

Learning kernel logistic regression in the presence
of class label noise
Bootkrajang, Jakramate; Kaban, Ata

DOI:
10.1016/j.patcog.2014.05.007

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Bootkrajang, J & Kabán, A 2014, 'Learning kernel logistic regression in the presence of class label noise',
Pattern Recognition, vol. 47, no. 11, pp. 3641-3655. https://doi.org/10.1016/j.patcog.2014.05.007

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 22/05/2014

Published as above, final version of record available at https://doi.org/10.1016/j.patcog.2014.05.007.

Checked 17/5/18.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1016/j.patcog.2014.05.007
https://research.birmingham.ac.uk/portal/en/publications/learning-kernel-logistic-regression-in-the-presence-of-class-label-noise(bb3f551e-69f6-4723-9ad0-6f6bea8ca27e).html

Author's Accepted Manuscript

Learning kernel logistic regression in the
presence of class label noise

Jakramate Bootkrajang, Ata Kabán

PII: S0031-3203(14)00192-7
DOI: http://dx.doi.org/10.1016/j.patcog.2014.05.007
Reference: PR5113

To appear in: Pattern Recognition

Received date: 20 October 2012
Revised date: 8 May 2014
Accepted date: 11 May 2014

Cite this article as: Jakramate Bootkrajang, Ata Kabán, Learning kernel logistic
regression in the presence of class label noise, Pattern Recognition, http://dx.doi.
org/10.1016/j.patcog.2014.05.007

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/pr

http://dx.doi.org/10.1016/j.patcog.2014.05.007
http://dx.doi.org/10.1016/j.patcog.2014.05.007
http://dx.doi.org/10.1016/j.patcog.2014.05.007
http://dx.doi.org/10.1016/j.patcog.2014.05.007
http://dx.doi.org/10.1016/j.patcog.2014.05.007
http://dx.doi.org/10.1016/j.patcog.2014.05.007
http://dx.doi.org/10.1016/j.patcog.2014.05.007

Learning Kernel Logistic Regression in the

Presence of Class Label Noise

Jakramate Bootkrajang ∗ and Ata Kabán

School of Computer Science, The University of Birmingham,
Birmingham, B15 2TT, UK

Abstract

The classical machinery of supervised learning machines relies on a correct set of
training labels. Unfortunately, there is no guarantee that all of the labels are correct.
Labelling errors are increasingly noticeable in today’s classification tasks, as the
scale and difficulty of these tasks increases so much that perfect label assignment
becomes nearly impossible. Several algorithms have been proposed to alleviate the
problem, of which a robust Kernel Fisher Discriminant is a successful example.
However, for classification, discriminative models are of primary interest, and rather
curiously, the very few existing label-robust discriminative classifiers are limited to
linear problems.

In this paper, we build on the widely used and successful kernelising technique
to introduce a label-noise robust Kernel Logistic Regression classifier. The main
difficulty that we need to bypass is how to determine the model complexity param-
eters when no trusted validation set is available. We propose to adapt the Multiple
Kernel Learning approach for this new purpose, together with a Bayesian regular-
isation scheme. Empirical results on 13 benchmark data sets and two real-world
applications demonstrate the success of our approach.

Key words: Classification, Label noise, Model selection, Multiple Kernel Learning

1 Introduction

Traditional supervised learning machines rely on a correct set of class labels.
There is however no guarantee that all the labels will be correct in practice,

∗ Present address: Department of Computer Science, Chiang Mai University,
Chiang Mai, Thailand, 50200.

Email addresses: jakramate.b@cmu.ac.th (Jakramate Bootkrajang),
A.Kaban@cs.bham.ac.uk (Ata Kabán).

Preprint submitted to Elsevier 19 May 2014

either due to the scale of the labelling task, the lack of information available
to determine the class labels or the subjectivity of the labelling experts.

The presence of class label noise inherent in training samples has been reported
to deteriorate the performance of the existing classifiers in a broad range of
classification problems including biomedical data analysis [20,30] and image
classification [24,47]. More recently, class label noise emerges as a side effect of
crowdsourcing practices where annotators of different backgrounds are asked
to perform labelling tasks. For example Amazon’s Mechanical Turk, Citizen
science, Galaxy Zoo to name just a few. Although, the problem posed by the
presence of class label noise is acknowledged in the literature, it is often naively
ignored in practice. Part of the reason for this may be that uniform/symmetric
label noise is relatively harmless [21,22,12,27].

There is an increasing research literature that aims to address the issues re-
lated to learning from samples with noisy class label assignments. The seem-
ingly straightforward approach is by means of data preprocessing where any
suspect samples are removed or relabelled [7,1,29,37,31,18]. However, these
approaches hold the risk of removing useful data too, which is detrimental to
the classification performance, especially when the number of training exam-
ples is limited (e.g. in biomedical domains). Most previous approaches try to
detect mislabelled instances based on various heuristics, and very few take a
principled modelling approach — with the notable exceptions of [32,24,25,36].

Lawrence and Schölkopf [24] incorporated a probabilistic model of random
label flipping into their robust Kernel Fisher Discriminant (rKFD) for binary
classification. Based on the same model, Li et al. [25] conducted extensive
experiments on more complex data sets, which convincingly demonstrated
the value of explicit modelling. The rKFD was later extended to multi-class
setting by [3] and this has further motivated the recent development of a label
noise-tolerant Hidden Markov Model to improve segmentation [15].

While all these works demonstrate the great potential and flexibility of a model
based approach, most existing work falls in the category of generative methods.
For classification problems, discriminative methods are of interest, and similar
algorithmic developments for discriminative classifiers are still limited. For
example, Madger et al. [28] studied logistic regression with known label flip
probabilities and they reckon problems when these probabilities are unknown.
Hausman et al. [17] has given a foundation of a statistical model for the binary
classification problem but provide no algorithmic solution to the learning of
label noise parameters.

Recently Raykar et al. [36] proposed an EM algorithm to learn a latent variable
model extension of logistic regression, for data with multiple sets of noisy
labels. Our initial work [4] suggested a more efficient gradient-based algorithm

2

to optimise a similar latent variable model for problems where only a single set
of labels is available. A sparse extension of the model has also been developed
in [4]. However all of these developments are limited to linear problems. In
this paper we focus on non-linear classification with labelling errors which is
not as trivial as it might look at first.

Since the introduction of the kernel trick, many linear classifiers have been
harnessed with an ability to solve non-linear problems, whereby their usage
extends to a wider range of applications. Generally, deploying a kernel machine
also involves determining good kernel parameters, and Cross-Validation (CV)
has long been an established standard approach. However, when class label
noise is present, it becomes unclear why would CV be a good approach since
then all candidate models will be validated against noisy class labels. The issue
has also been briefly discussed in [24,6]. In [24], the authors resort to using
a ‘trusted validation set’ to select optimal kernel parameters. The trusted
set must be labelled carefully, which seriously restricts the applicability of
the method. For example in crowdsourcing it would be very difficult (if not
impossible) to construct such a trusted set.

We start by straightforwardly formulating a robust Kernel Logistic Regression
(rKLR) as an extension of the robust Logistic Regression (rLR). We present a
simple yet effective algorithm to learn the classifier and investigate whether or
not CV is a reasonable approach for model selection in the presence of labelling
errors. As we shall see, we find that performing CV in noisy environments gives
rise to a slightly under-fitted model. We then propose a robust Multiple Kernel
Logistic Regression algorithm (rMKLR) based on the so-called Multiple Kernel
Learning (MKL) framework (an extensive survey in recent advances of MKL
is given in [16]) and the Bayesian regularisation technique [9] to automate the
model selection step without using any cross-validation. From this we obtain
improvements in both generalisation performance and learning speed. The
genealogy of the proposed methods is summarised in Figure 1, which serves
as a roadmap for the next section.

Throughout this work, similarly to the related work above, we will focus on
label noise occurring at random – that is, the flipping of labels is assumed
to be independent of the contents of the data features. The reason for this
is simplicity and generic applicability. Alternative models of label noise are
discussed after the Experiments section.

2 Robust Kernel Logistic Regression

Consider a set of training samples D = {(xn, ỹn)}Nn=1, where xn ∈ R
m and

ỹn ∈ {0, 1} denotes the observed (possibly noisy) label of xn. Kernel logistic

3

Fig. 1. Genealogy of the robust Kernel Logistic Regression and the robust Multi-K-
ernel Logistic Regression methods. The highlighted boxes are the classifiers proposed
in this paper. Note that there are two paths to arrive at the robust Kernel Logistic
Regression.

regression produces a non-linear decision boundary, f(x), by forming a linear
decision boundary in the space of the non-linearly transformed input vectors.
By the representer theorem [19], the optimal f(x) has the form:

f(x) =
N∑
n=1

wnκ(·,xn) (1)

where κ(·, ·) is a positive definite reproducing kernel that gives an inner prod-
uct in the transformed space.

