-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Birmingham Research Portal

UNIVERSITYOF
BIRMINGHAM

Research at Birmingham

Dehydration of methanol to light olefins upon
zeolite/alumina catalysts : effect of reaction
conditions, catalyst support and zeolite
modification

Hajimirzaee, Saeed; Ainte, Mohammed; Soltani, Behdad; Behbahani, Reza Mosayyebi;
Leeke, Gary; Wood, Joseph

DOI:
10.1016/j.cherd.2014.05.011

License:
None: All rights reserved

Document Version _
Peer reviewed version

Citation for published version (Harvard):

Hajimirzaee, S, Ainte, M, Soltani, B, Behbahani, RM, Leeke, GA & Wood, J 2014, 'Dehydration of methanol to
light olefins upon zeolite/alumina catalysts : effect of reaction conditions, catalyst support and zeolite
modification', Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2014.05.011

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 21/05/2014

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
» Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019


https://core.ac.uk/display/185479742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.cherd.2014.05.011
https://research.birmingham.ac.uk/portal/en/publications/dehydration-of-methanol-to-light-olefins-upon-zeolitealumina-catalysts--effect-of-reaction-conditions-catalyst-support-and-zeolite-modification(bcec2d8e-5c68-453b-a8b4-b37befb2b78a).html

Accepted Manuscript

Title: Dehydration of methanol to light olefins upon
zeolite/alumina catalysts: effect of reaction conditions,
catalyst support and zeolite modification

Author: Saeed Hajimirzace Mohammed Ainte Behdad Soltani . (Cher
Reza Mosayyebi Behbahani Gary A. Leeke Joseph Wood

PII: S0263-8762(14)00221-4
DOI: http://dx.doi.org/doi:10.1016/j.cherd.2014.05.011
Reference: CHERD 1589

To appear in:

Received date: 13-11-2013
Revised date: 18-4-2014
Accepted date: 9-5-2014

Please cite this article as: Hajimirzaee, S., Ainte, M., Soltani, B., Behbahani,
R.M., Leeke, G.A., Wood, J.,Dehydration of methanol to light olefins upon
zeolite/alumina catalysts: effect of reaction conditions, catalyst support and
zeolite modification, Chemical Engineering Research and Design (2014),
http://dx.doi.org/10.1016/j.cherd.2014.05.011

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.


http://dx.doi.org/doi:10.1016/j.cherd.2014.05.011
http://dx.doi.org/10.1016/j.cherd.2014.05.011

Highlights

The reaction of methanol to propene was studied over ZSM-5 zeolite catalyst.

Olefin production was favoured by high temperature up to 400 °C.

Low pressure of 1 bar led to highest propene selectivity.

ZSM-5 zeolite impregnated with Cs led to the highest selectivity to propene.
The selectivity was closely related to the acid site distribution of the catalyst.
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DEHYDRATION OF METHANOL TO LIGHT OLEFINS UPON
ZEOLITE/ALUMINA CATALYSTS: EFFECT OF REACTION
CONDITIONS, CATALYST SUPPORT AND ZEOLITE

MODIFICATION

Saeed Hajimirzaee”, Mohammed Ainte’, Behdad Soltani®, Reza Mosayyebi Behbahani®,
Gary A. Leeke®, Joseph Wood™"
* School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK

® Gas Engineering Department, Petroleum University of Technology, Ahwaz, Iran

Abstract

The reaction of methanol to propene was studied in a fixed bed reactor using a pelleted
zeolite in alumina matrix support catalyst. The effect of reaction conditions (temperature,
pressure, space velocity, feed composition), as well as the effect of support to ZSM-5 zeolite
ratio on the conversion of methanol to light olefins (C, -C,4 ) was studied. The best catalyst
and optimum reaction conditions leading to a maximum yield of C, -C4 were determined.
Use of y-alumina as support improved the catalyst selectivity to propene and light olefins.
Zeolite/alumina catalyst with 25% wt. ZSM-5 dispersed in a matrix containing 75 % alumina
led to highest selectivity to propene and light olefins. ZSM-5 zeolite was modified with
phosphorus, Cs, Ca and Fe. The effect of their impregnation on the conversion of methanol
and selectivity to light olefins was studied. Modification in all cases increased the shape-
selectivity to light olefins. ZSM-5 zeolite ion exchanged by Cs led to highest selectivity to
light olefins and particularly propene by changing the acid sites distribution.

Keywords: Methanol to Propene, MTP, ZSM-5, modification, wet impregnation, support

Corresponding author. Tel.: +44 (0) 121 414 5295; fax: +44 (0) 121 414 5324.
E-mail address: J.Wood@bham.ac.uk (J. Wood).

Page 2 of 49



1. Introduction

The formation of hydrocarbons from methanol over zeolite catalysts enables petrochemical
and gasoline based products to be obtained from raw materials other than conventional oil
based substances. This development is therefore of great importance, as the dependence on
resources which are depleting is reduced significantly. Methanol is a key ingredient in the
synthesis of many organic molecules. World methanol production has increased from 32
million metric tons annually (MTA) in 2006 to 62 MTA in 2012 an expected to increase to 94
MTA in 2016. Each day more than 100,000 tons of methanol is used as a chemical feedstock
or as a transportation fuel. Also, it can be economically converted to ethylene and propene,
two of the largest volume petrochemical feed stocks. Using zeolite as catalyst for methanol to
olefins (MTO) process has been studied widely while the products are generally the mixed
C, -C4 olefins (Keil, 1999; Mei et al., 2008; Stocker, 1999). Extensive research has been
devoted to improve the process development and selectivity to light olefins. High selectivity
to ethylene was achieved over Ni-SAPO-34 catalyst (Inui and Kang, 1997) while better
selectivity to propene was observed over high silica ZSM-5 zeolite modified by phosphoric
acid (Liu et al., 2009) or zirconium oxide (Zhao et al., 2006). More than twenty mechanisms
have been proposed for this reaction (Stocker, 1999), but it has been established that the
reaction mechanism for the formation of hydrocarbons from methanol over acidic zeolites
can be illustrated by the hydrocarbon pool mechanism (Bjergen et al., 2007). This involves
the formation of dimethylether (DME), as an intermediate product, via a dehydration process
which reaches equilibrium as shown in Scheme 1. This precursor is then converted into light
olefins via cracking. It has been shown, once a small number of light olefins are produced, an
autocatalytic reaction starts to occur (Patcas, 2005). Subsequently, heavy organic compounds

are formed via the formation of cyclic compounds and polyalkylation.

