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 25 
 26 
HIGHLIGHTS 27 
 28 
 New data are presented on the Ångstrom coefficient for woodsmoke 29 
 Estimates of woodsmoke from aethalometer data are sensitive to choice of 30 

Ångstrom coefficient 31 
 The Delta-C (UVPM) method does not give plausible results at UK sites 32 
 Caution is recommended in interpreting woodsmoke data estimated from the 33 

aethalometer model 34 
  35 
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ABSTRACT 36 

Recent papers have described the use of both seven-wavelength and two-wavelength aethalometers 37 

to estimate the concentration of woodsmoke in the atmosphere.  This application depends upon the 38 

enhanced absorption of woodsmoke at UV wavelengths relative to that of traffic particles which is 39 

quantified by the aethalometer.  This paper draws together evidence from a number of experimental 40 

data sources which challenges the reliability of woodsmoke concentration estimates derived from 41 

aethalometer measurements.  One crucial aspect is the selection of an Ångstrom exponent (α) for 42 

woodsmoke, and our experimental data from a wood combustion source suggest that, consistent 43 

with other published data, this is highly variable.  The outputs of the “aethalometer model” for 44 

estimating woodsmoke mass are sensitive to this parameter and there is currently no way to select 45 

the optimum value of α for woodsmoke, which may vary with location as it will depend upon the 46 

type of wood fuel and the combustion conditions.  Examples are included demonstrating the 47 

sensitivity of the aethalometer model to the choice of α values for traffic and woodsmoke.  48 

Additionally, analysis of data for UVPM (Delta-C) from an aethalometer network shows facets in 49 

the data which cast doubt on the reliability of the method.  In particular, the small seasonal variation 50 

of UVPM at a London background site in comparison to other woodsmoke markers and its greater 51 

similarity to that of black carbon suggests that there are probably other UV absorbing contributors 52 

than woodsmoke to the aethalometer signal.  Considerable caution should be exercised in 53 

interpreting aethalometer data as offering quantitative estimates of woodsmoke concentrations, and 54 

a number of questions are posed which need to be addressed before aethalometers can be used with 55 

confidence to give quantitative estimates of woodsmoke concentrations in a range of environments. 56 

 57 

KEYWORDS:  Aethalometer;  woodsmoke;  biomass burning;  Ångstrom  coefficient  58 
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INTRODUCTION 59 

The aethalometer is an instrument which collects airborne particulate matter on a filter whilst 60 

continuously measuring its light transmission.  The instruments typically involve a tape system in 61 

which particles accumulate as a spot before the tape is moved on to create a new spot when a 62 

specific loading level or time limit is reached.  The instruments have been deployed very widely 63 

using the absorption at the near-infra-red wavelength of 880 nanometres to detect absorption due to 64 

black carbon.  The absorption coefficient for material added during an averaging period of typically 65 

five minutes is calculated from the change in attenuation and the area and volume of the sample and 66 

is converted to a black carbon concentration for the period using a mass extinction coefficient of 67 

16.6 m2 g-1.  Many studies have shown that black carbon estimated in this way generally shows a 68 

good agreement to elemental carbon measured by combustion techniques (Allen et al., 1999;  Jeong 69 

et al., 2004;  Lavanchy et al., 1999).  It has long been recognised that the readings are affected by 70 

increases in filter loading, and corrections have been proposed that are widely applied in order to 71 

overcome this problem (Collaud Coen et al., 2010). 72 

 73 

In recent years, aethalometers measuring at either two wavelengths (880 nm and 370 nm) or seven 74 

wavelengths (370 nm, 470 nm, 520 nm, 590 nm, 660 nm, 880 nm, 950 nm) have become widely 75 

used.  These offer the opportunity to measure light absorption across a wider selection of near UV 76 

to near IR wavelengths and this ability has been exploited in order to estimate concentrations of 77 

other atmospheric aerosol components including woodsmoke (Sandradewi et al., 2008a,b) and 78 

mineral dust (Fialho et al., 2006; Rodriguez et al., 2010).  In practice, a wide range of conjugated 79 

molecules may absorb at the UV wavelengths of the aethalometer contributing to the signal at 370 80 

nm.  According to Hansen (2005), “it is essential to note, though, that the absorption cross-section 81 

of these compounds is highly variable.  The absorption efficiency per molecule may vary by orders 82 

of magnitude.  In UV spectrophotometry, the absorbance per mole must be calibrated for each 83 

species of interest.  If a sample containing a mixture of these species is illuminated with UV light, 84 
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the UV-specific absorption can be detected but cannot be quantitatively interpreted as an exact 85 

amount of a specific compound.  A few picograms of one PAH species may adsorb as much UV as 86 

some tens of nanograms of another PAH compound”.  Despite this very explicit caveat, a number of 87 

research workers have been using the aethalometer either to estimate woodsmoke concentrations or 88 

to demonstrate relationships of the UV absorption signal of the aethalometer to tracers of 89 

woodsmoke such as levoglucosan. 90 

 91 

Sandradewi et al. (2008a,b) reported using a seven-wavelength aethalometer (Magee Scientific, 92 

