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Abstract

The global optimisation of N=8-10 PdnIrN−n clusters has been carried out using the Birm-

ingham Cluster Genetic Algorithm (BCGA). Structures are evaluated directly using density

functional theory (DFT), which has allowed the identification of Ir and Ir-rich PdIr cubic global

minima, displaying a strong tendency to segregate. The ability of the searches to find the global

minimum has been assessed using a homotop search method, which shows a high degree of

success. The role of spin in the system has been considered through a series of spin-restricted

re-optimisations of BCGA-DFT minima. The preferred spin of the clusters is found to vary

widely with composition, showing no overall trend in lowest energy multiplicities.

Introduction

It is well established that alloying can increase the activity and/or the selectivity of metal cata-

lysts.1 On the nanoscale, nanoalloys have the potential to combine this alloying effect with tunable

properties for use in specific processes.2,3 The structural characterisation of nanoalloys is a vital

∗To whom correspondence should be addressed
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step toward understanding their role in catalysis. Several method exist, including basin-hopping

and genetic algorithms.3–5

Noble metals are being widely investigated for use in catalysis. Small iridium clusters show

promise in both heterogeneous and homogeneous catalysis, including activity in the ring open-

ing catalysis of naphthenes.6 Palladium-iridium nanoalloy catalysts show activity in tetralin in-

terconversion, the hydrogenation of benzonitrile and in the preferential oxidation of CO for the

elimination of impurities in H2 production.7–9

Previous density functional theory (DFT) studies of small Ir clusters, using ultrasoft pseudopo-

tentials and PBE exchange-correlation functionals, have predicted a simple cubic arrangement for

clusters of up to 48-atoms, before there is a transition to the FCC structure found in the bulk.

This is coupled with results from CCSD calculations which also predict a cubic structure.10–12

DFT studies of small Pd clusters have also been conducted.20 These, however, were not exhaustive

searches of the conformational space.

In this study the global optimisation of N=8-10 PdnIr(N−n) clusters is performed, where N is the

total number of atoms and n the number of Pd atoms. Global optimisation is carried out using the

Birmingham Cluster Genetic Algorithm (BCGA) which allows global optimisation directly at the

DFT level, utilising an interface to the plane-wave DFT PWscf code, within Quantum Espresso.13

This provides an unbiased search starting from entirely random coordinates and enables the iden-

tification of size specific effects not usually described by empirical methods, such as the Gupta

potential.14,15

As a result of the 5d76s2 ground state electronic configuration of Ir, and low lying states orig-

inating from its 5d86s1 configuration, the spin of any IrN and PdnIr(N−n) clusters must be consid-

ered.16 The role of spin has not been widely investigated for Ir clusters but has been shown to play

a role.12 The spin of the pure and alloyed clusters is investigated through the use of spin-restricted

calculations on BCGA-DFT global minima using atomic-orbital based DFT calculations in the

NWChem package.17 Spin-unrestricted QE calculations are not carried out within the BCGA due

to the high computational cost of converging both the spin and geometry of the system.
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Methodology

In the present study the BCGA, using an interface to the PWscf DFT code within the Quantum

Espresso (QE) package, has been adopted for the global optimisation of Pd-Ir nanoalloy struc-

tures. The BCGA is a genetic algorithm for the structural characterisation of nanoparticles and

nanoalloys. The interface to QE allows the energy landscape of a system to be explored at the DFT

level.5,13,15

The initial population consists of a number of randomly generated cluster geometries, Npop =

10−40. The BCGA is a “Lamarckian” type GA with fitness being assigned to locally minimised

structures at each step of the GA according to their energy. Structures with the lowest energies

have the highest fitness, Vclus. Here the energy of each member of the population will be calculated

using a PWscf calculation.

Competition between clusters is simulated by roulette wheel selection followed by crossover.5

Crossover occurs according to the Deaven and Ho cut and splice method and continues until a

predetermined number of offspring, No f f , have been generated.18 Mutation is carried out to ensure

population diversity is maintained. All members of the population have a probability, pmut , of

being selected for mutation. The BCGA contains a number of mutation schemes, including, atom

displacement, twisting, cluster replacement and atom permutation.

This process of selection, crossover and mutation is repeated for a number of generations. The

population is considered converged when the range of energies goes unchanged for a number of

generations.5

QE calculations were carried out using PAW pseudopotentials, taking scalar relativistic effects

into account. The Perdew-Burke-Ernzerhof (PBE) exchange correlation functional is used within

the generalised gradient approximation (GGA). An energy cut-off (Ecut) of 55 Ry is used with the

default density cutoff, to ensure fast SCF steps and quick convergence. The Fermi-Dirac smearing

scheme was employed with a smearing width of 0.02 to improve metallic convergence.