Denoting by w the parameter vector with entries wn, n = 1, ..., N , we define
the probability of an observed label ỹn as a linear combination of the proba-
bilities that the true label of a point is 0 or 1 respectively:

p(ỹ = k|κ(·,xn),w) =
1∑
j=0

p(ỹ = k|y = j)p(y = j|κ(·,xn),w)

=
1∑
j=0

ωjkp(y = j|κ(·,xn),w) (2)

Here, p(ỹ = k|y = j) = ωjk are probabilistic factors representing the proba-
bility that the true label j flips into the observed label k. These parameters
form a label transition table, Ω, that we will refer to as the flip matrix. The
full set of parameters for this robust model will be denoted as Θ = {w,Ω}.

4

Now, fitting the robust kernel logistic regression is equivalent to maximising
the following log-likelihood:

L(Θ) =
N∑
n=1

1∑
k=0

1(ỹn = k) log p(ỹn = k|κ(·,xn),Θ)− ζ
N∑
n=1

w2
n (3)

where 1(·) is the Kronecker delta function. We also included an L2 regulari-
sation term to express our preference for a smooth (and non-sparse) model.

In eq. (3), the term p(ỹn = k|κ(·,xn),Θ) is defined in eq. (2), in which we use
a sigmoid function to model the probability of the true label:

p(y = 1|κ(·,xn),w) = σ(wTκ(·,xn)) = 1

1 + exp(−wTκ(·,xn)) (4)

Learning the robust model requires us to estimate the weight vector w as
well as the label-flipping probabilities ωjk. To optimise the weight vector, we
can use any non-linear optimiser. We decided to employ conjugate gradients
because of its well known computational efficiency, which basically performs
the Newton update step along the direction u = g − uoldν. Here g is the
gradient of the log-likelihood w.r.t the weight vector.

Define P̃ k
n = p(ỹ = k|κ(·,xn),Θ), the gradient is given by:

g =
N∑
n=1

⎡
⎣
(
1(ỹn = 1)(ω11 − ω01)

P̃ 1
n

+
1(ỹn = 0)(ω10 − ω00)

P̃ 0
n

)

× σ(wTκ(·,xn))(1− σ(wTκ(·,xn)))× κ(·,xn)
⎤
⎦− 2ζ

N∑
n=1

wn (5)

The Hestenes-Stiefel formula, ν = gT (g − gold)/(uold)T (g − gold) is used to
calculate the step length. The update equation for w is then the following:

wnew = wold − gTu

uTHu
u, (6)

where the Hessian matrix H is calculated only once at the first iteration. We
should note that other schemes such as the Flectcher-Reeves or Polak-Ribère
formulae could also be used.

The following multiplicative update equations are then used to update the
elements of the flip matrix. These are derived as in [3] using the method of

5

Lagrangian multipliers to ensure that probabilities sum to 1.

ω00 =
ω00

∑N
n=1

[
1(ỹn=0)

P̃ 0
n

(1− σ(wTκ(·,xn))
]

ω00
∑N

n=1

[
1(ỹn=0)

P̃ 0
n

(1− σ(wTκ(·,xn))
]
+ ω01

∑N
n=1

[
1(ỹn=1)

P̃ 1
n

(1− σ(wTκ(·,xn))
]

(7)

ω11 =
ω11

∑N
n=1

[
1(ỹn=1)

P̃ 1
n

σ(wTκ(·,xn))
]

ω10
∑N

n=1

[
1(ỹn=0)

P̃ 0
n

σ(wTκ(·,xn))
]
+ ω11

∑N
n=1

[
1(ỹn=1)

P̃ 1
n

σ(wTκ(·,xn))
] (8)

With all the ingredients in place, the learning algorithm is then to alternate
between updating each parameter in turn, until convergence. Given an un-
seen query point xq, we predict that ŷq = 1 whenever p(ŷ = 1|κ(·,xq),w) =
σ(wTκ(·,xq)) returns a value greater than 0.5, and ŷ = 0 otherwise. This
algorithm to efficiently learn rKLR is summarised below in Algorithm 1.

Algorithm 1 Optimisation of rKLR
Input: κ, Ω
Initialise w← 0
while Iteration < MaxIteration do
Update w using eq.(5)
Update Ω using eq.(7) and eq.(8)

end while
Output: Optimised weight vector, w. Optimised Ω.

2.1 Connection to EM based optimisation

As an alternative to the above approach, the algorithm developed in [36] in
the context of multiple sets of noisy labels could also be instantiated for our
problem. The method in [36], developed in the data space (or equivalently
linear kernel case), proposes an EM algorithm to learn a similar model where
the true label is modelled as a hidden variable. Instead, we had these hidden
variable integrated out when optimising the parameters. It is hence interesting
to see how these two algorithms compare.

Similar to [36], let yn be the hidden true labels, and denote Pn := p(yn =
1|x,w, ỹn) the posteriors of these. To make the link, the expected complete
log likelihood (so-called Q-function) in the data space can then be written as:

Q(Θ) =
N∑
n=1

Pn log(ω
ỹn
11ω

1−ỹn
10 σ(wTxn)) + (1− Pn) log(ωỹn01ω1−ỹn

00 (1− σ(wTxn)))

(9)

• The E-step involves updating Pn based on the given data and the current

6

estimate of Θ:

Pn =
ωỹn11ω

1−ỹn
10 σ(wTxn)

ωỹn11ω
1−ỹn
10 σ(wTxn) + ωỹn01ω

1−ỹn
00 (1− σ(wTxn))

(10)

• The M-step then re-estimates the parameters using Pn from the E-step. For
example the gradient for updating the weight vector is given by:

g =
N∑
n=1

(
Pn − σ(wTxn)

)
xn (11)

Likewise, ω11 is updated using:

ω11 =

∑N
n=1 Pnỹn∑N
n=1 Pn

(12)

Now observe that substituting eq.(10) into eq.(12), we recover our multiplica-
tive form of updates for ω11 — with one subtle but important difference: In
the EM approach, Pn used in eq.(12) is computed with the old values of the
parameters w. Instead, our multiplicative updates use the latest fresh values
of all the parameters they depend on. This not only implies that our algorithm
saves the storage cost of the posteriors Pn during the iterations, but it also
has a better chance to converge in fewer iterations. The latter can be seen by
noting that our algorithm is equivalent to a component-wise EM [10], that is
an EM in which each component in the parameter space Θ = {w,Ω} is up-
dated sequentially. Component-wise EM has indeed been observed empirically
to converge faster than standard EM [10]. We should of course note also that
Pn can be useful for interpretation and our algorithm does not compute this
explicitly during its iterations. However we can compute Pn after convergence
using the final values of the parameters.

2.2 Selecting the kernel width: A multi-kernel approach

For any kernel machine, the value of the kernel parameters are critical to
the generalisation performance, and determining these is an important part
of the task. Here we focus on radial kernels for the sake of concreteness. In
this case the kernel parameter is the width of the kernel. A usual way of
finding optimal kernel width is by means of cross-validation (CV). However,
the success of this technique relies on the implicit assumption that the test
set follows the same distribution as the training set – which is violated in
the label noise scenario. One might instead attempt to cross-validate on the
out-of-sample model likelihood, but unfortunately this yields unsatisfactory
results in our experience as it tends to select a too small value for the kernel
width, leading to overfitting. Hence a more substantial modification would be

7

required CV work, e.g. by finding a way to express the label-robust objective
in terms of some regularised objective as it has been done for SVM under
feature noise [43]. However, this is likely to involve a regularisation parameter
to be set as well, and one would then need to perform CV over a 2D grid – a
rather resource-inefficient option.

Instead, we propose to employ the Multiple Kernel Learning (MKL) frame-
work, giving it a new purpose. In MKL, a combination of several kernels is
learnt in order to get a good representation of the data. We adopt the frame-
work as a method to find optimal kernel width automatically without per-
forming cross-validation. In contrast to the majority of MKL literature where
the aim is centred around combining heterogeneous data sources [34,23], our
adoption of MKL focuses on the combination of multiple kernels that corre-
spond to different notions of similarity, as defined by different kernel widths.
This approach will bypass the need for cross-validation and as a side-effect of
this it also speeds up the learning process.

There are several ways to combine kernels. We will use a conic combination,
as the following:

κ(·, ·) =
S∑
i=1

ηiκi(·, ·) : ηi ≥ 0 : ∀i (13)

Conic combinations represent a popular way to combine kernels. It is less
constrained than a convex combination would be, and the positivity constraint
ensures that the kernel weighting parameters do not cancel out each other. The
latter is important since linear combinations may lead to unstable learning
[14]. A convex combination could also be used but it would require the extra
constraint that ηi sums to unity, which is unnecessary.

In contrast to the case where one is concerned with heterogeneous data sources,
we want η to be sparse for our purpose, in order to select only a few of a set of
possible kernel widths. To implement this idea we use a generalised LASSO-like
approach, positing independent exponential priors to enforce this preference
on η. This results in adding a new regulariser to the objective in eq.(3) to
accommodate the MKL framework:

N∑
n=1

1(ỹn = 1) log P̃ 1
n + 1(ỹn = 0) log P̃ 0

n − ζ
N∑
i=1

w2
i −

S∑
i=1

ξiηi (14)

To ensure positivity, we reparametrise ηi = u2i , and optimise for ui using
conjugate gradients method. The derivative of the objective, eq.(14), w.r.t ui

8

is given by:

N∑
n=1

⎡
⎣(1(ỹn = 1)(ω11 − ω01)

P̃ 1
n

+
1(ỹn = 0)(ω10 − ω00)

P̃ 0
n

)

× σ(wTκ(·,xn))(1− σ(wTκ(·,xn)))× (wTκi(·,xn))
⎤
⎦− 2ξiui (15)

We later recover ηi by squaring the optimised ui.