USA, type AE31) to infer separate contributions of road traffic and wood burning emissions to 93 

particulate matter concentrations in a village located in a Swiss Alpine valley.  Under prolonged 94 

atmospheric inversion conditions, they were able to account for the aethalometer measurements 95 

with a two-component model of solely traffic and wood burning particles using wavelengths of 950 96 

nm and 470 nm (Sandradewi et al., 2008a).  Thus, the absorption coefficients at wavelength λ, babs 97 

(λ) may be expressed as: 98 

 99 

babs(λ) = babs(λ)traffic + babs(λ)ws (1) 100 

 101 

The method is based upon the fact that the wavelength attenuation of the aerosol is composition-102 

dependent.  This is expressed through the Ångstrom exponent, α.  Thus,  103 

 104 

babs ∝ λ-α (2) 105 

 106 

For black carbon, α has a value of approximately 1 and hence absorption increases with decreasing 107 

wavelength, and attenuation in the UV region is greater than that in the near-infra-red, but this is 108 

predictable as long as the value of α is known.  Aerosol constituents such as woodsmoke which 109 

contain UV-absorbing compounds have an Ångstrom exponent of > 1, and values for woodsmoke 110 
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have been reported in the range of 0.9 to 2.2 while traffic-dominated sites show values of around 111 

0.8 to 1.1 according to the specific wavelength range over which measurements are taken 112 

(Sandradewi et al., 2008b).  If the Ångstrom exponents for the two components (traffic emissions 113 

and woodsmoke) are assumed, then the absorption coefficient can be disaggregated into 114 

components relating to the two sources as in Equation 1.  If carbonaceous material (CM) equating 115 

to the sum of organic matter (OM) and black carbon (BC) is separately determined, then the 116 

concentrations can be estimated from Equation 4 by solving for the parameters C1 and C2 which 117 

relate the light absorption to the particulate mass of both sources. 118 

 119 

CM = OM + BC (3) 120 

 121 

CM = Cl*babs (950 nm)traffic + C2*babs (470 nm)ws 122 

                         PMtraffic                           PMws (4) 123 

 124 

Sandradewi et al. (2008a) demonstrated that at their sampling site a third constant (C3) accounting 125 

for the background concentration of non-absorbing carbonaceous material was not required.  126 

However,  Favez et al. (2010) sampling in Grenoble (French alps) found an intercept in their 127 

regression and assigned a positive value to C3 (see below). 128 

 129 

The two-wavelength aethalometer (Magee Scientific, USA, model AE22) operates at 370 nm and 130 

880 nm.  Both channels output a concentration of carbon.  The measurements in the 370 nm channel 131 

are adjusted relative to the 880 nm channel using the Ångstrom exponent α = 1 and Equation (2).  132 

Consequently, when sampling solely black carbon of α = 1, the two channels output the same mass 133 

concentrations of black carbon.  If the aerosol contains UV-absorbing components, then the 134 

concentration derived from the 370 nm channel will exceed that of the 880 nm channel, and the 135 
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difference between the two measurements is a measure of the UV absorbing component and has 136 

therefore been described as UVPM (UV-absorbing particulate material) by Hansen (2005) and as 137 

Delta-C by Wang et al. (2011a,b).  Despite the fact that Hansen (2005) issued the caveat that 138 

“UVPM is not a real physical or chemical material”, Wang et al. (2011a,b) report that it may be an 139 

indicator of woodsmoke, and in the second of these papers (Wang et al., 2011b) show relationships 140 

of Delta-C to levoglucosan (r2 = 0.89) and to elemental potassium.  They also show diurnal 141 

variations of Delta-C which relate closely to that which might be expected for woodsmoke.  Allen 142 

et al. (2011) also working in the north-eastern United States interpret Delta-C as specific to 143 

woodsmoke in ambient air.  They estimate a conversion factor from Delta-C to woodsmoke of 12, 144 

reporting other studies showing respectively a factor of 15, and a factor of 7.8 which was 145 

substantially variable across sites and time periods. 146 

 147 

In this paper, we describe experimental observations both in the atmosphere and of source materials 148 

made with an aethalometer, pertinent to its use for estimation of atmospheric woodsmoke 149 

concentrations.  This included: 150 

• collection of new data from woodburning experiments; 151 

• estimation of values of α from field measurements with a seven-wavelength aethalometer; 152 