Spin-polarised reminimisations of the BCGA-DFT global minima were carried out with the

orbital-based DFT package NWChem.17 Def2-TZVP basis sets and PBE exchange correlation
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functionals were employed.19 Geometry optimisations were carried out using the DRIVER mod-

ule.

Excess energies (∆) are calculated to determine the stability of bimetallic clusters relative to

the monometallic species, or the energy associated with alloying. ∆ is defined as

∆ = E(AmBn)−m
E(AN)

N
−n

E(BN)

N
, (1)

DFT binding energies (Eb) are computed from

Eb =
1
N

[
E(AmBn)−mEA −nEB

]
, (2)

where EAmBn is the total energy of the cluster and EA/B are the energies of the single atoms.

Results and discussion

The proposed global minima for N=8-10 PdnIr(N−n) clusters found using the BCGA-DFT approach

are shown in figures 1-3. Tables listing the structures and point groups of all clusters are given in

the supporting information.

Figure 1: Global minima for 8-atom PdnIr(8−n) clusters. Pd and Ir are shown in pink and purple,
respectively.
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Figure 2: Global minima for 9-atom PdnIr(9−n) clusters.

Figure 3: Global minima for 10-atom PdnIr(10−n) clusters.

The Ir8 global minimum (GM) is a cube, as previously reported.10–12 When doped with up to two

Pd-atoms the cube remains the GM. When three Pd-atoms are added the structure changes to a

Cs structure based on a capped trigonal prism with a four atom square Ir fragment. The Pd8 GM

is a D2d dodecahedral structure, as previously reported.20 Upon successive iridium doping, the

structure changes to a Cs capped pentagonal bipyramid and then to a C2h structure formed from

two edge-sharing square pyramids.

The Ir9 GM is an edge-bridged cube, also as previously reported.11 As Pd is doped into the
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structure, the cap switches from an edge to a face with Pd occupying the capping site. This is

the case for PdIr8, Pd2Ir7 and Pd3Ir6. The first Pd dopant caps a face, with the second and third

forming a Pd-Pd bond on the face opposite to the cap. Pd4Ir5 and Pd5Ir4 both retain square Ir

fragments. Pd9 is an C2v icosahedral structure, again as previously reported.20 Pd8Ir1 retains this

structure, with the iridium dopant occupying the central site. Pd7Ir2 and Pd6Ir3 are both structures

of two face-sharing octahedra, with Pd6Ir3 having a central Ir3 triangle and D3h symmetry.

The Ir10 GM is a cube with a two-atom bridge over a face, forming a house-like structure,

differing from the two-atom bridged edge structure reported by Wang et al., shown in figure 4.11

When minimised with PWscf the BCGA-GM is found to be more favourable by 0.34 eV. This

’house’ structure remains the GM for PdIr9, Pd2Ir8, Pd3Ir7 and Pd4Ir6. Pd is found to occupy

preferentially the face-bridging sites, forming a Pd-Pd bond for Pd2Ir8. The third and fourth Pd

atoms form a bond on the opposite face.

The GM for Pd10 and Pd9Ir are found to be a C3v structure corresponding to an incomplete

centred-icosahedron. In Pd9Ir, the Ir atom occupies the exposed icosahedral core site. This dif-

fers from the edge-sharing octahedra previously reported for Pd10 by Ahlrichs et al., shown in

figure 5.20 When minimised with PWscf, the BCGA-GM is found to be more favourable by 0.2

eV. The D2h edge-sharing structure is, however, found as the GM for Pd8Ir2.

Figure 4: Lowest energy structure reported by Wang et al., left, and the lower energy GM from the
BCGA-DFT, right, for Ir10.
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Figure 5: Lowest energy structure reported by Ahlrichs et al., left, and the lower energy GM from
the BCGA-DFT, right, for Pd10.