2.3 Choosing the regularisation parameters by Bayesian regularisation

As discussed earlier, the use of cross-validation is not straightforward since a
naive use is questionable in the presence of labelling errors. This includes the
selection of the regularisation hyper-parameters. To circumvent the problem,
we adopt a Bayesian regularisation technique to automatically determine good
values of ζ and ξ := (ξ1, ..., ξS). For this, we consider a Bayesian interpretation
of eq.(14).

Consider the terms that depend on the parameter w and ζ first. The posterior
probability of w can be expressed as:

p(w|D, ζ) ∝ p(D|w, ξ)p(w|ζ) (16)

The first term on the r.h.s corresponds to the data likelihood while the second
term is our regularisation term for w. By taking logarithm on both sides of eq.
(16), log p(w|D, ζ) = log p(D|w, ξ)+ log p(w|ζ)+ const., we see that the regu-
larisation term is simply the negative logarithm of the prior distribution con-
ditioned on ζ , the regularisation parameter. Therefore, p(w|ζ) = N (0, 1/ζ).

We want to eliminate ζ from the formulation, so we build the model further by
putting a prior on ζ . We choose this to be an exponential distribution because
the values of ζ must be positive: p(ζ |β) = βe−βζ . Here, β is a hyper-parameter,
i.e. the inverse scale of the exponential. This encodes our uncertainty about ζ ,
and as such, it reflects our uncertainty about w at a higher level of inference.
We used β = 2 in in the reported experiments to constrain the expected prior
variance of w.

With this hyper-prior in place, we can write the marginal prior distribution,
p(w) by integrating out ζ :

p(w) =
∫ ∞

0
p(w|ζ)p(ζ)dζ (17)

Completing the integration by the use of the Gamma integral
∫∞
0 xν−1e−μxdx =

9

Γ(ν)
μν

, we obtain:

p(w) =
∫ ∞

0

m∏
i=1

⎧⎨
⎩
√
ζ

2π
e−

ζ
2
w2

i

⎫⎬
⎭ · βe−βζdζ

=
β

(2π)m/2

∫ ∞

0
ζ (m/2+1)−1e−ζ(

1
2

∑m

i=1
w2

i+β)dζ

=
β

(2π)m/2
Γ(m

2
+ 1)

(1
2

∑m
i=1w

2
i + β)(m/2+1)

(18)

Going back to our objective function in eq. (14), we now replace w’s the
regularisation term with the negative log of the newly derived marginal prior,
and optimise this objective w.r.t. w. Computing the gradient of this new
regularisation term yields:

−∂ log p(w)

∂w
=

m
2
+ 1

1
2

∑m
i=1w

2
i + β

∂
∑m
i=1w

2
i

∂w
(19)

and since this has the same form as the gradient of the original regularisation
term would, we read off from eq. (19) the regularisation parameter as,

ζ =
m
2
+ 1

1
2

∑m
i=1w

2
i + β

(20)

Next we proceed to treat ξi using the same technique of Bayesian regulari-
sation. This time we are looking for ξi that produces a sparse η, in order to
select just a very few kernel widths. We will employ a regularisation on each
component of η. The Bayesian interpretation of eq.(14) with respect to η and
ξ is given by,

p(η|D,w, ξ) ∝ p(D|η)
S∏
i=1

p(ηi|ξi) (21)

where we employed independent priors distributions on each ηi. Recall that
we constrained ηi to be non-negative, so a natural choice is to use indepen-
dent exponential distributions p(ηi|ξi) = ξie

−ξiηi , and ξi denote the inverse
scale parameters of these. These are hyperparameters that correspond to the
regularisation parameters in the last term of our objective function eq. (14).

Again, we want to integrate out the ξi from the formulation, so we build
this model further, positing a hyper-prior on all ξi. These also need to be
positive, hence we use the exponential distribution one more, p(ξi) = ψe−ψξi ,
and set ψ = 10−100 to a non-informative hyperprior that will encourage a
sparse solution.

10

We obtain the marginal prior by integration, which gives:

p(ηi) =
∫ ∞

0
ξie

−ξiηi · ψe−ψξidξi

= ψ
∫ ∞

0
ξ
(1+1)−1
i e−ξi(ηi+ψ)dξi = ψ

Γ(2)

(ηi + ψ)2
(22)

Finally, replacing the negative log of this in place of our original regularisation
term in eq. (14), re-parametrising η2i = ui and taking derivative of the log of
eq.(22) w.r.t ui we have,

−∂ log p(ηi)
∂ui

=
2

(ηi + ψ)

∂ηi
∂ui

(23)

From here we read off that

ξi =
2

ηi + ψ
(24)

Algorithm 2 summarises the steps to learn our novel “robust Multiple Kernel
Logistic Regression” (rMKLR) model.

Algorithm 2 Optimisation of rMKLR

Input: Set of predefined kernels κi=1:S, Ω
Initialise w← 0, η ← 1, ζ ← 0, ξ ← 0
while Iteration < MaxIteration do
Update w using eq.(5)
Update ζ using eq.(20)
Update ηi by optimising ui using eq.(15) and set ηi = u2i
Update ξ using eq.(24)
Update Ω using eq.(7) and eq.(8)

end while
Output: Optimised weight vector, w. Optimised Ω.

3 Experiments

We conducted extensive experiments to answer three main research questions.

• Firstly, we ask if rKLR improves KLR in terms of robustness against la-
belling errors as measured via classification performance. To answer this
question, we also study the relative harm of two common types of label
noise: symmetric and asymmetric noise. Symmetric noise is when the same
percentage of class labels flip from one class into the other, while asymmetric
noise is when labels from one class flip into the other but not vise-versa.

11

• Secondly, we ask if MKL can be used to find a suitable kernel parameter in
noisy settings. To answer the second research question we first show that
our proposed MKL for kernel width selection works in a noise-free scenario.
We then progress to show the comparative performance of rKLR where its
kernel width was selected using 1) CV with a trusted validation set, 2) CV
without a trusted validation set and 3) MKL framework in a noisy setup.
• Thirdly, we ask how the proposed rMKLR compares to robust Kernel Fisher
Discriminant (rKFD) [24], to the gold-standard Support Vector Machine
(SVM) and to the Stochastic Programming for Multiple Kernel Learning
(StPMKL) [46]. The recently proposed StPMKL is designed to learn from
noisy labels by relaxing a deterministic constraint in MKL into a chance
constraint using a binary random variable for each example that indicates
if the class assignment of the example is correct. It has been shown to out-
perform state-of-the-art MKL algorithms in noisy setups 1 , and hence can
be regarded as one of the best MKL algorithms for noisy labels. SVM is
an established classifier which incorporates slack variables, hence it should
be robust to label noise to some extent 2 . Comparison with vanilla SVM
will also reveal to what extent one could regard label noise as part of a
the traditional classification problem, and whether or not the extra effort
of noise modelling is actually needed. The rKFD was included in this com-
parison because it has been previously found to be effective in a wide range
of noisy non-linear problems [25]. It is a generative classifier as opposed to
our rMKLR – which is a discriminative classifier – and it is interesting to
see their performance comparatively.

3.1 Experimental protocol

In answering these questions, we train the proposed classifier on data where
label noise is created artificially so as to gain better understanding of its effects.
We train the model on the corrupted data set and evaluate the learnt model
using clean test sets. We consider label noise contamination ranging from
10% up to 40%. We should note that label noise over 40% is very unlikely to
occur in practice as it would mean a very poor labelling close to random class
assignment.

We use 13 UCI benchmark data sets [35] in our controlled experiments. Each
problem has been split into 100 train/test realisations except the Image and
Splice data sets where 20 realisations are provided. The characteristics of the
data sets used are summarised in Table 1. We later use crowdsourcing and

1 StPMKL was compared to Simple MKL [45] and MKL formulation of the robust
SVM [44]
2 We use LIBSVM [11] in our reported experiments

12

Data set Training samples Test samples Pos. samples Neg. samples Dimensionality

Banana 400 4900 44.83% 55.17% 2

B.Cancer 200 77 29.28% 70.72% 9

Diabetes 468 300 34.90% 65.10% 8

German 700 300 30.00% 70.00% 20

Heart 170 100 44.44% 55.56% 13

Image 1300 1010 56.95% 43.05% 18

Ringnorm 400 7000 49.51% 50.49% 20

S.Flare 666 400 65.28% 34.72% 9

Splice 1000 2175 44.93% 55.07% 60

Thyroid 140 75 30.23% 69.77% 5

Titanic 150 2051 58.33% 41.67% 3

Twonorm 400 7000 50.04% 49.96% 20

Waveform 400 4600 32.94% 67.06% 21

Table 1
Characteristics of non-linear benchmark data sets.

cheaply annotated data sets to demonstrate real applications of the algorithm
in learning from unreliable data sources.