• critical evaluation of field data collected with a 2-wavelength aethalometer, including use of the 153 

UVPM (Delta-C) output. 154 

 155 

 156 

 157 

 158 
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EXPERIMENTAL 159 

Sampling of Woodsmoke Emissions with the Seven-Wavelength Aethalometer 160 

Fuel characteristics 161 

Wood from Fagus sylvatica, Populus nigra and Quercus pyrenaica was used as fuel. The wood was 162 

cut into logs of 0.3 to 0.4 m in length with a total biomass burned during each cycle of around 1.7 to 163 

2.0 kg. The combustion of a batch of fuel lasted between 45 and 60 min, depending on the physical-164 

chemical characteristics of the biomass fuel and on the mass of the fuel batch used. Between three 165 

and five burnings of each wood type were carried out. 166 

 167 

Experimental infrastructure 168 

The biomass combustion experiments were carried out with a traditional cast iron stove (model 169 

Sahara; 0.44 m height, 0.59 m width and 0.36 m depth), commonly used for domestic heating. It 170 

was equipped with a vertical chimney with 0.2 m internal diameter and 3.3 m height. For particulate 171 

matter sampling, a dilution tunnel, and respective ancillary equipment, was installed downstream of 172 

the chimney in order to dilute the combustion flue gas. This dilution tunnel consists of a tube of 173 

circular section with 11 m length and 0.20 m internal diameter. The gas velocity in the cross section 174 

of the dilution tunnel was determined using a Pitot tube, a pressure sensor and a K-type 175 

thermocouple; this allowed the calculation of the volumetric gas flow rate throughout the tunnel and 176 

respective combustion gas dilution ratio. The aim of this tunnel is to simulate the rapid cooling and 177 

dilution that occurs when exhaust mixes with the atmospheric air. Gas-particle partitioning of semi-178 

volatile material in the combustion flue gas will be influenced by these processes. In order to reduce 179 

the particle concentrations and avoid saturation of equipment before sampling, another dilution step 180 

was carried out. A Venturi system was used in order to take a sample from the dilution tunnel. 181 

Flows of 77±14 NL min-1 of filtered dry compressed air were used for taking  10±1 NL min-1 of 182 

sample from the dilution tunnel under isokinetic conditions. This flow was conducted through a 183 

second “tunnel” of ~1.13 m length and 0.07 m internal diameter, where it was diluted again with  184 
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344± 3 NL min-1 of filtered dry compressed air. In order to remain within the operating range of the 185 

seven-wavelength aethalometer, another dilution step was carried out by using 2.5 L min-1 186 

(laboratory/ room conditions) of filtered dry compressed air. The aethalometer operated with a flow 187 

of 5 L min-1 flow (2.5 L min-1 from the second tunnel + 2.5 L min-1 of compressed air- laboratory/ 188 

room conditions) in order to guarantee PM2.5 sampling by using a cyclone. Further details of the 189 

experimental infrastructure and combustion experiments can be found in Tarelho et al. (2011) and 190 

Calvo et al. (2011). 191 

 192 

Field Sampling with the Seven-Wavelength Aethalometer 193 

Air samples were collected at three sites:  Budbrooke, EROS and North Kensington.  EROS 194 

(52.45ºN;  1.93ºW) is an urban background site located in an open field within the campus of the 195 

University of Birmingham and 3.5 km from the centre of the city (population 1 million).  Sampling 196 

dates were 23 June 2008 to 31 March 2010.  Budbrooke (52.17ºN;  1.38ºW) is in a rural location 55 197 

km to the southeast of Birmingham and 4 km to the west of the smaller town of Warwick.  The 198 

sampler was located in open ground close to an area of woodland and was exposed to woodsmoke 199 

from local sources, both woodstoves and open burning.  Sampling dates were between 19 200 

November 2009 and 8 April 2010.  North Kensington (51.52ºN;  0.21ºW) is an urban background 201 

site 7 km to the west of central London.  Sampling took place between 3-29 June 2010 and 16 202 