CH;0H « CH3;0CHj; —Light olefins — Alkanes + aromatics + cycloalkanes + Cs' olefins

Scheme 1 Reaction path for dehydration of methanol to light and heavy hydrocarbons (Li et
al., 2011)

Unfortunately, zeolite catalysts may suffer from rapid deactivation during the reaction due to
the deposition of carbonaceous residues in the catalyst pores which block the reactants from
accessing the active acid sites (Bibby et al., 1992). Although ZSM-5 zeolite shows much
higher resistance to coke formation compared to SAPO-34 or other zeolites in MTO reaction,

structural factors of zeolite that can affect coke deposition and catalyst deactivation should be

3

Page 3 of 49



investigated to further decrease coking and thus improve the cost effectiveness of the process.
In the MTO reaction, besides the production of the desired light olefins, undesired
polyolefins, aromatic compounds and carbon deposits are also formed which may lead to
catalyst deactivation (Mores et al., 2011). Much effort has been made to increase the shape
selectivity of zeolite by modifying its acid sites distribution using alkali metals (Mei et al.,
2008), alkaline earth metals (Goto et al., 2010), transition metals (Dubois et al., 2003),
organic acids such as oxalic acid (Liicke et al., 1999) or inorganic acids such as phosphoric
acid (Liu et al., 2009). It has been shown that, in conversion of methanol to propene, iron
from transition metals (Inaba et al., 2007), calcium from alkaline earth metals (Zhang et al.,
2010) and caesium from alkali metals as well as treatment with phosphoric acid can improve
the propene selectivity significantly.

In this work, firstly, the effect of reaction conditions on the dehydration of methanol to other
hydrocarbons over ZSM-5 zeolite with no support was studied and the effects of a number of
reaction parameters upon methanol conversion and product selectivity were investigated.
Fresh and selected used catalysts were characterised using Temperature Programmed
Desorption (TPD) or Thermogravimetric Analysis (TGA). Secondly, the effect of using
different ratios of alumina as a support to zeolite was studied. The conversion to propene
over these catalysts was studied with respect to their characteristics such as acidity, pore
volume and BET surface area. Subsequently, product distribution over ZSM-5 zeolites
modified by iron, calcium caesium, and phosphoric acid were studied in order to investigate
the best promoter. Catalyst properties such as the crystal size, surface area and pore geometry

of different samples were reported.

2. Experimental

2.1. Chemicals

Methanol (99.99%), ethanol (HPLC grade) and orthophosphoric acid (85 wt.%) were
purchased from Fisher Scientific. ZSM-5 catalyst (CBV 8014, SiO,/Al,O; = 80) was
purchased from Zeolyst International in the ammonium form. Boehmite (Pseudoboehmite,
Pural SB1) was supplied by Condea Chemie GmbH. Caesium nitrate (99%), calcium
nitrate.4H,O (99%) were supplied by Sigma-Aldrich. Iron nitrate.9H,O (99%) was procured
from Honeywell Riedel-de Haen. All chemicals were used as purchased without further

purification.
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2.2. Catalyst preparation

To convert the ammonium form of ZSM-5 zeolite to hydrogen form, the sample was calcined
in flowing air at 773 K for 5 h with a heating rate of 10 K.min™. In order to determine the
effect of ZSM-5 to y-alumina ratio, powder samples were converted into pellets. Before
mixing, ZSM-5 and boehmite were sieved to 100 um. A desired amount of ZSM-5 and
boehmite were mixed to make the required amounts of supported ZSM-5 (25, 50, 75 and 85%
wt. ZSM-5) with the corresponding finished catalysts named ZSM-5(25), ZSM-5(50), ZSM-
5(75) and ZSM-5(85), respectively. Then 10 ml of distilled water and 0.1 g of nitric acid
were added to make it into a paste. The paste was extruded into rods with 3 mm diameters
and 5mm in length using an Instron 4467 Universal Testing Machine with 30 kN uniaxial
loading. The samples were dried in an oven at 80 °C for 1 hour and calcined at 500 °C with
heating rate of 10 K.min™ for 5 hours. The commercial ZSM-5 zeolite named ZSM-5(100)
was used as reference in powder form with no support.

Modification of zeolite was carried out by the wet impregnation method using phosphoric
acid and nitrates of Cs, Ca and Fe. For each sample, the desired amount of ion-exchanging
component (2.4 g orthophosphoric acid, 1.5 g CsNO;, 7.7 g Ca(NOs),.4H,O, 119 g
Fe(NO3);.9H,0) was dissolved in 25 ml of solvent (ethanol or distilled water), separately.
Subsequently, 10 g of ZSM-5 powder, sieved to 100 um, was added to the solution and
stirred using a magnetic stirrer at room temperature for 2 hours. The treated zeolite was
filtered and washed with ethanol (or distilled water) and dried in an oven at 80 °C for 1 hour
followed by calcination at 500 °C for 5 hours. All the samples were crushed and sieved to 100

pm (140 mesh) particles before they were loaded into the reactor.

2.3. Catalytic test

The effect of reaction conditions on the methanol conversion and product selectivity in the
reaction was carried out in a fixed bed reactor (i.d. 15 mm, length 550 mm) charged with 2 g
of ZSM-5(100) catalyst. Glass beads were used above the catalyst bed to ensure a well
distributed inlet gas/vapour stream. For a typical run, the feed containing 50 wt.% methanol
in distilled water was introduced to the top of reactor using a HPLC pump at constant volume
flow rate of 1.25 ml.min"'. The feed was preheated to reaction temperature before entering
the reactor. The reactor was purged with nitrogen before and after each reaction. To make

sure non-catalytic methanol decomposition occurs in the reactor, a blank run was carried out
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at 400 °C and 1 bar with lowest tested residence time. Figure 1 shows the schematic diagram
of the rig. A thermocouple and back pressure regulator ensured that the process operated
within these parameters, with an accuracy of + 2 °C and + 1 bar respectively. The following
reaction conditions were investigated in the fixed bed reactor: temperature 340—460 °C,
pressure 1-20 bar, Weight Hourly Space Velocity (WHSV) 7-53 h™', feed composition of
methanol 25-75 wt.% in water and Time on Stream (TOS) 4 h.

The gas and liquid products were collected from the gas—liquid separator after cooling from
the reaction temperature to 20 °C. The gas samples were withdrawn from the system using
Wheaton® glass serum bottles and analysed off-line by using an Agilent 7890A GC equipped
with HayeSepQ 80/100 (0.5m), HayeSepQ 80/100 (6ft), Molsieve5A 60/80 (6ft), HayeSepQ
80/100 (3ft), Molsieve5A 60/80 (8ft), DB-1 (2m x 0.32mm x 5pum), HP-AL/S (25m x
0.32mm x 8um) and 3 detectors including an FID and two TCD detectors. FID connected to
DB-1 and HP-AL/S columns were used for hydrocarbon detection with the following
conditions: helium as carrier gas flowing at 3.3 ml.min' in constant flow mode (12.7 psi at
60 °C), split ratio 1:60, with a 25 pl loop. One TCD connected to HayeSepQ 80/100 (0.5m),
HayeSepQ 80/100 (6ft) and MolsieveSA 60/80 (6ft) was used to detect permanent gases with
following conditions: helium as carrier gas flowing at 25 ml.min™ in constant flow mode (36
psi at 60 °C), with a 500 pl loop. Another TCD connected to HayeSepQ 80/100 (3ft) and
Molsieve5A 60/80 (8ft) was used to detect hydrogen with following conditions: nitrogen as
carrier gas flowing at 24 ml.min™" in constant flow mode (26 psi at 60 °C), with a 500 ul loop.

