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& Skeletal Rearrangements

1,2-N-Migration in a Gold-Catalysed Synthesis of Functionalised
Indenes by the 1,1-Carboalkoxylation of Ynamides

Holly V. Adcock,[a] Thomas Langer,[b] and Paul W. Davies*[a]

Abstract: Unique a-hemiaminal ether gold carbene inter-
mediates were accessed by a gold-catalysed 1,1-carbo-
alkoxylation strategy and evolved through a highly selec-
tive 1,2-N-migration. This skeletal rearrangement gave
functionalised indenes, and isotopic labelling confirmed
the rare C�N bond cleavage of the ynamide moiety. The
effect of substituents on the migration has been explored,
and a model is proposed to rationalise the observed selec-
tivity.

p-Acid-mediated alkyne carboalkoxylations are
potent transformations for the rapid assembly of sub-
stituted carbo- and heterocyclic frameworks from
simple precursors under mild reaction conditions.[1–3]

Attack of an oxygen nucleophile onto a metal-acti-
vated p system is followed by cationic or sigmatropic
migration from oxygen to carbon. Carbon–carbon
bond formation can potentially occur a- or b- to the
metal, as 1,2- or 1,1-carboalkoxylations, respectively
(Scheme 1). The little-explored 1,1-pathway provides
a complexity increasing and synthetically enticing
non-diazo route to form a metal carbene (Scheme 1,
path b).[4–5] Nakamura et al.’s seminal platinum- or
palladium-catalysed cycloisomerisation of o-alkynyl
benzaldehyde acetals[1c,d] was the only report of such
processes, until very recent studies of Wang et al. on
exploring catalyst control with terminal alkynes.[6]

Our interest in accessing carbenoid reactivity from
ynamides led us to question whether the electronic
bias of an ynamide might enforce a 1,1-carboalkoxy-
lation pathway in systems in which the 1,2-pathway
might be expected based on geometrical bias.[7] Al-
though the use of ynamides in gold catalysis has rap-

idly increased over recent years, their carboalkoxylation
chemistry had not previously been investigated.[8–10] During
the final stages of this work, Hashmi and co-workers reported
the formation of functionalised benzofurans by 1,2-external
carboalkoxylation of phenol-derived ynamides (Scheme 1,
path a).[8]

For this study, we selected ynamides F to contrast with the
1,2-carboalkoxylations reported by Toste and co-workers using
o-alkynylbenzylethers A (Scheme 2).[13] We envisaged that the
electronic influence of F would divert the process down a 1,1-
internal carboalkoxylation pathway by favouring a 6-endo cycli-
sation over the previously reported 5-exo pathway [Eq. (1) in

Scheme 1. 1,2- and 1,1-carboalkoxylation pathways. Oxygen may be teth-
ered to the alkyne through either R (resulting in external migration), or the
migrating group Y (resulting in internal migration).

Scheme 2. Gold-catalysed carboalkoxylation: proposed ynamide-dictated carboalkoxyla-
tion mode.
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Scheme 2].[14] On fragmentation of G, vinyl gold H was predict-
ed to form a unique gold carbene I, adjacent to a hemiaminal
ether, through C�C bond formation b to the metal [Eq. (2) in
Scheme 2]. From I, several outcomes could be envisaged to
give functionalised indenes, of interest due to their function as
core structures in many natural products[15] and pharmaceuti-
cals,[16] as well as being useful li-
gands for transition metals.[17]

Our study commenced with
ynamide 1 a, which reacted in
the presence of AuCl to give N-
indenyl sulfonamide 2 a as the
sole product through a new
skeletal rearrangement (Table 1,
entry 1). No reaction was ob-
served with PtCl2 ; however,
a AuIII complex gave a higher
yield of 2 a (entries 2 and 3). Cat-
ionic gold(I)–phosphine com-
plexes proved to be more effec-
tive, with complete conversion
of 1 a and higher yields of 2 a
(entries 4–8). The use of an elec-
tron-poor phosphine ligand was
beneficial to both the reaction
rate and yield relative to an elec-
tron-rich phosphine (Table 1,
entry 6 vs. 4 and 5). The phos-
phine gold chloride alone was
ineffective (entry 9), and little
variation was observed on

changing the silver salt (Table 1, entries 6–8). The study was
continued with the preformed gold triflimidate complex, be-
cause it gave identical results to the complex formed in situ
(entry 10 vs. 6). AgNTf2 alone did not catalyse the reaction, and
only degradation was observed in the presence of s-Lewis or
Brønsted acids (Table 1, entries 11–14).

Indene 2 a was thought to result from a 1,2-N-migration
onto gold carbene I. Such processes are rare, and to the best
of our knowledge, unreported in gold catalysis.[18–19] Doyle and
co-workers recently reported N-migration of an endocyclic hy-
drazide on dediazotisation of b-methylene-b-silyloxy-b-amido-
a-diazoacetates with a variety of metal catalysts.[20] For com-
pound 2 a, a selective 1,2-migration of an exocyclic sulfon-
amide would occur from a b-methine-b-alkoxy-b-sulfonamido
quaternary centre generated in unison with the gold carbene
(Scheme 1, Eq. (2)). The relative migratory aptitude of different
amide substituents was therefore probed further by using yna-
mides 1 a–i (Table 2).