February to 15 March 2011.    Further details of the sites, campaign dates and protocols are 203 

available in Harrison et al. (2012). 204 

 205 

Analysis of Field Data from the Two-Wavelength Aethalometer 206 

The concentrations of black carbon (BC) and UV particulate matter (UVPM) were downloaded 207 

from the aethalometers of the UK national black carbon network.  UVPM is the difference between 208 

the measurements of the 370 and 880 nm channels. After application of the loading correction of 209 

Weingartner et al. (2003), hourly average values were calculated.  Uncertainties in these α values 210 
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have been estimated by applying an uncertainty of ± 5% to absorbance data from both channels, 211 

which appears from published data (e.g. Wallace et al., 2005) to be around the upper limit for this 212 

parameter.  This resulted in estimated maximum random uncertainty in an α value of 10%. 213 

 214 

RESULTS AND DISCUSSION 215 

Woodsmoke Emissions Sampling 216 

Samples were collected over a period of 9 days from a wood stove with multiple dilutions in order 217 

to remain within the operating range of the seven-wavelength aethalometer.  Four runs were made 218 

with three different wood types, the results appearing in Figure 1.  These plots have been smoothed 219 

to damp the major variations but still show huge variability as the combustion proceeded.  They 220 

also show a very wide range of α values with Fagus ranging from below 1 to periods in excess of 3, 221 

Quercus showing values in the 370-880 wavelength range between 2 and 3 for the majority of the 222 

time and Populus nigra having values between 1.5 and 2.5.  The strong temporal variations in these 223 

exponent values and the apparent consistent difference between wood types cast doubt on the use of 224 

a single value for α in the “aethalometer model” used to estimate woodsmoke concentrations. 225 

 226 

Field measurements Using the Seven-Wavelength Aethalometer 227 

If there are only two contributors to light-absorbing aerosol in the atmosphere, i.e. traffic aerosol 228 

with an α = 1 and woodsmoke with α = 2, then measurements of α based upon field measurements 229 

should always lie within the range 1-2.  Field data from the four sampling sites/campaigns were 230 

divided into five-minute measurement periods for which α values were calculated.  These are 231 

shown as histograms in Figure 2.  This indicates that a significant proportion of measurements at 232 

the urban sites lay below a value of α = 1.0 with a few values at the Budbrooke sampling site 233 

exceeding 2.0.  This observation casts some doubt on the models based upon two absorbing 234 

components, although evaporation of absorbing components from the filter can lead to a reduction 235 

in the α value and may explain the urban values of α < 1.  This can be regarded as a kind of 236 
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sampling artefact.  Much of the published work has used αtraffic = 1.0 and αwoodsmoke = 2.0.  A 237 

sensitivity study was conducted in which both αtraffic and αwoodsmoke were varied over apparently 238 

plausible ranges based upon the histograms in Figure 2.  The masses of woodsmoke and traffic 239 

particles were estimated according to the methods described by Harrison et al. (2012).  Hence αtraffic 240 

was varied between 0.8 and 1.1 and αwoodsmoke was varied between 1.8 and 2.2.  By selecting 241 

specific values, the relative magnitudes of the diurnal profiles of woodsmoke and traffic aerosol 242 

concentrations could be varied considerably but also the diurnal patterns changed markedly. 243 

 244 

The mass of carbonaceous matter was estimated from: 245 

 246 



 248 

The OM:OC conversion factor of 1.8 was chosen as a mid-point value based upon earlier estimates 249 

of (OM/OC)fossil of 1.4 and (OM/OC)non-fossil of 2.25 reported by Sandradewi et al. (2008a). 250 

Using the combined measurement datasets from Budbrooke and London, North Kensington, αtraffic 251 

and αwoodsmoke were varied according to the combination of values in Table 1, and the values of C1, 252 

C2 and C3 were calculated, the results appearing in Table 1.  The values of C1 derived when αtraffic = 253 

1.0 are close to that of C1 = 260,000 µg/m2 reported elsewhere (Favez et al., 2010;  Sandradewi et 254 

al., 2008a).  Values of C1 are very sensitive to small changes in αtraffic, while C2 is relatively 255 

insensitive.  The intercept C3, representing other, mainly secondary sources of organic carbon is 256 

rather insensitive to changes in α and remains close to 1.5 µg m-3.  Three dimensional plots of C1 as 257 

a function of αtraffic and αwoodsmoke (not shown) indicate that C1 is strongly dependent upon the value 258 

of αtraffic in comparison to αwoodsmoke by two orders of magnitude.  C2 is dependent upon the value of 259 

