMA-ES
2 SaNSDE + G3PCX + CMA-ES SaNSDE + G3PCX + CMA-ES SaNSDE + G3PCX + CMA-ES
3 SaNSDE + wPSO + G3PCX SaNSDE + wPSO + G3PCX wPSO + G3PCX + CMA-ES
4 wPSO + G3PCX + CMA-ES wPSO + G3PCX + CMA-ES SaNSDE + wPSO + G3PCX

Table 8
Accuracy of the constituent algorithms selection method.

Time budget SR1 (%) SR2 (%)

EPM-PAP-2 T1 40 88
T2 56 100
T3 72 100

EPM-PAP-3 T1 16 84
T2 36 88
T3 56 100
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Third, EPM-PAP performed comparably to intra-AOTA when the total time budget was set to T1. However, the superiority
of EPM-PAP-2 and EPM-PAP-3 became more and more visible when the total time budget was increased. The reason for this
phenomenon is: when the total time budget is relatively small, the time available for constructing EPMs might be too limited
to gain accurate estimations about the performance of candidate EAs, and thus inappropriate constituent algorithms may be
selected. This phenomenon will be further elaborated in the next sub-section.

4.4. Analysis of the constituent algorithms selection method

As the main contribution of this work lies in the constituent algorithms selection method, it is important to verify
whether the proposed method indeed selected the optimal or appropriate constituent algorithms for PAP. For this purpose,
we executed all the 6 PAP instantiations with 2 constituent algorithms and 4 PAP instantiations with 3 constituent algo-
rithms to the 27 benchmark functions, and ranked them according to the solution quality obtained. The detailed ranks
are presented in Table 7, where the better PAP instantiation corresponds to a smaller rank.

Based on the ranks provided in Table 7, we recorded the two statistics SR1 and SR2 given in Eqs. (6) and (7) for EPM-PAP-2
and EPM-PAP-3, respectively.
SR1 ¼
Nsuc

25
ð6Þ

SR2 ¼
Nsuc2

25
ð7Þ
where Nsuc is the number of runs (out of 25 runs) that the proposed selection method successfully selected the best constit-
uent algorithms. Nsuc2 denotes the number of runs that the selected constituent algorithms set ranked at least 2 (i.e., either 1
or 2). According this definition, SR1 measures the probability that the proposed selection method identifies the best constit-
uent algorithms set, and SR2 measures the probability that the selection method identifies good constituent algorithms set.

The SR1 and SR2 of EPM-PAP-2 and EPM-PAP-3 on three settings of total time budget are presented in Table 8. It can be
found that, in 3 of the total 6 cases, the proposed selection methods achieved SR1 higher than 50%. Specifically, SR1 increased
with the total time budget, which demonstrates that the proposed selection method is capable of identifying the best con-
stituent algorithms when sufficient time if provided to construct the EPMs. More important, it can be found that SR2 is larger
than 80% in all 6 cases. Hence, even if EPM-PAP failed to identify the best constituent algorithms, the sub-optimal constituent
algorithms can be selected, and lead to superior performance to the compared candidate EAs.

5. Conclusion and discussions

In this paper, a novel approach called EPM-PAP is proposed for solving optimization problems. Compared with the pre-
vious version of PAP, whose constituent algorithms need to be defined by human experts, EPM-PAP incorporates a method
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for automatically choosing constituent algorithms. Empirical studies on numerical optimization problems demonstrate that
the EPM-based selection method is capable of identifying appropriate constituent EAs within a short period. As a result,
EPM-PAP outperformed all the EAs involved in the experiments. Furthermore, since EPM-PAP concerns solving multiple
problems within a time budget, it is also compared to F-Race and intra-AOTA, which are applicable in this scenario. Exper-
imental results clearly show the advantages of EPM-PAP over these two approaches.

In addition to its appealing performance, the most interesting issue regarding EPM-PAP might be its connection with
ensemble learning or committee machines, a sub-area of machine learning that has drawn intensive attention during the
last decade. In particular, PAP and ensemble learning shares the same philosophy. That is, the constituent algorithms (of
PAP) or base learners (of an ensemble) must be different in order to make an improvement over using them individually.
In the context of ensemble learning, the term ‘‘different’’ is referred to as diversity and a lot of studies have been carried
out to investigate how diversity can be quantitatively defined and be utilized to construct good ensembles [22]. In this work,
the term ‘‘different’’ is introduced as ‘‘complementary’’. Analysis on a simple case (i.e., with only two constituent EAs) reveal
that the EPM-based constituent EA selection method can be interpreted as explicitly requiring constituent EAs to be com-
plementary to each other. However, the concept of complementary used in this work is rather vague and by no means a per-
fect one. Intuitively, two EAs can be said as complementary only if they behave in different ways that can benefit each other.
Hence, a more precise modeling of EAs’ behavior is required in order to have a clearer understanding of the concept of com-
plementary and to make better use of it to construct a PAP. This issue is worthy of further in-depth study in the future.
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