The relative strengths of homo- and heteronuclear bonding can be used to predict the extent

of mixing in a system. The binding energies of the pure and heterometallic dimers are listed in

table 1. The triplet and quintet states for Pd2 and Ir2 agree with previous work.11,20 The binding

energy of Pd2 is slightly higher than that published by Ahlrichs et al of 0.663 eV.20 The value of

2.28 eV for Ir2 sits between the values of 1.58 and 2.53 eV from Wang et al. and Dixon et al.,

respectively.11,12 The 5d76s2 quartet state of the iridium atom is found to be ∆E = 0.58 eV more

favourable than the 5d86s1 quartet state. The binding energy of the heteronuclear dimer PdIr (1.41

eV) is lower than the average (1.53 eV) of the homonucleardimers. Any structure can therefore

be predicted to maximise homonuclear bonding, as seen in the strongly segregated structures. The

lowest spin state of PdIr (quartet) is also an intermediate between those of Ir2 and Pd2.

The bulk phase behaviour of the Pd-Ir alloy system shows a significant miscibility gap below

1500◦C. Pd-Ir clusters can therefore be predicted to display a strong demixing tendency.21 The

bulk cohesive energies, shown in table 2, also show the strength of Ir-Ir bonding. The strength of

this homonuclear interaction indicates the demixing tendency in the PdIr system.

Cluster of this size are almost all surface. The surface energies of the metals, shown in table 2,

can be used to predict that Pd will preferentially occupy low-coordination sites.

Table 1: Binding energies (Eb) and multiplicities (2S+1) of Pd, PdIr and Ir dimers.

Dimer Eb / eV (2S+1)
Pd2 0.78 3
PdIr 1.41 4
Ir2 2.28 5
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Table 2: Surface and cohesive energies for Pd and Ir.22,23

Surface Energy / Jm−2 Cohesive Energy / eV/atom
Pd 1.743 3.89
Ir 2.655 6.94

Excess energies can be used to evaluate the effect of mixing in a system. The excess energy

(∆) of a system is defined in equation 1. ∆ plots for N=8-10 are shown in Figures 6, 7 and 8.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

∆/eV

n

+

+

+

+

+
+

+

+

+

Figure 6: Plot of ∆ against the number of Pd atoms for PdnIr8−n

8



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9

∆/eV

n

+

+

+

+

+

+

+ +

+ +

Figure 7: Plot of ∆ against the number of Pd atoms for PdnIr9−n.
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Figure 8: Plot of ∆ against the number of Pd atoms for PdnIr10−n.

The positive ∆ values for PdnIr(8−n) in Figure 6 demonstrate the strong demixing tendency.

The maximum ∆ value is seen for Pd3Ir5. For the global minima of N=9 and 10 some negative ∆

values can be seen, indicating favourable mixing. Negative ∆ values are seen for PdIr8 and Pd2Ir8.

Homotops are inequivalent isomers obtained by swapping the positions of different atom types.

9



The number of homotops for a system rises combinatorially with size and is maximised for 50/50

compositions. For the 10-atom house-like structures, Pd2Ir8, Pd3Ir7 and Pd4Ir6 have 45, 120 and

210 homotops, respectively. The number of homotops is reduced if only symmetry inequivalent

structures are considered, so the numbers of homotops for Pd2Ir8, Pd3Ir7 and Pd4Ir6 are reduced

to 15, 28 and 59, respectively. To evaluate the ability of the BCGA-DFT to find the GM, all

symmetry-inequivalent cubic homotops were reminimised using Quantum Espresso for all three

cluster sizes.

The homotop search confirms that the BCGA-DFT search found the lowest energy homotop as

the global minima for all but Pd4Ir6. This is shown for Pd2Ir6, Pd1Ir8, Pd2Ir7 and Pd2Ir8 in figures

9-12. The BCGA was, however, unsuccessful in finding the lowest energy homotop for Pd4Ir6.

Figure 13 shows the structural difference between the two lowest energy homotops, 1 and 2, is

the placement of the lower Pd-Pd bond. There are three competing factors which determine the

homotop stability. Firstly, Pd atoms preferentially tend to occupy low connectivity sites (due to

the relative weakness of Pd-M bonds). Secondly, Pd typically occupies capping sites, thereby min-

imising distortion of the Ir8 cube. Finally, Pd atoms tend to segregate together, as this maximises

the number of (stronger) Ir-Ir bonds.
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Figure 9: Relative energies of symmetry inequivalent homotop structures for cubic Pd2Ir6, with
homotop Schlegel diagrams displayed below in order of increasing energy. Pd is shown by circles.
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Figure 10: Relative energies of symmetry inequivalent homotop structures for capped cubic Pd1Ir8.

12



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9

∆E/eV

Homotop

+ +

+ +
+

+ + +
+

1 2 3 4 5

6 7 8 9

Figure 11: Relative energies of symmetry inequivalent homotop structures for capped cubic Pd2Ir7.