αwoodsmoke, with αtraffic having a very small influence. 260 

 261 
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Table 2 shows average concentrations of particulate matter from traffic and woodsmoke during the 262 

four campaigns calculated using the α values from Table 1, and the derived values of C1 and C2.  263 

This clearly demonstrates the huge sensitivity of masses calculated from the aethalometer model to 264 

the chosen values of α.  Even within this limited range, negative values of mass are estimated and 265 

are clearly implausible.  Favez et al. (2010) have also conducted a sensitivity study in which they 266 

varied αtraffic (referred to as αff) from 0.9 to 1.1, αwoodsmoke from 1.5 to 3.0 and C1 from 2.0 x 105 to 267 

3.2 x 105.  This led to estimates of EC and OM from wood burning ranging from 4-50% and 43-268 

74% respectively (Hi Vol filter and aethalometer dataset) and 4-49% and 38-68% respectively 269 

(AMS + aethalometer dataset). 270 

 271 

Further variations in α values by 0.01 increments led to the adoption of αtraffic = 1.07 and αwoodsmoke 272 

= 2.0 which gave the most plausible diurnal patterns for CMtraffic and CMwoodsmoke and 273 

weekday:weekend differences that appeared convincing.  Using these values, CMtraffic well 274 

exceeded CMwoodsmoke at all of our sites.  The outputs appear in Figure 3(a).  While the traffic 275 

profiles look plausible, and similar to those of CO and NOx at North Kensington (Bigi and 276 

Harrison, 2010), the woodsmoke profiles are not smooth.  Taking αtraffic = 1.0 and αwoodsmoke = 1.8 277 

(Figure 3(b)) again gives a set of plausible weekday traffic profiles, but the weekend profiles show 278 

strange facets and the woodsmoke profiles are also unexpected. 279 

 280 

We conclude that the estimated concentrations of particulate matter arising from traffic and 281 

woodsmoke are highly sensitive to the values of α selected and that consequently due to the 282 

uncertainties in these values, there is a substantial uncertainty in mass predictions derived from 283 

using this method.   284 

 285 

One flaw in the above data treatment is that the data pooled from three sites give a single value of 286 

C3, the concentration of carbonaceous matter other than traffic and woodsmoke emissions. Ideally, 287 
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C3 would vary by site, day and time-of-day.  However, when data from individual sites were 288 

analysed in order to get site/campaign specific values of C3 the results were not good.  The standard 289 

errors in C1 were very large for Budbrooke (where woodsmoke tends to dominate) and small for 290 

North Kensington, whereas the standard errors in C2 were small for Budbrooke, but large for North 291 

Kensington where traffic is more influential.  A satisfactory regression was obtained only when data 292 

from the contrasting sites was pooled, but the undesired consequence is the single value of C3. 293 

 294 

As mentioned above, Favez et al. (2010) proposed a three-component model as below: 295 

 296 

CMtotal = CMtraffic + CMwoodsmoke + CMother = C1 x babs,tr,950 nm + C2 x babs,ws,470 nm + C3 (6) 297 

 298 

In this model, C3 represents non-absorbing carbonaceous aerosol which appears as an intercept in 299 

the multiple regression.  While it is appropriate that this component is accounted for in the 300 

“aethalometer model”, there remain two significant issues.  Firstly, the assumption that only 301 

woodsmoke and traffic particles absorb at 370 nm may be unsound.  It is well known that, for 302 

example, coal smoke also absorbs at this wavelength (Bond et al., 2002) and hence acts as a 303 

confounding factor with woodsmoke when present in the atmosphere.  Additionally, however, there 304 

may be other conjugated molecules present which absorb at this wavelength.  Humic-like 305 

substances (HULIS) are conjugated oxidised organic compounds present in woodsmoke and natural 306 

organic matter.  They may however be formed in complex atmospheric reaction processes and 307 

hence be a component of secondary organic aerosol.  Additionally, recent work by Updyke et al. 308 