For experiments where cross-validation (CV) is needed, we adopt the ‘best
practice’ described in [8], where model selection is seen as part of the learning
and 5-folds CV is performed independently on each split of the data. When
needed, we set aside 10% of the training data as a trusted validation set, in
which all labels are perfect. We employed a Gaussian Radial Basis Function
(RBF) kernel defined as,

κ(x,xn) = exp

(
−||x− xn||2

γ

)
(25)

in all of our experiments except in the textual entailment recognition task
where we used a linear kernel.

For MKL, our multiple kernels set is composed of 21 RBF base kernels with
widths γ in the set {2−10, 2−9, . . . , 210}. This set has a comprehensive coverage
of the range of possible values and we found this level of granularity works well
in practice. An assessment of the sensitivity to this choice will be made in a
later section. We also use this set of parameter values in the CV experiments,
for searches for both the kernel width and the C parameter in the case of
SVM.

13

3.2 KLR versus rKLR: Illustrative experiments

3.2.1 Symmetric versus Asymmetric noise

We start with an illustrative experiment, in which we are interested in finding
out which kind of random noise is more detrimental to the traditional kernel
learning. We train traditional KLR on data with 30% symmetric and 30%
asymmetric noise and present the average classification errors and standard
deviations over 100 repetitions in Figure 2.

Taking the performance on clean data to be the baseline result, we see that
in 5 data sets symmetric label noise is more detrimental while for the rest of
the data sets asymmetric noise perturbs the classifier more. Hence, as we see,
even symmetric label noise is not always harmless. Worth noting also that the
effect of label noise is more significant in artificial data that has a low Bayes
error (e.g., Ringnorm and Twonorm) than a real world data set (e.g., S.Flare)
that might possibly already have some inherent label noise.

Banana B.Cancer Diabetes German Heart Image Ringnorm S.Flare Splice Thyroid Titanic TwonormWaveform
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Baseline (clean data)
Symmetric noise
Asymmetric noise

Fig. 2. Effect of 30% symmetric and asymmetric noise to traditional KLR, compared
against clean baseline.

14

3.2.2 The advantage of modelling the label noise

Having seen that traditional KLR is not suitable in learning from data with
noisy labels, we are now interested to see if incorporating a label noise model
helps improving the classification performance. To this end, we compare KLR
to the proposed rKLR. To eliminate any other factors which could affect the
assessment, we defer the use of MKL with Bayesian regularisation (hereinafter
referred to as “the MKL”) until the next subsection, and instead here we use
CV with a trusted validation set containing correct labels to select the kernel
width parameter for both algorithms. Since we have seen that both types
of label noise are detrimental to the classifiers, we performed this test for
both types of noise, and pulled together the misclassification rates computed
from 100 independent splits of the data contaminated with symmetric noise
as well as the 100 splits of data contaminated with asymmetric noise. Table
2 summarises the average misclassification rates, standard deviations and p-
values.

We see that rKLR substantially improves upon KLR in the high noise con-
ditions (40%): In 11 out of the 13 data sets tested, we obtain statistically
significant improvements as tested using the Wilcoxson ranksum test at the
5% level. Though, interestingly, KLR is quite robust in the low noise (10%)
case. We also observe that, as the degree of mislabelling becomes more severe,
the performance gaps are getting larger. This can be readily seen in the 30%-
40% noise settings. On the basis of these results in Table 2 we may conclude
that label noise modelling indeed advantageous and makes a great difference.

3.3 Results: Cross-Validation versus MKL with Bayesian regularisation

3.3.1 Results on clean data

In the literature MKL has been used to combine different sources of data. How-
ever, here we adopted the MKL framework to automatically determine a good
kernel width. Before proceeding to our noisy scenarios, we will first establish
that the MKL works on clean data. We present in Table 3 the comparative
classification results between CV and the MKL on the clean benchmark data
sets.

From Table 3, we see that the MKL is effective in choosing a good representa-
tion of the data, i.e. a good kernel width. We see that the difference between
CV and Bayesian regularisation – albeit statistically significant in favour of
the latter in 6 out of 13 cases – is small (mostly within <1%) in all cases. This
clearly confirms that the MKL with Bayesian regularisation is a both effective
and efficient way to automate the process of kernel width selection.

15

Dataset

Noise level

10% 20%

KLR rKLR p-value KLR rKLR p-value

Banana 12.28 ± 1.49 12.80 ± 2.10 0.03 14.58 ± 1.96 12.91 ± 2.32 3.21e− 22

B.Cancer 28.96 ± 5.62 31.02 ± 6.20 6.51e− 4 30.19 ± 7.04 32.16 ± 7.82 0.02

Diabetes 24.86 ± 3.09 26.00 ± 3.48 3.05e− 4 26.17 ± 3.17 26.69 ± 4.28 0.79

German 25.07 ± 3.23 26.90 ± 3.46 7.62e− 8 26.64 ± 3.58 27.78 ± 3.66 3.27e− 3

Heart 19.84 ± 6.57 20.34 ± 5.73 0.17 22.31 ± 5.10 20.63 ± 4.76 9.91e− 4

Image 6.58 ± 1.13 6.19 ± 1.52 0.12 8.06 ± 1.12 6.80 ± 1.00 2.79e− 6

Ringnorm 4.51 ± 2.23 3.11 ± 1.78 5.91e− 13 4.94 ± 3.23 3.29 ± 1.86 1.87e− 6

S.Flare 34.45 ± 2.33 34.81 ± 2.83 0.24 35.87 ± 2.70 36.00 ± 2.92 0.96

Splice 14.90 ± 1.47 14.90 ± 1.69 0.89 17.33 ± 1.67 16.82 ± 1.63 0.14

Thyroid 9.25 ± 4.00 7.76 ± 4.28 6.194e− 5 9.56 ± 4.55 8.49 ± 4.60 9.86e− 3

Titanic 22.85 ± 1.33 22.88 ± 1.90 0.63 23.57 ± 2.55 23.30 ± 2.39 0.16

Twonorm 4.69 ± 1.16 3.79 ± 0.78 1.51e− 19 7.82 ± 1.88 4.38 ± 1.20 5.33e− 54

Waveform 12.91 ± 1.52 12.21 ± 1.15 2.22e− 6 15.04 ± 2.18 12.81 ± 1.54 1.05e− 33

Dataset

Noise level

30% 40%

KLR rKLR p-value KLR rKLR p-value

Banana 17.60 ± 2.95 16.13 ± 3.99 7.38e− 7 25.63 ± 6.01 23.08 ± 10.49 1.85e− 5

B.Cancer 32.54 ± 8.29 32.92 ± 9.26 0.87 36.89 ± 10.39 35.52 ± 10.36 0.15

Diabetes 28.67 ± 4.37 27.42 ± 4.56 2.60e− 4 33.77 ± 6.19 31.14 ± 7.03 7.70e− 6

German 30.30 ± 4.86 28.81 ± 4.69 9.78e− 4 33.86 ± 8.42 30.11 ± 4.69 2.19e− 4

Heart 25.82 ± 6.87 26.64 ± 8.15 0.62 34.99 ± 8.76 30.98 ± 11.65 2.34e− 5

Image 12.82 ± 2.10 10.45 ± 3.21 1.20e− 3 20.29 ± 3.78 15.98 ± 7.24 8.48e− 3

Ringnorm 10.06 ± 5.57 9.57 ± 6.00 0.43 16.92 ± 8.78 15.78 ± 9.67 0.11

S.Flare 37.51 ± 4.25 36.82 ± 3.63 0.13 41.04 ± 4.71 38.61 ± 4.37 1.50e− 7

Splice 23.31 ± 1.95 21.20 ± 4.06 0.03 31.20 ± 3.85 26.74 ± 8.49 0.04

Thyroid 13.91 ± 5.99 13.76 ± 8.10 0.24 22.44 ± 11.01 19.16 ± 13.41 8.82e− 5

Titanic 26.77 ± 7.54 25.19 ± 5.55 0.03 34.64 ± 12.49 29.47 ± 11.39 4.18e− 9

Twonorm 10.36 ± 3.53 9.60 ± 6.54 1.17e− 4 22.00 ± 6.16 17.14 ± 13.42 6.19e− 5

Waveform 19.97 ± 3.77 17.37 ± 5.24 4.11e− 10 27.50 ± 5.81 22.86 ± 9.86 3.74e− 8

Table 2
The relative performance of KLR and the proposed rKLR. Average errors, standard
deviations, and p-values at 5% level.

3.3.2 Results on noisy data

We now move on to more challenging noisy settings. We will now compare the
MKL against CV in a scenario where label errors are present. We shall focus
on two aspects, firstly how label noise affects CV based model selection, and
secondly how does the MKL compare to CV in this setup. We artificially inject
30% random symmetric and asymmetric noise into the training sets, while
keeping the test sets clean. We compare the performance of the proposed model
in which the kernel widths were selected using: (1) CV on a trusted validation
set (2) CV on noisy validation set (3) MKL with Bayesian regularisation.