13



0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∆E/eV

Homotop

+

+ +
+ + +

+
+

+ +
+

+ + +
+

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 12: Relative energies of symmetry inequivalent homotop structures for house-like Pd2Ir8.

During the QE geometry optimisation homotop 32 for Pd4Ir6 underwent a barrierless transition

to the overall GM structure (homotop 2). Figure 14 shows the structural reorganisation through

a structure composed of three face-sharing trigonal prisms, taken from the L-BFGS minimisation

pathway.
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Figure 13: Homotop structures of Pd4Ir6: homotop 1 left, and homotop 2, right

Figure 14: Structural rearrangement of homotop 32 to 2 via the face sharing trigonal prism struc-
ture, bond formation and breaking showing by dashed lines and striped line bonds, respectively.

Tables 3-5 display the effect of restricting spin in NWChem reoptimisations of the BCGA-DFT

minima for N=8-10 PdnIr(N−n). Each structure was reoptimised for its first 5 lowest multiplicities,

the most favourable spin-state being the lowest-energy multiplicity. For those structures whose

lowest energy multiplicity was the highest of these values, three-extra spin-states were considered;

this was the case for Pd2Ir6, Pd3Ir5 and Pd4Ir4. Previous work on Ir8 has shown it to favour a

singlet state.10–12 Our results suggest Ir8 has a singlet state, with a low lying (∆E=0.1 eV) triplet

and 13-et state. Ir9 and Ir10 are found to have sextet and triplet states, respectively.

The lowest energy multiplicities of Pd8, Pd9 and Pd10 are a quintet, quintet and septet, respec-

tively. Pd8 is found to favour a higher spin-state than the triplet previously reported.20 There is no

clear pattern of lowest energy spin states, as a function of composition for the mixed Pd-Ir clusters.
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Table 3: Relative energies (∆E/eV) for various multiplicities ((2S+1)) of PdnIr(8−n) clusters

Ir8 PdIr7 Pd2Ir6
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0 2 0 1 0.563
3 0.102 4 0.179 3 0.137
5 0.108 6 0.162 5 0.127
7 0.225 8 0.108 7 0.141
9 0.245 10 0.122 9 0.08

11 0.252 11 0
13 0.104 13 0.274
15 1.661 15 0.916

Pd3Ir5 Pd4Ir4 Pd5Ir3
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

2 0.404 1 0.629 2 0
4 0.429 3 0.272 4 0.173
6 0.284 5 0.189 6 0.32
8 0.075 7 0.125 8 0.408

10 0 9 0.027 10 0.392
12 0.117 11 0
14 0.392 13 0.122
16 2.078 15 1.866

Pd6Ir2 Pd7Ir Pd8
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0.49 2 0.214 1 0.13
3 0.171 4 0.095 3 0.021
5 0.005 6 0 5 0
7 0 8 0.147 7 0.568
9 0.394 10 0.579 9 1.085
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Table 4: Relative energies (∆E/eV) for various multiplicities ((2S+1)) of PdnIr(9−n) clusters

Ir9 PdIr8 Pd2Ir7
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

2 0.028 1 0 2 0
4 0.008 3 0.128 4 0.089
6 0 5 0.192 6 0.15
8 0.124 7 0.354 8 0.157

10 0.214 9 0.488 10 0.173
Pd3Ir6 Pd4Ir5 Pd5Ir4

(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E
1 0.255 2 0.439 1 0.351
3 0 4 0.301 3 0.153
5 0.042 6 0.229 5 0
7 0.175 8 0.113 7 0.022
9 0.049 10 0 9 0.033

12 0.054
14 0.29
16 1.707

Pd6Ir3 Pd7Ir2 Pd8Ir
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

2 0 1 0.163 2 0.35
4 0.107 3 0 4 0.192
6 0.277 5 0.12 6 0.078
8 0.453 7 0.244 8 0

10 0.66 9 0.244 10 0.497
Pd9

(2S+1) ∆E
1 0.271
3 0.098
5 0
7 0.086
9 0.788
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Table 5: Relative energies (∆E/eV) for various multiplicities ((2S+1)) of PdnIr(10−n) clusters

Ir10 PdIr9 Pd2Ir8
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0.168 2 0.14 1 0
3 0 4 0 3 0.7
5 0.184 6 0.173 5 0.159
7 0.244 8 0.375 7 0.4
9 0.389 10 0.492 9 0.651

Pd3Ir7 Pd4Ir6 Pd5Ir5
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

2 0 1 0.254 2 0.095
4 0.005 3 0 4 0.275
6 0.164 5 0.112 6 0
9 0.264 7 0.203 8 0.047
10 0.434 9 0.371 10 0.017