(2012) has shown that a wide range of biogenic and anthropogenic aerosols change colour from 309 

white to brown in the presence of ammonia and that the mass absorption coefficient is comparable 310 

to that of biomass burning aerosols.  The second important factor is that the model treats C3 as a 311 

constant whereas C3, which represents predominantly secondary organic aerosol components, varies 312 

substantially from day-to-day and consequently treating it as a constant adds uncertainty to the 313 
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model.  For example, Herich et al. (2011) using seven-wavelength aethalometers tried to apply a 314 

three-component model to carbonaceous matter but found standard errors of the estimated C1, C2 315 

and C3 of around ± 30% allowing no meaningful quantification of source contributions.  They also 316 

commented on the sensitivity of C1 and C2 to the chosen Ångstrom exponents leading to a further 317 

increase in uncertainty.  Consequently, they used the aethalometer model to apportion black carbon 318 

but not organic matter.   319 

 320 

Field Data from the Two-Wavelength Aethalometer 321 

In the United Kingdom there is a network of 14 Magee Scientific type AE22 aethalometers run on a 322 

continuous basis.  These were used to output concentrations of black carbon and UVPM (equivalent 323 

to Delta-C, see above).  Extensive analyses of the temporal and spatial variations in UVPM were 324 

conducted and several of the facets are reported here.   325 

 326 

Typical diurnal variations of black carbon and UVPM appear in Figure 4.  For a central England 327 

rural site (Harwell), an urban background location in London (North Kensington) and a town in 328 

Northern Ireland (Strabane), the diurnal variations for UVPM appear consistent with expectations 329 

from a wood burning source, with highest concentrations in the evening due to increasing 330 

atmospheric stability and increased emissions.  It is however notable that the diurnal patterns for 331 

both black carbon and UVPM at Strabane are very similar to one another and it seems likely that at 332 

this site in Northern Ireland coal burning is the major source of both black carbon and UVPM.  333 

Natural gas is not available as a fuel in some parts of Northern Ireland and consequently coal 334 

burning remains widely used for home heating.  Figure 5 shows the seasonal variation in black 335 

carbon and UVPM for the same three sites.  It is notable that black carbon, attributable mainly to 336 

road traffic, shows a slight increase in the winter months at London North Kensington relative to 337 

the summer, while at Strabane, the larger winter increase is again consistent with the use of coal as 338 

a fuel for domestic heating.  The seasonal patterns for UVPM are, however, interesting.  These 339 
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show a rather modest seasonal variation in UVPM at London North Kensington (and less so at 340 

Harwell) and very much smaller than that seen at Strabane.  If the source of UVPM at London 341 

North Kensington were wood used for domestic heating, one might expect to see a seasonal pattern 342 

more similar to that of Strabane, but the relatively minor increase seen in the winter at London 343 

North Kensington is no larger than that for black carbon and probably explicable primarily by 344 

greater atmospheric stability in the winter months as traffic emissions are not expected to vary 345 

appreciably by season.  This point is reinforced by measurements made during summer (2010) and 346 

winter (2011) campaigns at London North Kensington.  The ratios of winter/summer concentrations 347 

in those campaigns were 1.11 for black carbon, and for independently measured elemental carbon, 348 

1.10, whereas for the woodsmoke markers levoglucosan, it was 3.22 and for woodsmoke fine 349 

potassium (corrected for sea salt and soil contributions as in Harrison et al., 2012), the ratio was 350 

5.15.  In contrast, the ratio for UVPM was 1.25 suggesting a behaviour much more similar to that of 351 

road traffic exhaust than of woodsmoke.  Application of the factor of 12 employed by Su et al. 352 

(2013) to convert UVPM to woodsmoke mass for North Kensington yields an annual mean 353 

woodsmoke concentration of 4.2 µg m-3 and a winter mean of 5.4 µg m-3.  These values are 354 

implausible in relation to the known average composition of PM2.5 and this site, and the 355 

concentrations of other woodsmoke tracers (levoglucosan and fine K). 356 

 357 

A further question mark over the use of the UVPM (Delta-C) metric derives from an analysis of the 358 

data from the Marylebone Road kerbside location in central London shown in Figure 6.  359 

Concentrations (normalised to a mean value of 1.0 for black carbon, UVPM and NOx) show 360 

maximum values for wind directions above the street canyon between around 150 to 240º.  This has 361 

previously been explained in terms of circulations within the street canyon bringing traffic exhaust 362 

to the sampler (Jones and Harrison, 2005).  Whilst a very close agreement is seen between the 363 

directional profiles for black carbon and NOx, UVPM, which would be expected to be largely 364 

unaffected by wind directions above the street canyon, goes to large negative values which mirror 365 
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the high values seen in black carbon and NOx.  This suggests that fresh traffic exhaust is not well 366 

described by the α values used within the two-wavelength aethalometer, with a value of α < 1.0 367 

possibly being more appropriate.  It is difficult to rationalise this behaviour in terms of the 368 

collection and subsequent vaporisation of semi-volatile organic components as often wind 369 

directions are relatively persistent and the aethalometer filter would reach steady state.  Kirchstetter 370 

et al. (2004) report values of α = 0.8 in a road tunnel and α = 0.9 at roadside, consistent with the 371 

concept that α may be < 1.0 for traffic exhaust. 372 

 373 

It is also worth noting that Wang et al. (2012), using Delta-C in a PMF study of atmospheric aerosol 374 

along with a large range of inorganic and organic tracers reported that “more than 72% of the Delta-375 