Sulfonylated aniline groups, including nosyl, generally
worked well (Table 1, entries 1–3). N-Benzyl-substituted yna-
mide 1 d also underwent efficient cycloisomerisation affording
2 d in 72 % yield (entry 4). In contrast, N-methyl-substituted
ynamides were poorer substrates (entries 5 and 6): reactions of
both methane- and 4-nitrobenzene sulfonamides 1 e/f were
slow; products 2 e/f were only isolated in low yields, and simi-
lar quantities of the regioisomers 3 e/f were observed. A small
amount of the isomer was also seen in the reaction of N-allyl
methane sulfonamide 1 g, though a high yield of 2 g was ob-
tained (entry 7). The use of other gold catalysts had relatively
little impact on the outcome of this reaction (entries 7-9), and
no products of cyclopropanation were observed.[21] A cyclic
carbamate 1 h underwent the reaction cleanly with high selec-

Table 1. Study of reaction conditions.[a]

Entry[a] Catalyst t [h] Yield 1 a [%][b] Yield 2 a [%][b]

1 AuCl 24 53 27
2 PtCl2 24 >95 –
3 [AuLCl2][c] 24 17 63
4 PPh3AuCl/AgNTf2 6 – 79
5 o-biphenyl(tBu)2PAuCl/AgNTf2 20 – 73
6 (p-CF3C6H4)3PAuCl/AgNTf2 2 – 89
7 (p-CF3C6H4)3PAuCl/AgBF4 2 – 88
8 (p-CF3C6H4)3PAuCl/AgOTs 6 – 78
9 (p-CF3C6H4)3PAuCl 24 >95 –
10 (p-CF3C6H4)3PAuNTf2 2 – 88
11 AgNTf2 24 >95 –
12 HNTf2 24 66 –
13 BF3·OEt2 24 31 –
14 SiO2 24 80 –

[a] Reaction conditions: 1 a (0.1 mmol, 1 equiv), catalyst (5 mol %), CH2Cl2

(0.1 m), time as indicated. [b] Yields calculated by 1H NMR spectroscopy
against a known quantity of internal standard (1,2,4,5-tetramethylben-
zene). [c] L = Picolinate. Ts = toluene-4-sulfonyl.

Table 2. Study of the migrating group.[a]

Entry[a] 1: NR1R2 t [h] Yield 2 [%][b] Yield 3 [%][b]

1 1 a NPhTs 2 78 –
2 1 b NPhSO2Ph 1 68[c,d] –
3 1 c NPhNs 0.75 76 –
4 1 d NBnMs 3 72[d] –
5 1 e NMeMs 48 23 20[e]

6 1 f NMeNs 24 29 23
7 1 g N-allylMs 1 74 9
8[f] 1 g N-allylMs 24 58 10
9[g] 1 g N-allylMs 24 64 5
10 1 h N(Ox)[h] 2 78 –
11 1 i N(5-(s)Bn-Ox)[e] 24 –[i] –

[a] Reaction conditions: 1 (0.2 mmol, 1 equiv), catalyst (5 mol %), CH2Cl2 (0.1 m), time as indicated. [b] Isolated
yields after flash column chromatography unless otherwise stated. [c] 3 mmol, 1.4 g scale. [d] Isolated yield
after recrystallisation without chromatography. [e] Yield calculated by 1H NMR spectroscopy: present as an in-
separable mixture with 1 e. [f] Catalyst : (C5F5)3PAuCl/AgNTf2. [g] Catalyst : [AuLCl2] L = picolinate. [h] Ox = 2-oxa-
zolidinone. [i] 37 % of 1 i remaining. Ms = methane sulfonyl, Ns = 4-nitrobenzene sulfonyl.
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tivity for N-migration (entry 10). The use of a more
hindered chiral benzyl substituted oxazolidinone de-
rivative led to a complex reaction mixture alongside
unreacted 1 i (entry 11). The practicality of this
method was demonstrated by the gram-scale synthe-
sis of 2 b, obtained after filtration to remove metal
residues and then recrystallisation (entry 2).