The column oven temperature program was as follows: hold at 60 °C for 5 min, ramp to 200
°C at 5 K.min™' then hold for 15 min. Liquid products were identified and analysed by using a
Trace GC Ultra Gas Chromatograph equipped with a FID detector and HP-5 column (30m x
0.32mm x 0.25pum). The analytical conditions were as follows: Column oven temperature
program had an initial temperature of 40 °C, held for 2 min, heating up to 240 °C at a rate of
10 K.min™, injection temperature and detector temperature of 250 °C, carrier flow rate (N,) of
2 ml.min™, split ratio of 50 and injection volume of 0.1 pl. Further analysis was performed by

GC-MS to provide verification of the GC results.

2.4. Catalyst characterisation

X-ray powder diffraction (XRD) patterns were recorded on an Equinox 3000 diffractometer
with CuKa; radiation source (A = 1.5406 A) in order to determine crystallite dimensions. The

specific surface areas and pore diameters were measured using adsorption-desorption of
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nitrogen at 77 K using a Micromeritics ASAP 2010 instrument. The acidity of both the
modified and parent catalysts was measured using Temperature Programmed Desorption of t-
Butylamine (t-BA) using a Micromeritics AutoChem 2920 machine. 100 mg of the catalyst
sample was placed inside the U-shaped sample tube and exposed to helium at 120 °C for 1h
to remove the moisture, then the temperature of the sample was decreased to 40 °C.
Subsequently, pulses of t-butylamine were injected from a loop (0.54 cm’) into the sample
until it became saturated. Once again, the sample was exposed to helium and its temperature
was increased to 150 °C, where it was kept constant for 1 hour. This was done to ensure that
the physisorbed t-butylamine was completely removed from the sample. A TPD profile was
then obtained from 120 °C to 500 °C by heating the sample at a rate of 10 K.min™'. The
amount of t-butylamine desorbed during the process was quantified with a TCD detector. The
areas under the peaks were integrated using GRAMS/32 software to determine the amount of
t-butylamine desorbed during TPD. The total amount of coked material on the catalyst after
reaction was analysed by a NETZSCH TG 209 thermogravimetric analyzer. Typically, 20 mg
of the sample was placed in an alumina crucible and heated in a flow of air (20 ml.min™")
from room temperature to 120 °C at a heating rate of 10 K.min™' and then held for 30 min to
remove all the moisture, subsequently, the temperature was increased further to 700 °C using
the same heating rate and it was kept constant for 1 h. The change in weight of sample
corresponds to the amount of coke on the catalyst which can be quantified to compare the
performance of each catalyst, excluding the weight change during increasing the temperature

up to 120°C which is related to weight of moisture on the zeolite.

3. RESULTSAND DISCUSSION
3.1. Characterisation of the catalyst

In this section, the characterisation of catalysts is presented in terms of XRD analysis, acidity

strength and distribution, and nitrogen adsorption—desorption measurements.

3.1.1. X-ray Diffraction (XRD)

Figure 2 shows the XRD patterns of catalysts with different amounts of ZSM-5 zeolite on the
support. All samples exhibit the typical pattern of calcined ZSM-5 zeolite. By increasing the
amount of support, a new peak appears at 39 20 which confirms the presence of gamma

alumina in the catalyst structure. All peaks are sharp within the range of 10-40 26 which
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indicates that the zeolite sample possesses a high degree of crystallinity, however by
increasing the amount of alumina support, peak broadening occurs at 46 20. Peak broadening
in XRD patterns of zeolites can occur for a variety of reasons such as small crystal size
(below 0.2pm), disorder, absorption, and inconsistent sample packing density (ASTM, 2004).
The XRD patterns of zeolite modified by metals are not shown in this figure as similar
patterns to pure ZSM-5 were observed in all cases. The similar patterns confirm that
modification has not destroyed the crystalline structure of the zeolite. Moreover, an
undetectable crystalline phase of metal ions implies that they are finely dispersed at the cation
sites of the zeolite. The average crystallite size of samples were calculated by applying
Scherrer equation on (1000), (490) and (287) XRD reflections. The relative crystallinity of
the sample was determined according to the ASTM D5758 measuring the intensity of the
reflection peak at 24.3 20 and comparing the intensities with that of the reference sample.
The results confirm that all the samples had a high degree of crystallinity. Crystal size and

relative crystallinity are listed in Table 1.

3.1.2. Acidity measurement

Temperature-programmed desorption (TPD) of tert-butylamine (t-BA) was carried out in the
temperature range of 50-500 °C to compare the acid properties of the catalysts. Use of tert-
butylamine for measuring the acid strength of microporous catalysts is recommended as its
high vapour pressure and its molecular structure does not have diffusional limitation in the
microporous zeolites (Aguayo et al., 1994). During the desorption of t-BA, three peaks were
observed in the range of 150-300 °C, 300-400 °C and 400-500 °C which correspond to weak,
medium and strong type acid sites, respectively. Bibby et al. (1992) stated that the intensity
of the peak in the range of 150-400 °C corresponds to the total Brensted acid site population
calculated from the aluminium content of the zeolite, while the next peak at higher
temperature (400-500 °C) was attributed to ammonia desorption from very strong Brensted or
Lewis sites. The results of TPD for ZSM-5 zeolite with no support, catalyst samples with
different ZSM-5 zeolite to support ratios, alumina as support and metal doped zeolite are
listed in Table 2.

The ZSM-5 zeolite contains mainly weak acid sites (77%) and very few strong acidic centres
(4%), while the support (y-alumina) contains more strong acid sites (15%). It is possible to
change the acid distribution by changing the Si/Al ratio of catalysts by changing the zeolite to

support ratio. For instance, by decreasing the amount of zeolite in the catalyst, the Si/Al is
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decreased and as a result weak acid sites are decreased, but strong acidic centres as well as
total acidity is increased. Studies on the effect of Si/Al ratio on the acidity of ZSM-5 zeolite
show that as Si/Al ratio decreases, the Bronsted/Lewis sites ratio (weak/strong acid sites
ratio) is decreased, while total acidity as well as acidic site density is increased (Benito et al.,
1996; Gayubo et al., 1996). It is well known that the presence of strong acid sites promotes
the polymerisation of olefins and increases the rate of coke formation (Bibby et al., 1992; Xu
et al., 1997). As observed from the TPD measurements in Table 2, modification of ZSM-5
zeolite by iron and calcium seems to have no noticeable effect on catalyst acidity. Machado et
al (2006) have studied production of hydrocarbons from ethanol over iron incorporated ZSM-
5 zeolite. They observed that the total acidity of the samples with different amount of iron
does not change significantly. Lersch and Bandermann (1991) impregnated the ZSM-5
zeolite with alkaline earth metals such as Ca, Mg and Ba. They observed that the peak
corresponding to weak acidic sites in the TPD spectra is almost same for all the catalysts, but
a new third peak at higher temperature in which represents strong Lewis acid sites appeared
in the case of impregnation with Mg and Ca.