C was attributed to the wood combustion factor”.  This leaves a potentially large proportion 376 

explained by other source-related factors. 377 

 378 

CONCLUSIONS 379 

Information has been presented from a range of different sources, partly theoretical but largely 380 

experimental, which indicate the large uncertainties around the Ångstrom exponent (α) values used 381 

in the “aethalometer model” to estimate concentrations of atmospheric woodsmoke.  There is clear 382 

evidence from the literature that α values for woodsmoke can vary over quite a large range (e.g. 383 

Lewis et al., 2008) and our small database from combustion experiments confirms that view.  While 384 

woodsmoke emissions are from a large number of individual sources at close to ground-level, the 385 

woodsmoke sampled at an urban location is likely to represent an average of very many sources.  386 

This should overcome some of the issues of variability of α, but there remains a serious question of 387 

what is the most appropriate value of α to select for woodsmoke.  Our brief sensitivity study 388 

suggests that the outcomes of the source apportionment calculation with the aethalometer model are 389 

very sensitive to the value of α selected, as well as being influenced to a lesser degree by the value 390 

of α selected for traffic emissions.  There remain also the issues over other UV absorbing 391 
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components within the atmosphere which remains to a large extent an open question.  Additionally, 392 

when apportioning carbonaceous matter mass, the intercept term C3 relating to non-absorbing 393 

carbonaceous matter is treated as an intercept which assumes that it is a constant.  However, 394 

concentrations of organic carbon in the atmosphere fluctuate substantially from day-to-day and 395 

within the day, and this adds to the uncertainty in apportioning organic matter and by implication 396 

the mass of woodsmoke. 397 

 398 

The use of the two-wavelength aethalometer to infer woodsmoke concentrations is very appealing 399 

as these instruments are easy to operate and often already installed in order to measure black carbon 400 

concentrations.  However, analysis data from the UK, where we believe that woodsmoke 401 

concentrations are generally rather low, shows many facets to the data which cast doubt on whether 402 

the instrument is reliably reflecting concentrations of woodsmoke;  in particular the seasonal 403 

variation in UVPM (Delta-C) is far smaller than for other woodsmoke tracers and more consistent 404 

with the seasonal variation in black carbon. 405 

 406 

This outcome poses a number of questions, including the following: 407 

(a) Can appropriate values of the Ångstrom coefficients, α, for woodsmoke and traffic be 408 

selected to give realistic results?  409 

(b) Is the mere presence of secondary organic aerosol sufficient to confound the use of the two 410 

absorbing component aethalometer models? 411 

 412 

(c) Are there situations other than the polluted Swiss alpine valley used to establish the two 413 

component aethalometer model (Sandradewi et al., 2008a, b) where the aethalometer model 414 

can be applied with confidence? 415 

 416 
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(d) Is the aethalometer model more suitable for woodsmoke measurements when concentrations 417 

are high and hence woodsmoke is the dominant light absorbing component? 418 

 419 
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TABLE LEGENDS 531 

Table 1 Summary of the effect of changing αtraf & αws upon values of C1, C2 and C3 532 
 533 
Table 2 Summary of the effect of changing αtraf & αws on PMtraf and PMws 534 
 535 

 536 

FIGURE LEGENDS 537 

Figure 1 Measurements of Ångstrom exponent (α) over three wavelength ranges in wood  538 
  combustion experiments. (Dotted vertical lines indicate pauses between  539 
  measurements). 540 
 541 
Figure 2 Frequency distributions of five minute-average values of Ångstrom exponents 542 

measured at four field sites. 543 
 544 
Figure 3(a) Estimated average diurnal concentrations of carbonaceous particulate matter at three 545 

sites calculated from aethalometer measurements using αtraffic = 1.07 and αwoodsmoke = 546 
2.00. 547 

 548 
Figure 3(b) Calculated diurnal profiles at the three sites with αtraffic = 1.00 and αwoodsmoke = 1.80. 549 
 550 
Figure 4 Average diurnal concentration profiles: (a) black carbon; (b) UVPM at three sites 551 