The impact of modification at other positions on
the skeletal rearrangement was then explored
(Scheme 3). Electron-donating and electron-with-
drawing aryl groups (2 j and 2 k) were well tolerated.
Although complex mixtures were observed with fur-
anyl or vinyl benzylic substituents, the ferrocene-sub-
stituted derivative 2 l could be prepared as a single
regioisomer in moderate yield. Methoxy substitution
on the core benzene ring was well tolerated at both
the 3- and the 4- positions giving single products
(2 m and 2 n). The 4-fluoro-substituted variant re-

quired a longer reaction time (24 h) and an increased
catalyst loading to achieve a good yield of 2 o along-
side expected small amounts of regioisomer 3 o
(Table 2, entry 7). Pleasingly, variation at the migrat-
ing alkoxy group was well tolerated with both O-
benzyl and O-allyl substitution despite the possibility
of direct external migration of an allylic or benzylic
cation following initial nucleophilic attack (2 p–r).[22]

Increasing the steric bulk around the benzylic posi-
tion with naphthyl, o-tolyl and o-anisole substituents
(2 s–u) saw a significant reduction in regioselectivity
with an N-phenyl-p-tosyl substituted ynamide. How-
ever, the analogous ynamide 1 v, containing non-aro-
matic N-substituents gave a clean reaction, with 2 v
formed as a single regioisomer in high yield.

The resulting functionalised indenes were found to
be sensitive to basic conditions: C-sulfonylated
indene-1-amine (4) was isolated in good yield when
chromatographic purification of 2 c was attempted
using triethylamine-treated silica gel to improve sep-
aration (Scheme 4), and could be deliberately pre-
pared from 2 c. The product of double-bond migra-
tion was instead observed when carbamate 2 n was
exposed to triethylamine (see the Supporting Infor-
mation). Although 1 a did not rearrange in the pres-
ence of triethylamine, a-alkoxy conjugated imine 5
was isolated on treatment with 1,8-diazabicyclo-
[5.4.0]undec-7-ene (DBU). Single-crystal X-ray diffrac-
tion analysis of 2 a showed the indene and nitrogen
to be resonance decoupled with the N�S bond
aligned to the enol p system accounting for the
ready elimination of the sulfonyl group.[23]

An isotopic-labelling study was carried out to sup-
port the mechanistic hypothesis. Ynamide 1 g was se-
lected to allow isolation of both isomeric indenes,
and a 13C-enriched sample was prepared from 13C-
labelled benzoic acid (see the Supporting Informa-

Scheme 3. Reaction scope. [a] Reaction conditions: 1 (0.2 mmol, 1 equiv), was reacted
with (p-CF3C6H4)3PAuNTf2 (5 mol %) in CH2Cl2 (0.1 m) at RT, time as indicated. [b] Using
10 mol % catalyst. Regioisomer 3 o also isolated in a 10 % yield.

Scheme 4. Base-mediated reactions of N-indenyl sulfonamides. DBU = 1,8-diazabicyclo-
[5.4.0]undec-7-ene. Crystal structure of 2 a with ellipsoids drawn at the 50 % probability
level.
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tion). Cleavage of the ynamide C�N bond was confirmed with
the formation of 13C-2 g, in which nitrogen is connected to the
13C-enriched carbon. Additionally, the absence of cross-over
products when ynamides 1 c and 1 q were reacted together
confirmed the intramolecular nature of this reaction
(Scheme 5).

The formation of indenes 2 and 3 and the generally high se-
lectivity for N- versus O-migration can be rationalised from the
gold carbene I (Scheme 6). Fast, neighbouring-group-aided
1,2-migration must proceed with planarisation of both the a-C
and the non-migrating heteroatom (I!K or M). Therefore, N-
migration is favoured as iminium M would result in greater
steric congestion than oxonium K due to the enforced proxim-
ity of its larger substituents with the adjacent groups. Because
gold carbene I is expected to show considerable carbocationic
character, nitrogen’s greater ability to stabilise positive charge
would also favour 1,2-N migration (J vs. L).[3, 24] As high selectiv-
ity for N-migration of N-sp2 carbamates and sulfonamides with
electron-withdrawing groups was also observed, the late tran-
sition-state assessment (K vs. M) appears more accurate. This
scenario can also explain why a loss in selectivity was observed
with substrates such as 1 e, where the smaller substituents on
nitrogen allow a planar configuration to be accessed affording
isomer 3.[25] The relative spatial positioning of the amide and
alkoxy groups to the adjacent metal carbene may also have an

impact on the migration, though
as the relative stereochemistry in
I is unknown, little comment can
be made at this stage.[26] The re-
duced selectivity observed with
o-substituted benzene units (2 s–
u) might be explained by stabil-
ising p and through-space inter-
actions[27] with the N-phenyl-p-
toluene sulfonamide, so raising
the barrier to N-migration. The
high selectivity for N-migration
with N-allyl-methane sulfona-
mide 2 v, incapable of such inter-
actions, is in line with this hy-
pothesis.

In conclusion, a cycloisomerisa-
tion of ynamides that features
a rare C�N bond cleavage is re-
ported. A 1,1-carboalkoxylation
pathway is enforced by the elec-
tronic properties of ynamides to
generate a unique a-hemiaminal
ether carbene environment. La-
belling studies confirmed a sub-
sequent 1,2-N-migration with
the high selectivity over 1,2-O-
migration rationalised based on
developing steric encumbrance.
Further studies to harness the
regiodetermining role of yna-
mides in cycloisomerisation reac-
tions are ongoing.
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