Modification of zeolite with Cs and phosphoric acid increased the weak acidic and decreased
the strong acidic centres (Table 2). Haag (1994) reported that caesium can selectively poison
the strongest acid sites of ZSM-5 zeolite first and demonstrated that modification of zeolite
with Cs-ions leads to a dramatic decrease of catalyst activity. Lercher and Rumplmayr (1986)
reported that modification of ZSM-5 zeolite with H;PO4 could convert the strong Brensted
acid sites to weak Bronsted acid sites without changing the overall acidic properties of the

sample.

3.1.3. Nitrogen adsorption—desorption isotherms

Nitrogen adsorption—desorption at 77 K was used to determine the BET surface area, pore
volume and micropore area. Figure 3a illustrates the nitrogen adsorption-desorption
isotherms of samples with different amounts of zeolite on the support. All the isotherms are
typical reversible Type IV adsorption isotherms as defined by IUPAC (Sing et al., 1985). The
hysteresis loops are due to capillary condensation of nitrogen in mesopores. The hysteresis
loop for pure ZSM-5 zeolite and samples with 85% or 75% ZSM-5 is very similar to the H4
type adsorption isotherm which is associated with narrow slit-like pores. In samples with
lower amounts of zeolite (e.g. ZSM-5(50%) or ZSM-5(25%)) the loop is similar to H1 type,

which is often associated with porous materials consisting of either agglomerates or compacts
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of approximately uniform spheres in a fairly regular array, and hence narrow distributions of
pore size. The isotherms for zeolite modified by metals are shown in Figure 3b. All the
isotherms exhibit the general pattern of ZSM-5(100) sample. Modification in all cases except
Fe has decreased the liquid nitrogen uptake due to blockage of pore channels by metal ions. It
is well known that during the wet impregnation of ZSM-5 zeolite, metallic compounds can
penetrate into the pores of ZSM-5 and block them, thereby greatly reducing the surface area
(Berndt et al., 1996; Qian and Yan, 2001).

Table 1 lists the physical properties of the parent ZSM-5 zeolite, samples with different
zeolite to support ratio and zeolite ion exchanged by metals and phosphorous. In case of
catalyst samples with different amount of zeolite on support, by increasing the amount of y-
alumina in the sample, both BET surface area and micropore area are decreased, while the

average pore volume are increased.

3.2. Dehydration of methanol to light olefins

The results are reported in terms of light olefins consist of ethylene (C,"), propene (C;°) and
butene (C4 ), propane/propene ratio (C3/Cs"), light alkanes consisting of methane to butane
(C1-C4), and heavier hydrocarbons (Cs") including aromatic and aliphatic compounds. Due to
a low amount of aromatics in this reaction (less than 5%), the aromatics were lumped as Cs .
The production of small amounts of aromatics in the same reaction has been reported in the
literature, illustrating that aromatics are only a minor product of the methanol dehydration

(Al-Jarallah et al., 1997; Kaarsholm et al., 2007; Stocker, 1999)

3.2.1. Effect of Time on Stream

The effect of Time on Stream (TOS) on the methanol conversion and olefins distribution over
ZSM-5(100) up to 21 hours are shown in Figure 4a. Over the duration of the experiment, the
conversion of methanol decreased gradually from 96% to 78%. Similarly, the selectivity to
propene and butene decreased from 38% to 32% and 13% to 8%, respectively, whilst the
selectivity to ethene increased in the same time, from 23% to 32%. The C5/C5 ratio was used
in presenting the results as an indicator for hydride transfer reaction which facilitates the
production of paraffins and aromatics. After 21 h, the C3/C; ratio decreased from 0.18 to
0.13 which implies the suppression of hydride transfer reaction during the reaction time on

stream due to faster deactivation of strong acid sites (Liu et al., 2009).
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Figure 4b shows the distribution of paraffinic products (C; to C4) and lumped Cs' containing
olefinic, paraffinic and aromatics compounds with five or more carbons. The selectivity to
methane increased from 2% to 7%, simultaneously, Cs' increased from 6% to 12%. Ethane
selectivity is almost constant and less than 1%. Propane decreased from 7 to 14% while
butane increased slightly from to 11% to 13% after 12 hours and then decreased gradually.
The decrease in the propene to ethene ratio and increase in the selectivity to Cs' products can
be related to the deactivation of the acid sites via coke formation. Ivanova et al. (2009)
explain such observations that coke formation limits the transformation of methanol to DME
and favours the formation of higher olefins. The observed increase in the formation of
methane is another result of coke formation. Chen et al. (1986) found that the yield of
methane is related to the extent of coking. They conclude that the coke deposition on the acid
sites of the catalyst enhances the secondary cracking reactions through non-ionic mechanism,
led to increase in methane and the Cs* fraction.

Deactivation of ZSM-5 zeolite in the conversion of methanol to hydrocarbons, first occurs on
the outside surface of the catalyst and then in the pore structure. Firstly, polyalkylation and
the formation of cyclic compounds occur on the acidic centres located on the outer surface of
the catalyst and block the access to the inner channels leading to slower coke formation in the
second stage inside the zeolite channels (de Lucas et al.,, 1997a; Guisnet and Magnoux,
1989). This effect was confirmed by the analysis of acid sites distribution of ZSM-5 zeolite
before and after reaction. Table 3 shows the TPD results for both fresh and used catalyst after
4 h and 21 h time on stream, respectively. The results show that during the first few hours of
the reaction (e.g 4 h), all acid sites become deactivated evenly and the catalyst still has a
uniform acid site distribution, but after longer reaction, most of the medium acid sites become
deactivated, which suggests this type of acid site is more involved in the formation of coke
precursors. Due to the stability of the catalyst during the first 4 h, and no fluctuation in
product selectivity, the TOS of 4 h was chosen for further analysis of reaction conditions

effect on catalyst activity and selectivity.