16

Data set Cross validated rKLR rMKLR p-value

Banana 10.96 ± 0.81 10.72 ± 0.52 0.06

B.Cancer 29.94 ± 4.65 27.73 ± 4.19 9.17e− 4

Diabetes 24.53 ± 2.21 24.24 ± 1.85 0.47

German 25.38 ± 2.63 23.52 ± 2.26 2.09e− 7

Heart 18.63 ± 4.00 16.30 ± 3.39 7.48e− 5

Image 3.73 ± 0.71 5.65 ± 0.96 2.78e− 6

Ringnorm 1.80 ± 0.43 1.48 ± 0.10 4.16e− 12

S.Flare 33.50 ± 2.15 34.33 ± 1.75 1.05e− 3

Splice 11.47 ± 0.82 13.30 ± 1.13 7.52e− 6

Thyroid 5.96 ± 2.78 5.91 ± 2.70 0.95

Titanic 22.26 ± 0.94 22.73 ± 0.83 4.28e− 5

Twonorm 2.86 ± 0.36 2.47 ± 0.16 4.58e− 17

Waveform 10.78 ± 0.85 10.58 ± 0.45 0.03

Table 3
Comparison between standard cross-validation and MKL with Bayesian regularisa-
tion technique on clean datasets.

Figure 3 reports the mean errors and standard deviations from 100 repetitions.

Banana B.Cancer Diabetes German Heart Image Ringnorm SFlare Splice Thyroid Titanic TwonormWaveform
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

CV (Trusted Val. set)
CV (Noisy Val. set)
Bayesian MKL

Fig. 3. Cross-validation for kernel width selection on different validation sets versus
MKL with Bayesian regularisation.

Interestingly, we observe negligible difference between doing CV on the origi-
nally noisy validation versus doing CV on a trusted validation set. More sur-
prisingly we notice that CV on noisy data sometimes produces better results
than on the trusted validation set – for example in the Splice dataset. We
conjecture these datasets might originally already contain some label noise.

17

However, the MKL performs better than the others in general. To better un-
derstand why CV on noisy validation set is still as good as CV on trusted
validation set, we show in Figure 4 plots of kernel widths for each data set
from 10 random data splits, where all labels are clean (top), symmetric noises
are presented (middle) and asymmetrically noises are presented (bottom). In
the noisy scenarios we used noisy validation set to select kernel widths.

Figure 4 reveals that in the case of asymmetric noise the medians of the
kernel widths tend to be larger than the ones chosen using clean data while
in the symmetric case the widths are mostly in the same proximity as the
widths from the clean data. Having a larger width means a wider Gaussian
basis function, that is a slight underfitting effect. In the case of rKLR, as
tested, it is still legitimate to have a slightly wider width as those points with
suspicious labels will likely be flagged as wrong label samples. Consequently
CV on noisy labels should not deteriorate classification performance much
compared to an idealised CV on trusted validation set – although CV is of
course computationally more costly than MKL, as demonstrated in the sequel.

−5

0

5

10

Banana B.Cancer Diabetes German Heart Image Ringnorm S.Flare Splice Thyroid Titanic Twonorm Waveform

Clean data

−5

0

5

10

Banana B.Cancer Diabetes German Heart Image Ringnorm S.Flare Splice Thyroid Titanic Twonorm Waveform

30% symmetric noise

−5

0

5

10

Banana B.Cancer Diabetes German Heart Image Ringnorm S.Flare Splice Thyroid Titanic Twonorm Waveform

30% asymmetric noise

Fig. 4. Comparison of the medians of the kernel widths selected using clean data
and two types of label noise at 30% level, averaged over 10 independent runs. Cross–
validation was done using noisy validation set

18

3.3.3 Comparison of the computation time of MKL vs CV

To assess the relative computation time of these methods, we report in Table
4 the average running times for a single training/testing split for each data.
As we can see, MKL with Bayesian regularisation is approximately 5 to 10
times faster than standard CV.

Dataset
CPU time (seconds)

Dataset
CPU time (seconds)

rKLR rMKLR rKLR rMKLR

Banana 48.44 ± 6.13 10.16 ± 0.28 S.Flare 1033.25 ± 66.55 26.73 ± 0.74

B.Cancer 26.61 ± 0.90 2.96 ± 0.25 Splice 245.61 ± 1.68 64.12 ± 1.36

Diabetes 151.78 ± 44.26 14.84 ± 0.42 Thyroid 23.04 ± 1.25 1.64 ± 0.29

German 192.84 ± 54.27 31.63 ± 3.34 Titanic 15.81 ± 1.74 1.68 ± 0.12

Heart 24.23 ± 0.93 2.15 ± 0.09 Twonorm 49.19 ± 0.81 10.75 ± 0.36

Image 1218.50 ± 451.54 106.99 ± 1.41 Waveform 49.69 ± 1.03 10.07 ± 1.14

Ringnorm 51.21 ± 0.78 10.54 ± 0.34

Table 4
Running times on a 2.67GHz Intel Core i5 CPU averaged over 10 random splits.
The MKL (rMKLR) is 5 to 10 times faster than the traditional CV approach.

3.3.4 Assessing the sensitivity of rMKLR to the number of kernel width
choices

Throughout we have used the set of 21 kernel width values to select from in the
above experiments. It is then interesting to see how the number of kernels in
this set would affect the performance of the proposed technique. To this end,
we fix the range of the kernel width choice to the interval [2−10, 210] as before,
but vary the number of available kernel width choices within this range from
11 up to 161. We inject a mix of symmetric and asymmetric noise at 30% level
into the training sets and validate the model on clean test sets. The results are
given in Figure 5 and show that although the classification performances vary
somewhat as the size of the set of kernel width choices varies, the differences in
most cases are marginal, with the standard error bars are highly overlapped.
This clearly demonstrates that the number of kernels in the kernel width set
has a small effect on the classification performance and we are free to choose
any reasonable configuration. However one has to bear in mind that having
larger kernel set means a longer training time.

3.4 Comparisons with state-of-the-art classifiers and other label-robust ap-
proaches

In our final set of controlled experiments, we compare rMKLR to state-of-the-
art non-linear classifiers that have robustness properties: rKFD [24], the SVM,
RP-Kernel-Perceptron [39], and the model-free method of StPMKL [46]. The

19

Banana B.Cancer Diabetes German Heart Image Ringnorm S.Flare Splice Thyroid Titanic TwonormWaveform
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
is

cl
as

si
fic

at
io

n
ra

te

11 Kernels
21 Kernels
41 Kernels
161 Kernels

Fig. 5. Comparison of the different kernel set size at 30% level, averaged over 20
random runs.

comparison with SVM serves the purpose of a baseline, i.e. to see how far would
the gold-standard off-the-shelf method allow one to treat label noise as a nor-
mal part of any classification problem. The comparison with rKFD allows us
to see comparative performance between generative and discriminative model
in noisy settings. The comparison with RP-KernelPerceptron will assess how
our method performs against an earlier approach that needs access to the true
label-flipping proportions. Finally, the comparison with StPMKL will give us
insights into the effects of our simple modelling assumptions about the label
flipping process in comparison with the model-free approach in StPMKL.

We should mention that there exist label-noise robust versions of SVM [41,2]
that could be a subject of further comparisons. However, these works again as-
sume knowledge of label noise probability without providing an algorithm for
automatically inferring the noise rate from data, and [41] limit themselves to
linear kernels which means no procedure is proposed for the highly non-trivial
problem of setting kernel parameters in label-noise conditions. Although for
these reasons a direct comparison with these methods would not be partic-
ularly meaningful, we believe that our approach for estimating these crucial
parameters could be adapted to extend those methods as well in future devel-
opments.

20

3.4.1 rMKLR versus rKFD versus SVM

To make a fair comparison of our rMKLR to its generative counterpart rKFD
[24], as well as the ‘gold standard’ SVM, the kernel widths for rKFD and
SVM (and additionally SVM’s C parameter) were selected using CV without
a trusted validation set for all methods. We perform 100 independent repeated
experiments for symmetric and asymmetric noise which ultimately gives us
200 repetitions in total, and we do this at 10% and 30% levels of label noise
contamination. Table 3.4.1 summarises our findings.