(Harwell, North Kensington, Strabane).  552 
 553 
Figure 5 Average seasonal concentration profiles: (a) black carbon; (b) UVPM from three 554 

sites (Harwell, North Kensington, Strabane). 555 
 556 
Figure 6 Normalised concentrations of black carbon, NOx and UVPM at Marylebone Road as 557 

a function of wind direction. 558 
 559 

  560 
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Table 1.  Summary of the effect of changing αtraf & αws upon values of C1, C2 and C3 561 
 562 
 563 
αtraf αws C1 (µg/m2) C2 (µg/m2) C3(µg/m2)  R2 
1.07 2.0 330,081 (±58,645) 528,574 (±36,340) 1.49 (±0.38) 0.59 
1.10 1.8 370,828 (±47,469) 471,638 (±33,876) 1.50 (±0.38) 0.60 
1.00 1.8 231,983 (±50,731) 468,045 (±45,260) 1.53 (±0.39) 0.58 
1.00 2.0 232,180 (±61,043) 532,778 (±44,796) 1.52 (±0.39) 0.58 
1.00 2.2 233,181 (±70,964) 584,943 (±44,930) 1.51 (±0.39) 0.58 
0.9 2.0 103,679 (±63,096) 532,591 (±60,246) 1.53 (±0.39) 0.57 
1.1 2.0 371,912 (±58,028) 527,781 (±34,156) 1.50 (±0.38) 0.59 
0.8 2.2 -14,174 (±72,622) 581,319 (±75,332) 1.54 (±0.39) 0.57 
Note:  C1, C2 and C3 are the coefficients in equation 6. 564 
 565 
 566 
 567 
Table 2.  Summary of the effect of changing αtraf & αws on PMtraf and PMws

 (µg m-3) 568 
 569 

   Budbrooke EROS NK2010 NK2011 
αtraf αws C3 CMtraffic CMwoodsmoke CMtraffic CMwoodsmoke CMtraffic CMwoodsmoke CMtraffic CMwoodsmoke 

1.07 2.0 1.49 2.13 1.83 1.85 0.61 3.63 0.26 4.03 1.68 
 
 

                  

1.10 1.8 1.50 2.35 1.62 2.11 0.35 4.21 -0.33 4.56 1.13 
1.00 1.8 1.53 1.33 2.63 1.19 1.26 2.37 1.49 2.58 3.10 
1.00 2.0 1.52 1.42 2.54 1.24 1.22 2.43 1.45 2.69 3.00 
1.00 2.2 1.51 1.49 2.47 1.27 1.19 2.47 1.40 2.78 2.92 
0.9 2.0 1.53 0.60 3.37 0.52 1.95 1.02 2.86 1.13 4.58 
1.1 2.0 1.50 2.45 1.50 2.14 0.33 4.18 -0.30 4.65 1.05 
0.8 2.2 1.54 -0.08 4.03 -0.07 2.53 -0.13 4.01 -0.15 5.84 

Note:  CM is carbonaceous matter (equivalent to PM) as in equations 3 and 4). 570 
  571 
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Figure 1.  Measurements of Ångstrom exponent (α) over three wavelength ranges in wood 
combustion experiments. (Dotted vertical lines indicate pauses between measurements) 
 
  572 
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 573 
 574 
Figure 2.  Frequency distributions of five minute-average values of Ångstrom exponents measured 575 
at four field sites 576 
 577 

 578 
 579 
 580 
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 581 
Figure 3(a).  Estimated average diurnal concentrations of carbonaceous particulate matter at three 582 
sites calculated from aethalometer measurements using αtraffic = 1.07 αwoodsmoke = 2.00 583 
 584 
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Figure 3(b).  Calculated diurnal profiles at the three sites with αtraffic = 1.00 and αwoodsmoke = 1.80  586 
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 587 
 588 

 589 

 590 
 591 
Figure 4.  Average diurnal concentration profiles: (a) black carbon; (b) UVPM at three sites 592 
(Harwell, North Kensington, Strabane)  593 
 594 
  595 
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 597 

 598 
 599 
 600 
Figure 5.  Average seasonal concentration profiles: (a) black carbon; (b) UVPM from three sites 601 
(Harwell, North Kensington, Strabane) 602 
  603 
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 604 

 605 
 606 
Figure 6.  Normalised concentrations of black carbon, NOx and UVPM at Marylebone Road as a 607 
function of wind direction 608 
 609 
 610 
 611 
 612 