3.2.2. Effect of Temperature

The effect of temperature on the conversion of methanol to hydrocarbons over ZSM-5(100)
catalyst was investigated over the range 340 °C to 460 °C. Figure 5a shows the methanol
conversion and selectivity to olefins at the different temperatures. Methanol conversion

increased from 80% to 94% by increasing the temperature from 340 °C to 400 °C. However,
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at higher temperatures, the conversion then decreased from 94% to 75%. This suggests faster
deactivation of catalyst after 4 hours at such temperatures. The selectivity to propene
increased from 23% to 36% by increasing the temperature from 340 °C to 420 °C, however it
decreased to 19% once the temperature was raised further to 460 °C. Similarly, the selectivity
to butene jumped from 3% to 10% by increasing the temperature from 340 °C to 360 °C, and
then remained almost constant at this value in the range of 340 °C to 420 °C, but when the
temperature was raised to 460 °C, it decreased to 5%. The selectivity to ethene significantly
decreased from 48% to 26% once the temperature had changed from 340 °C to 360 °C but it
remained almost constant up until a temperature of 440 °C. When the temperature was further
increased to 460 °C it decreased to 16%. Dehertog et al. (1991) observed that the yield of
ethene decreases with increasing temperature, in contrast to the yields of propene and butene.
They also observed strong temperature dependency of the olefin yield and distribution at high
temperatures. They indicate that whereas the ethene is most abundant at low temperature,
butene and especially propene become more important at higher temperature. It is believed
that high temperature favours alkene formation at the expense of the aromatization reactions
and as a result, the yield of ethene decreases with increasing temperature, in contrast to the
yields of propene and butene (Chang et al., 1984; Dehertog and Froment, 1991). However, a
greater increase in the temperature leads to decomposition of methanol and produces other
basic components, such as methane, H,, and CO (Al-Jarallah et al., 1997; Chen and Reagan,
1979). Increasing COx (not shown) from 0.1% at 420 °C to 0.4% at 460 °C could be evidence
for this claim. The C;/C;™ ratio increased from 0.15 to 0.17 by increasing the temperature
from 340 to 380°C indicates increasing temperature in this region promotes the hydride
transfer reaction to produce more paraffins or aromatics as undesired products, however by
further increasing the temperature to 420°C, this ratio dropped significantly to 0.10.

Figure 5b shows the selectivity to light alkanes and Cs' compounds. By increasing the
temperature from 340 °C to 400 °C, the methane content in the gas product increased slightly
from 1% to 4%. Simultaneously, increasing temperature up to 380 °C, increased ethane and
propane production by providing required activation energy at elevated temperatures,
however increasing temperature more than 380 °C, led to a decrease in butane and propane
content. The rapid increase in ethane with temperature is due to increasing secondary reaction
rates favoured at high temperatures. Anthony and Singh (1980) studied the kinetics of
methanol conversion to olefins over ZSM-5 zeolite. They concluded that propylene, methane,

and propane are produced by primary reactions and do not participate in any secondary
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reactions, whereas dimethylether, carbon monoxide, and ethane are produced through
secondary reactions.

Lastly, regarding the selectivity towards Cs', only a negligible change was observed over 340
°C to 380 °C, with the composition with respect to this product around 11% over that
temperature range. Once the temperature was increased from 380 °C to 460 °C, the selectivity
to Cs" molecules decreased to 4%. At elevated reaction temperatures cracking of heavier
hydrocarbons are induced over HZSM-5 (Bibby et al., 1992; Bibby et al., 1986; Mores et al.,
2011). Hence, a low number of acidic centres and enough high temperature provide
appropriate conditions for obtaining optimum olefin selectivity whilst hindering the
formation of heavy hydrocarbons. Based on these results, 400 °C was determined to be the

optimum temperature for propene production.

3.2.3. Effect of Pressure

Since the optimum reaction temperature for the highest conversion and selectivity of propene
was found at 400 °C, the effect of pressure was studied from 1-20 bar at this temperature. As
shown in Figure 6a and 6b, by increasing the pressure from 1 bar to 10 bar conversion of
methanol was increased from 93% to 98% and declined slightly to 96% at 20 bar after 4h
TOS. The selectivity to propene decreased significantly from 36% to half of this value,
whereas the selectivity to ethene increased from 24% to 37%. Also, butene selectivity
decreased from 10 to 3%. Increasing the selectivity to ethene while the selectivity to propene
decreased in higher pressure can be concluded as a faster catalyst coking over the time due to
increasing influence of the hydrogen transfer reaction (Gubisch and Bandermann, 1989).
However, the C3/C5 ™ ratio doubled from 0.16 to 0.34 in this range of pressure which confirms
the strong influence of pressure to enhance the hydride transfer reaction. At higher pressure a
sharp increase in methane formation is indicative of catalyst deactivation. In this case, the
reaction between coke and methanol is carried out through methylation and dehydrogenation
(Schulz, 2010). An increase in Cs~ compounds is another explanation for faster deactivation
of catalyst at higher pressures. A similar result was observed by Chang et al. (1979) on the
ZSM-5 at 370 °C in the range of 0.04 to 50 bar. To provide further evidence to confirm this
claim, the TGA result of used catalyst is reported on Table 4. As it can be seen, higher
pressure favours faster coking.

As highest selectivity of propene was obtained at 1 bar, this pressure was chosen as the

optimum pressure. The choice of a low operating pressure also offers advantages for
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industrial operation in terms of lower cost of equipment and pumping, compared with high

pressure processces.

3.2.4. Effect of Feed composition

The effects of different compositions of water/methanol mixtures upon conversion and
product distribution were investigated by changing the methanol content in the feed from 25
to 75 wt.%. The results are shown in Figure 7a and 7b. By decreasing the amount of methanol
in feed the conversion was increased from 87% to 97%. The lower conversion at higher
concentration of methanol in the feed could be due to the faster coking of zeolite after 4 hours
and/or dealumination by steam (Gayubo et al., 2004). This is confirmed by the TGA result of
used catalyst which is shown in Table 5. The amount of coke on the used catalysts after 4h
TOS is higher when the feed contains more methanol. Decreasing the concentration of
methanol in the feed from 75 to 25% increased the selectivity to light olefins, and at the same
time production of light alkanes and heavy hydrocarbons diminished. Ethene and propene
increased from 22 and 31% to 27 and 40%, respectively. Froment et al. (1992) have discussed
that water molecules seem to weaken the acid sites responsible for the hydrogen-transfer
reactions and as a result, decreasing the conversion of olefins to paraffins. A noticeable
increase in C3/C; ratio and methane production at 75%wt methanol in water, implies that
faster coking occurs with more concentrated feed at 4 h TOS. As discussed by Schulz (2010),
one of the issues in the dehydration of methanol to olefins over HZSM-5 zeolite in fixed bed
reactors is that undesirable reactions proceed in the front- and tail-zones of the catalytic bed
(e.g. formation of paraffins and aromatics from olefins in the front zone and formation of
further coke and methane by reaction of methanol with coke in the tail-zone) which are more
pronounced at higher feed concentrations.