Dataset
10% Noise

rKFD SVM rMKLR p-value

Banana 12.39 ± 1.13 11.55 ± 1.07 11.39 ± 0.79 0.35

B.Cancer 28.71 ± 4.81 27.90 ± 5.05 27.93 ± 4.50 0.61

Diabetes 27.15 ± 2.51 24.21 ± 2.07 24.56 ± 2.00 0.12

German 26.93 ± 2.64 24.73 ± 2.57 24.12 ± 2.38 1.58e-2

Heart 18.96 ± 4.10 17.60 ± 3.92 17.27 ± 3.48 0.37

Image 5.25 ± 0.88 4.95 ± 0.85 6.09 ± 1.19 1.21e-5

Ringnorm 2.32 ± 0.44 1.84 ± 0.49 2.20 ± 0.48 5.16e-19

S.Flare 35.37 ± 1.91 34.25 ± 2.24 34.93 ± 1.96 1.34e-3

Splice 15.09 ± 1.47 13.12 ± 1.14 15.11 ± 1.80 6.54e-8

Thyroid 7.07 ± 3.96 6.03 ± 3.13 6.15 ± 2.75 0.31

Titanic 24.22 ± 2.23 22.88 ± 1.27 23.00 ± 1.12 4.04e-3

Twonorm 2.61 ± 0.29 2.88 ± 0.52 2.91 ± 0.36 1.67e-20

Waveform 12.82 ± 1.40 11.12 ± 1.06 10.93 ± 0.76 0.27

Dataset
30% Noise

rKFD SVM rMKLR p-value

Banana 20.42 ± 6.07 17.63 ± 5.21 14.92 ± 2.83 1.35e-10

B.Cancer 33.50 ± 8.21 32.95 ± 8.39 32.36 ± 8.98 0.31

Diabetes 34.47 ± 4.77 29.60 ± 3.94 26.87 ± 3.75 2.30e-12

German 32.34 ± 4.56 29.80 ± 4.11 27.75 ± 4.68 2.60e-8

Heart 26.49 ± 9.18 25.31 ± 8.21 23.49 ± 8.69 1.66e-3

Image 12.41 ± 3.00 10.24 ± 2.33 10.31 ± 3.12 0.75

Ringnorm 6.88 ± 2.33 3.24 ± 1.95 4.51 ± 2.43 5.02e-10

S.Flare 38.51 ± 4.12 38.65 ± 4.21 37.07 ± 3.77 9.46e-5

Splice 29.89 ± 5.52 21.46 ± 2.34 26.98 ± 6.61 1.39e-4

Thyroid 15.93 ± 8.76 12.65 ± 7.99 8.87 ± 8.89 1.40e-12

Titanic 29.25 ± 8.86 27.80 ± 8.36 28.12 ± 7.41 3.38e-2

Twonorm 3.08 ± 1.48 5.38 ± 2.57 4.42 ± 1.77 9.62e-38

Waveform 19.75 ± 3.38 16.40 ± 3.33 14.15 ± 2.39 9.54e-15

Table 5
Comparative performance of rKFD and SVM by CV and the proposed rMKLR.
Average errors, standard deviations and p-values between the best and the second
best performer at 5% level are reported. Boldface entries are statistically superior
to the rest.

We observe rMKLR outperformed the rKFD in 10 out of 13 data sets at 10%

21

noise (not necessary statistically significant) and constantly dominates as noise
level increases. It is thus apparent that, as far as classification is concerned, a
discriminative classifier such as rMKLR has an edge over rKFD. The SVM is
doing incredibly well as a straight-out-of-the-box classifier. There is no doubt
that slack variables play an important role in SVM’s robustness. Nevertheless,
rMKLR is still a better performer in general and especially so in the 30% noise
case. The result also suggests that explicit label noise treatment is required
for traditional classifiers to perform well, and that it is naive to consider label
noise as a normal part of any classification problem.

3.4.2 rMKLR versus RP-KernelPerceptron

Among the very few existing methods for non-linear classification in label noise
conditions, the RP-KernelPerceptron [39] develops an extension of kernel per-
ceptron that is able to deal with label flipping, provided that the flipping
probabilities are known beforehand. Having knowledge of the flipping propor-
tions helps reduce the search space in the space of possible classifiers, since
it is non-trivial to decide when to trust the training labels and when to trust
the classifier outputs on the training points instead. A non-linear classifier is
very flexible and can easily learn the noise and overfit. Hence, the problem
tackled in [39] is easier than the problem tackled in our approach where the
flipping probabilities are estimated from the data. Therefore we might expect
better performance from a method that has access to the true label flipping
proportion than a method that does not. We performed comparisons on the
data sets used in [39], against the quoted results from the companion technical
report by the same authors [40]. The results are presented in Table 6. Inter-
estingly, as we can see, we found the performances are still comparable despite
RP-KernelPerceptron had access to the true flipping probabilities whereas our
method has estimated them from the data.

Dataset

Noise level

10% 30%

rp-KernelP rMKLR p-value rp-KernelP rMKLR p-value

Banana 12.73 ± 1.36 11.55 ± 0.78 4.01e-27 19.61 ± 3.57 16.69 ± 2.74 4.92e-18

B.Cancer 28.34 ± 4.38 28.11 ± 4.57 0.63 31.13 ± 6.46 29.46 ± 6.34 0.01

Diabetes 24.25 ± 1.98 24.62 ± 2.03 0.07 26.69 ± 2.88 27.85 ± 8.47 2.46e-4

German 24.53 ± 2.54 24.17 ± 2.43 0.15 27.73 ± 3.21 28.00 ± 3.12 0.38

Heart 16.93 ± 4.17 17.35 ± 3.51 0.23 20.97 ± 5.04 24.85 ± 11.03 6.38e-4

Table 6
Comparative performance of RP-KernelPerceptron that had access to the true noise
rates versus our proposed rMKLR where the noise rates are estimated from the data,
on the data sets used in [39,40]. Average errors, standard deviations and p-values
at 5% level are reported, as computed using two-tailed t-tests. The results for RP-
KernelPerceptron are quoted from [40].

22

3.4.3 rMKLR versus StPMKL

As a final experiment, before diving into real applications, we compare our
rMKLR to the model-free multiple kernel learning algorithm for noisy labels
called StPMKL [46]. We follow the experimental protocol discussed in [45,46]
to generate multiple RBF kernels with 10 different widths {2−3, 2−2, . . . , 26}
for individual features as well as for all features, leading to S = 10(m + 1)
kernels in total for each data set – where m is the dimensionality of the data.
In addition to the Heart data set from the 13 benchmark data sets we analysed
before, we use Ionosphere and Australia data sets from UCI repository in this
experiment so that we can compare directly with quoted results for StPMKL.
We perform 20 repetitions using 80% train and 20% test random split. The
statistics of the data sets used in this experiment are summarised in Table 7.

Data set # of Examples Dimensionality # of Kernels

Ionosphere 351 34 350

Heart 270 13 140

Australia 690 14 150

Table 7
Statistics of data sets used in the comparison between the MKL algorithms rMKLR
(our method) and St-PMKL [46].

Figure 6 shows the classification accuracy of the algorithms with label noise
levels varied from 0% to 40% on the three data sets. The results for StPMKL
are quoted from [46].

We observe that the performance of rMKLR is similar to that of StPMKL
when there is either (i) no label noise or (ii) mild label noise, but rMKLR
tends to perform better when the label noise level is high. However, we sus-
pect that the experimental procedure that generates multiple kernels for each
feature is not particularly suitable for rMKLR due to the sparsity promoting
regularisation that the algorithm used. We then repeat the experiment with
multiple kernels generated from full-length input vectors (not each feature in-
dividually). The results, denoted as ‘rMKLR*’, turn out to be very interesting.
We observe significant boost in classification accuracy and see that rMKLR*
outperforms StPMKL in almost all cases. The results also demonstrate con-
vincingly that a model-based approach does not over-simplify the label noise
problem and it is practically useful.

23

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Noise Level (%)
A

C
C

Ionosphere

rMKLR*
rMKLR
StPMKL

0 10 20 30 40
0

0.2

0.4

0.6

0.8

Noise Level (%)

A
C

C

Heart

rMKLR*
rMKLR
StPMKL

0 10 20 30 40
0

0.2

0.4

0.6

0.8

Noise Level (%)

A
C

C

Australia

rMKLR*
rMKLR
StPMKL

Fig. 6. Comparison of classification accuracy (ACC) with noise level ranging from
0% to 40%.

3.5 Real applications

3.5.1 Recognising Textual Entailment

For the first real world problem, we test the proposed method on a variant
of the PASCAL2 competition data discussed in [38,36]. The data set contains
800 sentence pairs. An annotator was asked if the second sentence follows
from the first sentence. There are 164 distinct annotators in total, of which
only one annotator has labelled all sentence pairs. On average an annotator has
completed 53 out of 800 pairs which results in a sparse 800×164 matrix. Apart
from that, the actual ground truths are also given. The task is to estimate and
predict the ground truths using a varying number of annotators. For this type
of task, majority voting has long been a standard approach but [36] has already
demonstrated that we can do better. This is apparent in our results too. We
measure the accuracy of the estimated ground truth while varying the number
of annotators, at which point we perform 100 independent random repetitions.
The overall results together with those quoted from [36] are summarised in
Figure 7.

We find that rMKLR uses less annotations to achieve the same accuracy as the
majority voting. We further observe that rMKLR statistically outperforms the
EM-algorithm based approach (as employed in [36]) when limited annotations
are provided. This is because the model discussed in [36] is formulated such
that each annotator has their own ‘flip matrix’ whereas ours employs a single

24

20 40 60 80 100 120 140 160
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Annotators

A
cc

ur
ac

y

Majority Voting
EM algorithm [36]
rMKLR

Fig. 7. Accuracy vs number of annotators in Textual Entailment recognition task.
Each result is obtained by 100 independent draws without replacement from the
total of 164 annotators.

flip matrix. The pro of having separate ‘flip matrices’ is to be able to assess
the quality of each annotator separately, but the algorithm inevitably requires
more labels in order to perform. A single flip matrix, however, suffers less from
scarcity of labels but has to pay the price when more labels become available.