Gayubo et al. (2004) investigated the role of water on the acidity deterioration and coking of
ZSM-5 zeolite in MTO process. They found that at 400 °C there is less coking (65%) on the
ZSM-5 when 50% wt. methanol in water was used in comparison to pure methanol whereas
no acidity deterioration was observed even after reaction regeneration cycles. They also
report severe dealumination of zeolite at higher temperature (500 °C) by the water produced
during the reaction. The loss of strong acid sites is more pronounced with pure methanol than
methanol diluted with water.

To better understand the effect of adding water to the feed on the weakening of the medium

or strong acid centres of the zeolite, the TPD results of catalysts after reaction with different
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feed composition are summarised in Table 6. In a very diluted feed (25wt.%), the number of
medium and strong sites were not changed significantly after reaction but the number of weak
acidic sites were decreased slightly, while using feed with a higher amount of methanol
(75wt.%) led to a noticeable decrease in all acid sites.

The addition of water to the reaction system is necessary to remove the reaction heat and to
enhance light olefin selectivity and for this purpose, diluted methanol (55-65% wt. water) as
feed is recommended (Liu et al., 2000). However, the problem of irreversible deactivation
arises as the reaction temperature is increased, which is due to dealumination of the HZSM-5
zeolite at elevated temperatures (Aguayo et al., 2002; de Lucas et al., 1997b). To overcome
this problem, use of an inert gas was proposed by Schulz and Bandermann (1994). They
reported that high water concentrations in the ethanol feed has the same effect on product
distribution as dilution by inert gas. In both cases lower methanol partial pressures lead to

higher yields of light olefins in the product stream.

3.2.5. Effect of WHSV

The effect of varying the Weight Hourly Space Velocity (WHSV) from 7 h™ to 53 h™' on
product distribution and conversion was investigated. To make sure that there is no internal
diffusion resistance, samples with four different pellet sizes (e.g. 5, 3, 1 and 0.5) mms were
loaded in the reactor under same reaction conditions. No significant change in the methanol
conversion was observed. Therefore, under the test conditions used, the internal mass transfer
resistance was negligible. As shown in Figure 8a, methanol conversion was decreased from
99% to 86% by increasing the WHSV from 7 h™' to 53 h”'. The selectivity to propene
increased from 28% to 36% by increasing the WHSV from 7 h™' to 53 h™. The selectivity to
ethene decreased slightly from 27 to 25% in this range. The selectivity to butene increased
from 6% to 11% by increasing the WHSV from 7 h' to 27 h™'. This figure then decreased
slightly to 10%. The remarkable decline of C3/C3 ™ ratio from 0.45 to 0.1 suggests that olefins
are the dominant products at higher WHSV (corresponding to lower contact time). As shown
in Figure 8b, by increasing the WHSV from 7 h™ to 53 h™, methane and ethane increased
from 4 to 8 and 0.6% to 3%, respectively. In contrast, propane and butane decreased from
12% to 4% and 19% to 7%, respectively. Such an observation suggests that increasing
WHSYV only increases the formation of light paraffins (e.g. C; and C,) while heavier paraffins
undergo different reaction pathways. With respect to the Cs' product distribution, the
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selectivity increased from 3% to 9% by increasing the WHSV from 7 h™ to 27 h™'. By further
increasing WHSV up to 53 h™', the selectivity decreased slightly to 8%. At low WHSV (high
contact time), formation of saturated paraffins are more favoured while by increasing WHSV,
light olefins are more favoured. In other words, at high WHSV (low residence time), there is
not enough time for ethene, propene or other low molecular olefin compounds to form
paraffins and aromatics in a consecutive reaction and as a result the reaction sequence is
hence shortened at the intermediate species resulting in product mixtures containing more
proportions of olefins. This observation confirms the proposed hydrocarbon pool mechanism
for dehydration of methanol to hydrocarbons (Scheme 1). This is in close agreement with
result of Chang and Silvestri (1977) and Al-Jarallah et al. (1997). It is shown that increasing
WHSYV is led to formation of coke due to growing influence of non-shape selective hydrogen
transfer reactions. Based on these results, 34 h™ was therefore chosen, as the point at which

optimum propene selectivity was obtained.

3.2.6. Effect of catalyst to support ratio

Figures 9a and 9b respectively show the methanol conversion and product selectivity over
catalyst with different amounts of ZSM-5 to y-alumina support ratio. It was explained in
Section 2.2, ZSM-5(100) was used as reference in powder form while other samples were
prepared as pellets. It can be seen that the conversion was not influenced significantly by this
ratio, however by increasing the amount of zeolite in the catalyst from 25% to 85%,
selectivity to propene decreased from 42% to 33%. Increasing the Cs/C;™ ratio from 0.09 to
0.21 suggests that the higher amount of zeolite in the catalyst matrix can promote the hydride
transfer reaction to some extent. In other words, although selectivity to saturated paraffins
increased to due to higher amount of zeolite in catalyst, selectivity to heavy hydrocarbons
(Cs") decreased. Since y-alumina has higher amount of strong and medium acid sites (Table
2) its addition as a binder can be used to tune the acidity of the catalyst to produce one
compound more selectively than the others. However, use of zeolite on alumina led to a
decrease in micropore area and BET surface area, compared to the pure ZSM-5 (Table 1). It
was shown that using alumina as a binder with ZSM-5 zeolite can improve the production of
DME from methanol (Kim et al., 2006). DME is the most important medium to produce light
olefins through three steps: (a) the dehydration of methanol to DME, (b) the dehydration of
DME to olefins, and (c) the transformation of olefins to aromatics and alkanes. It should be

noted that the initial dehydration step is rapid and reversible with close approach to
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equilibrium (Chang et al., 1979; Jiang et al., 2004; Liu et al., 2000). Though Al,O3 has high
activity for production of DME, it tends to adsorb water on its surface and thereby loses its
activity in the presence of water because of its hydrophilic nature. In this case, water blocks
the active sites for methanol consumption through competitive adsorption with methanol on
the catalyst surface (Jun et al., 2003). Kim et al. (2006) investigated the effect of using y-
alumina as a binder with ZSM-5 zeolite on the production of DME. They reported that zeolite
modified by sodium and containing 70% wt. alumina has a high stability against coke
formation and water for 15 days at 270 °C, with ca. 80% of DME yield. Although, ZSM-5
with the medium pore size showed a superior selectivity towards propene, at the same time
boehmite gave a high strength and proper shape to the catalyst. Comparing the result of the
catalyst with no binder (ZSM-5 (100)) and catalyst with 25% zeolite on alumina (ZSM-5
(25)), it can be concluded that the catalyst with binder can improve the selectivity to light
olefins (e.g. ethene or propene) while less by-products (e.g. paraffins or heavy hydrocarbons)

were produced.

3.2.7. Effect of modified ZSM-5 zeolite

The ZSM-5(100) zeolite was ion exchanged using phosphorous, caesium, calcium and iron.
Figures 10a and 10b illustrate the effect of modification on product distribution and
conversion. Modification of zeolite with phosphoric acid (P-ZSM-5) improved the propene
selectivity from 36% to 45%, whilst the selectivity to ethene was decreased slightly to from
24% to 18% compared to the parent zeolite. The conversion of 96% was the highest amongst
all the catalysts implying high activity and prolonged catalyst lifetime. However, the highest
selectivity to Cs™ molecules of 11% was also obtained. The addition of phosphoric acid
therefore added to the total acidity of the catalyst by increasing the number of weak acid sites
possibly on the outer surface of the zeolite and increased it from 0.52 to 0.72 mmol t-BA/g
(Table 2). A decrease in the C3/C; ratio from 0.16 to 0.05 from one side and decrease in
selectivity to paraffins from other sides imply on supressed hydride transfer reaction to form
more saturated hydrocarbons, however a slight increase on Cs* from 9 to 10.5% is still
observed.

Van vu et al. (2010) treated ZSM-5 zeolite with H;PO, solutions of various concentrations.
They observed that the selectivity to olefins was significantly improved. They reported that
higher phosphorus content in P-HZSM-5 significantly decreased the selectivity to ethene and
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aromatics due to lower acidity of the H-ZSM-5’s strong acid sites caused by dealumination.
Dehertog and Froment (1991) modified zeolite by trimethylphosphite to make P-HZSM-5.
They reported that this modification resulted in a significant decrease in activity but the yield
of light olefins increased.

The conversion of 90% was obtained for the zeolite modified by caesium (Cs-ZSM-5).
Propene selectivity of 48% was highest among the all samples. The selectivity to ethene was
21% and that of the butene selectivity was 12%. Similar to the P-ZSM-5 catalyst, selectivity
to paraffins decreased after modification Cs. In this case, selectivity to Cs  dropped to 6%.
Caesium is an alkali metal and therefore it can reduce the acid sites zeolite after ion-
exchanging. It is very important to use proper amount of alkali metals during the
modification of zeolite as using high concentration of caesium cause the deactivation of
medium and strong acid sites. From Table 2 it can be seen that the addition of caesium
increased the total acidity of the catalyst, although the number of medium and strong sites is
diminished.

The lowest conversion of 81% amongst all the catalysts was obtained on the catalyst ion
exchanged by calcium (Ca-ZSM-5). After modification, the selectivity to ethene was
decreased from 24% to 20% but propene selectivity increased from 37% to 47%. The C3/C;"
ratio was reduced from 0.16 to 0.07. Similarly, the selectivity to Cs" slightly decreased from
10 to 8%. As mentioned before, the weak acid sites are responsible for the production of light
olefins. Addition of an alkali metals such as calcium reduces the acidity of the catalyst by
forming an acid-base centre (Blaszkowski and van Santen, 1996) leading to better selectivity
to light olefins. The total acidity of Ca-ZSM-5 sample remains constant to 0.68 mmol t-BA/g
after modification but more strong acid sites are generated.

The iron modified catalyst (Fe-ZSM-5) gave methanol conversion of 84%. The propene
selectivity increased to 43%, whilst the ethene selectivity was decreased slightly to 21%. The
selectivity to butene was increased to 12%. The C3/C; " ratio decreased from 0.16 to 0.09 and
selectivity to Cs" components was decreased to 7%. ZSM-5 zeolite containing Fe can inhibit
the formation of aromatics and suppress the olefins hydrogenation by reduction of Fe,Os to

Fe;0., resulting in a higher olefins/alkanes ratio (Inaba et al., 2007; Liicke et al., 1999).

3.2.8. Coke measurement by Thermogravimetric Analysis (TGA)

The amount of coke deposited on the catalysts was measured by TGA. Table 7 shows the

TGA result of used catalyst under typical reaction conditions. The mass loss of the catalyst
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samples under air flow at temperature 120-700 °C was taken as being due to coke deposits
upon the catalyst samples. In case of zeolite bound with different amount of y-alumina, a
higher amount of alumina led to an increase in coke weight from 2.2 to 2.9 wt.%, possibly
due to an increase in strong acid sites (Table 2).

ZSM-5 zeolite samples with relatively high aluminium content (SiO,/AL,O3 ratio < 70)
display a remarkably high activity in the steps of olefin aromatisation (Luk'yanov, 1992;
Mores et al., 2011). The trend of changing coke amount on catalyst samples is very similar to
changing in Cs' components including aromatics. Modification by Ca and Cs decreased the
amount of coke by reducing the strong and medium acid centres, while zeolite treatment by P
led to faster coking due to higher amount of total acidity. The amount of coke on Fe-ZSM-5
zeolite samples is very similar to the parent ZSM-5. It was expected as both samples exhibit
similar acid site distribution.

4. Conclusion

The effect of reaction temperature, pressure, space velocity and feed composition on the
conversion of methanol to light olefins was studied. Temperature as high as 400°C is essential
to produce light olefins more selectively, although elevated temperatures led to faster
deactivation, more selectivity to alkanes and lower selectivity to light olefins. Pressure higher
than 1 bar led to production of heavier hydrocarbons (Cs’) and lower selectivity to light
olefins. It was shown that high water concentrations in the feed led to higher yields of light
olefins. High space velocity is required to produce more light olefins, although methanol
conversion is decreased, a WHSV higher than 34 h™" however led to faster deactivation with
no improvement in selectivity to propene or other light olefins. Use of y-alumina as support
improved the catalyst selectivity to propene and light olefins. Zeolite catalyst with 25% wt.
ZSM-5 in the catalyst sample led to highest selectivity to propene and light olefins, but faster
deactivation was observed on this catalyst. ZSM-5 zeolite was modified with P, Cs, Ca and
Fe. Modification in all cases increased the shape-selectivity to propene. ZSM-5 zeolite ion
exchanged by Cs led to highest selectivity to propene by changing the acid site distribution.
The lowest selectivity to Cs' compounds and least amount of coking was observed on this

catalyst.
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List of Figures

Figure 1 - Schematic diagram of the experimental apparatus; Pump: HPLC pump for feed mixture.
V1, V2, V3, V5, V6 and V7: needle valves. V4: back pressure regulators. T1, T2, and T3:
thermocouples. P1, P2 and P3: pressure gauges, and RV1 and RV2: safety pressure relief valves.