3.5.2 Image classification using cheaply acquired labelled data

It is well reckoned that careful labelling of large amounts of data by human
experts is extremely tiresome. Suppose we were to train a classifier to recognise
images that contain a bike. The standard machine learning approach is to
collect training images representing ‘bike’, as well a counterexamples, and
laboriously label each of them. Here, we suggest that we could reduce human
intervention and obtain the training data cheaply using annotated data from
search engines. By searching for images using the keyword ‘bike’ and ‘not bike’,
we obtain a set of images that are loosely categorised into ‘bike’ class versus
‘not bike’ class. This allows us to acquire a large number of training data
quickly and cheaply. The problem is of course that the annotations returned
by the search engine are somewhat unreliable. Here we demonstrate that the
proposed model is useful in such circumstances. We collected 515 images using
the keyword ‘bike’ and 515 images using the keyword ‘not bike’ from Google 3 .
We also manually labelled all images, but will not use these labels for training.
The manual labels were determined as the following: a ‘bike’ image is one
that contains a bike as its main object and we make no distinction between a
bicycle and a motorbike. Everything else is labelled as ‘not bike’. This reveals
83 flips from ‘bike’ to ‘not bike’ images and 100 flips from ‘not bike’ to ‘bike’
relative to the labels from the search engine. The manually labelled set is

3 Available at: http://cs.bham.ac.uk/∼jxb008/data/websearch.zip

25

only used for testing purposes. Now, the images are passed through a series of
pre-processing steps: we extracted a meaningful visual vocabulary using dense
SIFT [26], then extracted texture information using Local Binary Pattern
(LBP) [33], and finally extracted Pyramid Histogram of Oriented Gradients
(PHOG) descriptors [13]. Having three distinct types of features allows us to
exploit the original idea behind MKL where heterogeneous data are combined.
We construct 21 RBF base kernels for each types of feature, which results
in 63 base kernels in total. We employ rMKLR to learn logistic regression
parameters as well as the combination of kernels.

We repeated 100 independent bootstrap classification experiments using 80/20
random splits and employed KLR, rMKLR and additionally linear rLR to
perform the task comparatively. The rMKLR attains an average generalisation
error of 14.19% ± 0.02 while traditional KLR and linear rLR lag behind. This
result is summarised in Table 8, and highlights the advantage of our new robust
kernel machine and how badly KLR was affected by label noise. A subset of
classification results from rMKLR are depicted in Figure 8 and Figure 9 for
visual inspection. We see that rMKLR is able to detect mislabelled instances
effectively. On the basis of these results we believe that there is high potential
for learning from unreliable data from the Internet using the label-noise robust
algorithm proposed.

Classifier rLR KLR rMKLR

Error rate 18.17% ± 0.02 21.44% ± 0.03 14.19% ± 0.02

Table 8
Comparative results between rMKLR, KLR and linear rLR on the noisy label image
classification task. The proposed rMKLR is the best performer. Interestingly, linear
rLR also outperforms the traditional KLR.

4 Discussion and possible extensions

4.1 Extension to multi-class problems

The proposed multi-kernel approach with Bayesian regularisation technique
can be straightforwardly extended to a multi-class problem. In multi-class
setting the class posterior of the true label is typically modelled by the softmax
function

p(y = k|κ(·,xn),wk) =
exp(wT

k κ(·,xn))∑K−1
j=0 exp(wT

j κ(·,xn))
(26)

26

Agreed: Bike Agreed: Bike Agreed: Bike Agreed: Bike Agreed: Bike

Agreed: Bike P: Bike, L: NotBike Agreed: Bike P: Bike, L: NotBike Agreed: Bike

Agreed: Bike Agreed: Bike Agreed: Bike Agreed: Bike Agreed: Bike

Fig. 8. Examples of positive class (‘Bike’) predictions sorted by their posterior prob-
ability. Boxed images illustrate disagreement between the classifier (denoted as P)
and the provided labels from Google (denoted as L).

Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike

P: NotBike, L: Bike Agreed: NotBike Agreed: NotBike Agreed: NotBike P: NotBike, L: Bike

Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike Agreed: NotBike

Fig. 9. Examples of negative class (‘NotBike’) predictions sorted by their posterior
probability. Boxed images illustrate disagreement between the classifier (denoted as
P) and the provided labels from Google (denoted as L).

27

Using this we can write the likelihood of the observed label as the following:

p(ỹ = k|κ(·,xn),Θ) =
K−1∑
j=0

ωjkp(y = j|κ(·,xn),wj) (27)

which brings us to the objective of the ‘robust Multi-Class Multi-Kernel Lo-
gistic Regression’.

N∑
n=1

K−1∑
k=1

1(ỹn = k) log P̃ k
n −

K−1∑
k=1

ζk
N∑
n=1

w2
nk −

S∑
i=1

ξiηi (28)

The optimisation of the objective proceeds in the same way as in the binary
case by using a conjugate gradient method. The gradient of the objective w.r.t
wc is given by:

gwc
=

N∑
n=1

K−1∑
k=0

1(ỹn = k)

P̃ k
n

(∑K−1
j=0 (ωck − ωjk)e(wT

j κ(·,xn))
)
e(w

T
c κ(·,xn)) · κ(·,xn)(∑K−1

l=0 e(w
T
l
κ(·,xn))

)2
− ζc

N∑
n=1

w2
nc (29)

And w.r.t ui:

gφi =
N∑
n=1

K−1∑
c=0

K−1∑
k=0

1(ỹn = k)

P̃ k
n

(∑K−1
j=0 (ωck − ωjk)e(w

T
j κ(·,xn))

)
e(w

T
c κ(·,xn))(wT

c κi(·,xn))(∑K−1
l=0 e(w

T
l
κ(·,xn))

)2
− 2ξiui (30)

Since we treat weight vectors of each class separately, the regularisation pa-
rameters can then be determined using eq.(24) and eq.(15) without the need
of modification. Further, the estimates of the elements of the flip matrix ωjk
can be obtained by efficient multiplicative update equations:

ωjk =
1

C
× ωjk

N∑
n=1

1(ỹn = k)

P̃ k
n

e(w
T
j xn)∑K−1

l=0 e(w
T
l
xn)

(31)

where the constant term C equals
∑K−1
k=0 ωjk

∑N
n=1

1(ỹn=k)

P̃ k
n

e
(wT

j
xn)∑K−1

l=0
e
(wT

l
xn)

.

4.2 Limitation and outlook

Throughout this study, we studied random label noise – that is the mod-
elling assumption that mislabelling arises randomly and independently from
the contents of the observation features. Examples of real situations where

28

random label noise is encountered include crowdsourcing data where a user
might sometime not even look at the observation before giving out the label. It
is worth noting that there are also other types of label noise in the literature:
The adversarial label noise is when label flipping occurs as a consequence of
an adverse change in an observation vector to mislead a classifier as much as
possible (e.g. in a spam filtering task) [2]. Malicious label noise is when label
flipping happens more near the decision boundary [42].

The difference in the nature of label noises suggest that each type of noise
would need a separate treatment using an appropriate model. Moreover, la-
bel noise that is dependent on the contents of certain input features could be
approached effectively by building a model to encode the specific dependen-
cies. Application-specific domain knowledge would go a long way in devising
such models. Having said that, however, somewhat surprisingly we found that
the random noise model works pretty well even in the situation where the
randomness assumption does not strictly hold true – for example in our bike
classification problem where the labeller (Google’s image search engine) might
have used textual information around an image to determine the label of the
image. Another example is microarray classification [5] where it is very likely
that the labelling process is not entirely independent of the feature content,
and yet the random noise model has been successfully applied. In such sit-
uations that random label noise may be understood as a simplifying model
assumption which trades some suboptimality for tractability to estimate the
key parameters from limited amounts of data. These results demonstrate in-
deed that the random label noise assumption is practically useful despite its
simplicity even when there exist some dependencies between the label flipping
and the input. Nonetheless, developing more specialised noise models is an
interesting avenue for future work.

5 Conclusions

We proposed a novel algorithm to learn a label-noise robust Kernel Logistic
Regression model in which the optimal hyper-parameters are automatically
determined using multiple kernel learning and Bayesian regularisation tech-
niques. The experimental results show that the latent variable model used is
robust against mislabelling while the proposed learning algorithm is faster and
has superior predictive abilities than traditional approaches. In comparisons
with three state-of-the-art kernel machines in controlled settings we observed
significant improvements over the previously existing Kernel Fisher Discrim-
inant classifier and even the Multiple Kernel Learning algorithm developed
specifically for noisy labels. Finally, we demonstrated real-world applications
to learning from crowd-sourcing data, learning from cheaply obtained but un-
reliable annotated data.

29

References

[1] R. Barandela, E. Gasca, Decontamination of training samples for supervised
pattern recognition methods, in: Advances in Pattern Recognition, vol. 1876 of
Lecture Notes in Computer Science, Springer, 2000, pp. 621–630.

[2] B. Biggio, B. Nelson, P. Laskov, Support vector machines under adversarial label
noise, Journal of Machine Learning Research - Proceedings Track 20 (2011) 97–
112.

[3] J. Bootkrajang, A. Kabán, Multi-class classification in the presence of labelling
errors, in: Proceedings of the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, ESANN 2011,
2011, pp. 345–350.

[4] J. Bootkrajang, A. Kabán, Label-noise robust logistic regression and its
applications, in: ECML/PKDD (1), 2012, pp. 143–158.

[5] J. Bootkrajang, A. Kabán, Classification of mislabelled microarrays using
robust sparse logistic regression, Bioinformatics 29 (7) (2013) 870–877.

[6] C. Bouveyron, S. Girard, Robust supervised classification with mixture models:
Learning from data with uncertain labels, Pattern Recognition 42 (11) (2009)
2649–2658.

[7] C. E. Brodley, M. A. Friedl, Identifying mislabeled training data, Journal of
Artificial Intelligence Research 11 (1999) 131–167.

[8] G. C. Cawley, N. L. Talbot, On over-fitting in model selection and subsequent
selection bias in performance evaluation, Journal of Machine Learning Research
99 (2010) 2079–2107.

[9] G. C. Cawley, N. L. C. Talbot, Preventing over-fitting during model selection
via bayesian regularisation of the hyper-parameters, J. Mach. Learn. Res. 8
(2007) 841–861.

[10] G. Celeux, S. Chrtien, F. Forbes, A. Mkhadri, A component-wise em algorithm
for mixtures, Journal of Computational and Graphical Statistics 10 (4) (2001)
pp. 697–712.

[11] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM
Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27.

[12] R. S. Chhikara, J. McKeon, Linear discriminant analysis with misallocation
in training samples, Journal of the American Statistical Association 79 (388)
(1984) 899–906.

[13] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, vol. 1, 2005, pp. 886 –893.

30

[14] T. Damoulas, M. A. Girolami, Pattern recognition with a bayesian kernel
combination machine, Pattern Recognition Letters 30 (1) (2009) 46 – 54.

[15] B. Frénay, G. de Lannoy, M. Verleysen, Label noise-tolerant hidden markov
models for segmentation: Application to ECGs, in: ECML/PKDD (1), 2011,
pp. 455–470.

[16] M. Gönen, E. Alpaydin, Multiple kernel learning algorithms, J. Mach. Learn.
Res. 12 (2011) 2211–2268.

[17] J. A. Hausman, J. Abrevaya, F. M. Scott-Morton, Misclassification of the
dependent variable in a discrete-response setting, Journal of Econometrics 87 (2)
(1998) 239–269.

[18] Y. Jiang, Z.-H. Zhou, Editing training data for knn classifiers with neural
network ensemble, in: Advances in Neural Networks, vol. 3173 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2004, pp. 356–361.

[19] G. S. Kimeldorf, G. Wahba, Some results on Tchebycheffian spline functions,
Journal of Mathematical Analysis and Applications 33 (1) (1971) 82–95.

[20] T. Krishnan, S. C. Nandy, Efficiency of discriminant analysis when initial
samples are classified stochastically, Pattern Recognition 23 (5) (1990) 529–
537.

[21] P. A. Lachenbruch, Discriminant analysis when the initial samples are
misclassified, Technometrics 8 (4) (1966) 657–662.

[22] P. A. Lachenbruch, Discriminant analysis when the initial samples are
misclassified ii: Non-random misclassification models, Technometrics 16 (3)
(1974) pp. 419–424.

[23] G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, W. S. Noble, A
statistical framework for genomic data fusion, Bioinformatics 20 (16) (2004)
2626–2635.

[24] N. D. Lawrence, B. Schölkopf, Estimating a kernel fisher discriminant in the
presence of label noise, in: Proceedings of the 18th International Conference on
Machine Learning, Morgan Kaufmann, 2001, pp. 306–313.

[25] Y. Li, L. F. Wessels, D. de Ridder, M. J. Reinders, Classification in the presence
of class noise using a probabilistic kernel fisher method, Pattern Recognition
40 (12) (2007) 3349–3357.

[26] D. G. Lowe, Object recognition from local scale-invariant features, in:
Proceedings of the International Conference on Computer Vision-Volume 2 -
Volume 2, ICCV ’99, IEEE Computer Society, Washington, DC, USA, 1999,
pp. 1150–1157.

[27] G. Lugosi, Learning with an unreliable teacher, Pattern Recogn. 25 (1992) 79–
87.

31

[28] L. S. Magder, J. P. Hughes, Logistic regression when the outcome is measured
with uncertainty, American Journal of Epidemiology 146 (2) (1997) 195–203.

[29] J. I. Maletic, A. Marcus, Data cleansing: Beyond integrity analysis, in:
Proceedings of the Conference on Information Quality, 2000, pp. 200–209.

[30] A. Malossini, E. Blanzieri, R. T. Ng, Detecting potential labeling errors in
microarrays by data perturbation, Bioinformatics 22 (17) (2006) 2114–2121.

[31] F. Muhlenbach, S. Lallich, D. A. Zighed, Identifying and handling mislabelled
instances, Journal of Intelligent Information Systems 22 (1) (2004) 89–109.

[32] S. W. Norton, H. Hirsh, Classifier learning from noisy data as probabilistic
evidence combination, in: Proceeding of the 10th National Conference on
Artificial Intelligence, AAAI Press, 1992, pp. 141–146.

[33] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 24 (7) (2002) 971 –987.

[34] P. Pavlidis, J. Weston, J. Cai, W. N. Grundy, Gene functional classification from
heterogeneous data, in: Proceedings of the fifth annual international conference
on Computational biology, RECOMB ’01, ACM, New York, NY, USA, 2001,
pp. 249–255.

[35] G. Rätsch, T. Onoda, K.-R. Müller, Soft margins for adaboost., Machine
Learning (2001) 287–320.

[36] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, L. Moy,
Learning from crowds, Journal of Machine Learning Research 11 (2010) 1297–
1322.

[37] J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo, J. Badenas, Analysis
of new techniques to obtain quality training sets, Pattern Recognition Letters
24 (7) (2003) 1015–1022.

[38] R. Snow, B. O’Connor, D. Jurafsky, A. Y. Ng, Cheap and fast - but is it good?
evaluating non-expert annotations for natural language tasks., in: EMNLP,
2008, pp. 254–263.

[39] G. Stempfel, L. Ralaivola, Learning kernel perceptrons on noisy data and
random projections, in: Algorithmic Learning Theory (ALT), Lecture Notes
in Computer Science, vol. 4754.

[40] G. Stempfel, L. Ralaivola, Learning kernel perceptrons on noisy data and
random projections (2007).
URL http://hal.archives-ouvertes.fr/hal-00137941

[41] G. Stempfel, L. Ralaivola, Learning svms from sloppily labeled data., in: ICANN
(1), vol. 5768 of Lecture Notes in Computer Science, Springer, 2009, pp. 884–
893.

32

[42] T. Takenouchi, S. Eguchi, N. Murata, T. Kanamori, Robust boosting algorithm
against mislabeling in multiclass problems, Neural Computation 20 (6) (2008)
1596–1630.

[43] H. Xu, C. Caramanis, S. Mannor, Robustness and regularization of support
vector machines, Journal of Machine Learning Research 10 (2009) 1485–1510.

[44] L. Xu, K. Crammer, D. Schuurmans, Robust support vector machine training
via convex outlier ablation, in: Proceedings of the 21st national conference on
Artificial intelligence - Volume 1, AAAI’06, 2006, pp. 536–542.

[45] Z. Xu, R. Jin, H. Yang, I. King, M. R. Lyu, Simple and efficient multiple kernel
learning by group lasso, in: ICML, 2010, pp. 1175–1182.

[46] T. Yang, M. Mahdavi, R. Jin, L. Zhang, Y. Zhou, Multiple kernel learning from
noisy labels by stochastic programming, in: ICML, 2012, pp. 233–240.

[47] Y. Yasui, M. Pepe, L. Hsu, B.-L. Adam, Z. Feng, Partially supervised learning
using an em-boosting algorithm, Biometrics 60 (1) (2004) 199–206.

A Notations and symbols used in the paper

Symbol Description Symbol Description

D A dataset x A data point

y True label ỹ Observed label

ŷ Predicted label N Number of data points

m Dimensionality of data K Number of classes

κ A kernel S Number of kernels

w Logistic regression parameter vector ζ Regularisation on w

η Kernel combination coefficient vector ξ Regularisation on η

Ω Label flipping probability matrix ωjk Element of Ω

B List of abbreviations

Abbreviation Description

LR Logistic Regression

rLR robust Logistic Regression

KLR Kernel Logistic Regression

rKLR robust Kernel Logistic Regression

rMKLR robust Multiple Kernel Logistic Regression

33