Figure 2 - XRD patterns for the different amount of ZSM-5 on support: a) ZSM-5(100), b) ZSM-
5(85), ¢) ZSM-5(75), d) ZSM-5(50), e) ZSM-5(25)

Figure 3 - (a)Nitrogen adsorption-desorption isotherms of samples with different amounts of zeolite.
(b) Nitrogen adsorption-desorption isotherms of modified zeolite

Figure 4 - Effect of time on stream on (a) methanol conversion and olefins distribution (b) paraffins
distribution over ZSM-5(100) catalyst under typical reaction conditions: temperature: 400 °C,
pressure: 1 bar, WHSV:34 h”' methanol/water ratio: 1 w/w, TOS: 21h

Figure5 - Effect of temperature on (a) methanol conversion and olefins distribution (b) paraffins and
Cs' distribution over ZSM-5(100). Reaction conditions; pressure: 1 bar, WHSV:34 h!, methanol/
water ratio: 1 w/w, TOS: 4 h.

Figure 6 - Effect of Pressure on (a) methanol conversion and olefins distribution, (b) paraffins and
Cs' distribution over ZSM-5(100). Reaction conditions; temperature: 400 °C, WHSV: 34 h',
methanol/ water ratio: 1 w/w, TOS: 4 h.

Figure 7 - Effect of feed composition on (a) methanol conversion and olefins distribution (b)
paraffins and Cs" distribution over ZSM-5(100). Reaction conditions; temperature: 400 °C, pressure: 1
bar, WHSV: 34 h!, TOS: 4 h.

Figure 8 - Effect of WHSV on (a) methanol conversion olefin distribution and (b) paraffins and Cs"
distribution over ZSM-5(100). Reaction conditions; temperature: 400 °C, pressure: 1 bar, methanol/
water ratio: 1 w/w, TOS: 4 h

Figure 9 - Effect of ZSM-5 content in catalyst on (a) methanol conversion and olefins distribution (b)
paraffins and Cs* distribution; reaction conditions: temperature: 400 °C, WHSV: 34 h', pressure: 1
bar, methanol/ water ratio: 1 w/w, TOS: 4h

Figure 10 - Effect of modification of ZSM-5 on (a) methanol conversion and olefins
distribution (b) paraffins and Cs" distribution; reaction conditions: temperature: 400 °C,
WHSV: 34 h'!, pressure: 1 bar, methanol/ water ratio: 1 w/w, TOS: 4h
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List of tables

Tablel - Properties of various catalyst samples

Zeolite/ Metal BET surface Crystal Relatiyq Micropore Micropore
Catalyst name in the sample arca (m?/g) size Crystallinity v01113me area (m?/g)
(wt.%) (nm) (%) (cm’/g)

ZSM-5(100) 100 413 16 100 0.10 245
ZSM-5(85) 85 386 16 98 0.18 240
ZSM-5(75) 75 370 18 102 0.21 185
ZSM-5(50) 50 328 19 103 0.30 150
ZSM-5(25) 25 270 22 106 0.43 70
y-alumina - 218 28 100 0.50 14
Fe-ZSM-5 1.1 423 15 100 0.12 268
Ca-ZSM-5 1.4 395 14 101 0.11 236
Cs-ZSM-5 1.7 394 15 99 0.13 296
P-ZSM-5 1.2 322 15 101 0.10 212
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Table 2 - TPD results of various catalyst samples

Acidity(mmol t-BA/g) / distribution

Weak Medium Strong

Catalyst name (150-300 °C) (300-400 °C) (400-500 °C) Total
ZSM-5(100) 0.52(77%) 0.13(19%) 0.03(4%) 0.68
ZSM-5(85) 0.30(65%) 0.12(27%) 0.04(8%) 0.46
ZSM-5(75) 0.35(68%) 0.12(24%) 0.04(8%) 0.51
ZSM-5(50) 0.43(67%) 0.15(24%) 0.06(9%) 0.64
ZSM-5(25) 0.47(60%) 0.22(28%) 0.09(11%) 0.78
vy -alumina 0.44(58%) 0.21(28%) 0.11(15%) 0.76
Fe-ZSM-5 0.52(76%) 0.13(19%) 0.04(5%) 0.69
Ca-ZSM-5 0.53(78%) 0.11(16%) 0.04(6%) 0.68
Cs-ZSM-5 0.59(84%) 0.10(14%) 0.01(1%) 0.70
P-ZSM-5 0.72(85%) 0.11(13%) 0.02(3%) 0.85
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Table 3 - TPD results of fresh and used catalyst (TOS=4 and 21 h)

Acidity(mmol t-BA/g) / distribution

Weak Medium Strong
Catalyst name TOS (h) (150-300°C)  (300-400°C)  (400-500 °C) %
Fresh ZSM-5(100) 0 0.52(77%) 0.13(19%) 0.03(4%) 0.68
Used ZSM-5(100) 4 0.45(76%) 0.12(20%) 0.02(4%) 0.59
Used ZSM-5(100) 21 0.25(86%) 0.03(10%) 0.01(4%) 0.29
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ACCEPTED MANUSCRIPT

Table 4 — TGA result of used ZSM-5(100) catalyst at different pressures

Pressure Coke (wt%)
1 3.4
2 3.8
10 4.5
20 6.8
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ACCEPTED MANUSCRIPT

Table5 — TGA result of catalyst after reaction with different feed composition

Methanol in Coke

Feed(wt.%) (Wt.%)
75 4.4
50 34
25 2.1

29

Page 29 of 49



Table 6 - TPD result of catalyst after reaction with different feed composition
Acidity(mmol t-BA/g) / distribution

Methanol in Weak Medium Strong Total
Feed (Wt.%) (150-300°C)  (300-400°C)  (400-500 °C)
25 0.47 0.13 0.02 0.62
50 0.45 0.12 0.02 0.59
75 0.35 0.05 0.01 0.41
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Table 7 - TGA results of different catalyst samples under typical reaction conditions (temperature:

400 °C, WHSV: 34 h', pressure: 1 bar, methanol/ water ratio: 1 w/w, TOS: 4h)

Catalyst ZSM- ZSM- ZSM- ZSM- ZSM- P-ZSM-5 Cs- Ca- Fe-
name 5(100) 5(85) 5(75) 5(50) 5(25) ) B ZSM-5  ZSM-5 ZSM-5
Coke
(Wt%) 34 22 2.5 2.8 2.9 4.1 2.1 2.2 3.2
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Figure 3a
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Figure 3b
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Figure 4a
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Figure 4b
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Figure 5a
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Figure 5b

S04 —e— « O
e xQrrrsere O :
" TR
I IR
40 1 — . — (5
9
T 30 4
.g.
-
=
o
-
2 20 -
o
10 -

340 360 380 400 420 440 460

Temperature (°C)

Page 39 of 4Y



Figure 6a
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Figure 6b
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Figure 7a
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Figure 7b
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Figure 8a
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Figure 8b
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Figure 9a
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Figure 9b
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Figure 10a
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Figure 10b
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