Pd6Ir4 Pd7Ir3 Pd8Ir2
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0.273 2 0 1 0.373
3 0.046 4 0.132 3 0.112
5 0 6 0.243 5 0.004
7 0.08 8 0.291 7 0
9 0.098 10 0.44 9 0.067

Pd9Ir Pd10
(2S+1) ∆E (2S+1) ∆E

2 0.4 1 0.568
4 0.0262 3 0.263
6 0.183 5 0.176
8 0 7 0
10 0.356 9 0.433

The role of spin was further investigated through spin-restricted reoptimisations of 3 extra

higher energy minima, for Ir8, PdIr7 and Pd2Ir6. For each composition the GM structure did not

change (see supporting information) and no reordering on minima was seen.

Conclusions

The use of the BCGA-DFT method has allowed the global optimisation of N=8-10 PdnIrN−n

nanoalloys. The ability to explore the potential energy surface of the system at the DFT level
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has yielded the identification of families of cubic structures for pure Ir and Ir-rich PdIr nanoalloys,

which are typically not found using empirical potentials. Results for the monometallic species

were found to be largely in agreement with those previously reported.11,12,20 The ability of the

searches to find the GM was evaluated by assessing the relative energies of symmetry-inequivalent

homotops of cubic minima. The BCGA-DFT searches were found to be very reliable, with one

exception for Pd4Ir6. In this case the systematic homotop search identified a lower energy homotop

and a barrier-less transition of homotop 32 to the overall lowest energy structure.

Through the use of spin-restricted reoptimisations on BCGA global minima the role of spin in

the system has been considered. Spin has been shown to vary widely depending on composition,

showing no real trend in lowest energy multiplicities. The spin of the monometallic species are

found to be in good agreement with previous studies.12,20 Reoptimisations of low-lying minima

has shown no reordering, however, any future studies on this system must include the consideration

of spin.

Previous work has on pure Ir clusters has indicated a simple cubic to bulk FCC transition at

48-atoms.11 In future work, the cubic structures of pure Ir and Ir-rich nanoalloys will be explored

further. These structural studies will be important in future computational studies of catalysis by

Pd-Ir nanoalloys.
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Table 6: Binding energies, structure and point group symmetries for PdnIr(8−n) clusters

Composition Eb eV/atom Structure Point Group
Ir8 -4.65 Cube Oh

PdIr7 -4.22 Cube C3v
Pd2Ir6 -3.89 Cube C2v
Pd3Ir5 -3.46 Capped trigonal prism with additional cap Cs

on resulting square pyramid
Pd4Ir4 -3.17 Bi-capped trigonal prism Cs
Pd5Ir3 -2.85 Two-atom face-capped octahedron Cs
Pd6Ir2 -2.55 Edge-sharing square pyramid C2v
Pd7Ir -2.26 Capped pentagonal bipyramid Cs
Pd8 -1.97 Dodecahedron fragment D2h

Table 7: Binding energies, structure and point group symmetries for PdnIr(9−n) clusters

Composition Eb eV/atom Structure Point Group
Ir9 -4.64 Edge-capped cube C2v

PdIr8 -4.44 Face-capped cube C4v
Pd2Ir7 -4.06 Face-capped cube Cs
Pd3Ir6 -3.74 Face-capped cube Cs
Pd4Ir5 -3.42 Tri-capped trigonal prism Cs
Pd5Ir4 -3.15 Two face-sharing trigonal prisms with cap Cs
Pd6Ir3 -2.89 Two face-sharing octahedra D3h
Pd7Ir2 -2.60 Two face-sharing octahedra D3h
Pd8Ir -2.33 Icosahedral fragment C2v
Pd9 -2.03 Icosahedral fragment C2v
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Table 8: Binding energies, structure and point group symmetries for PdnIr(10−n) clusters

Composition Binding Energy eV/atom Structure Point Group
Ir10 -4.76 Two-atom face-capped cube C2v

PdIr9 -4.50 Two-atom face-capped cube Cs
Pd2Ir8 -4.29 Two-atom face-capped cube C2v
Pd3Ir7 -3.95 Two-atom face-capped cube Cs
Pd4Ir6 -3.66 Two-atom face-capped cube Cs
Pd5Ir5 -3.38 Tri-capped trigonal prism with additional Cs

cap on resulting square pyramid
Pd6Ir4 -3.15 Bi-capped face-sharing trigonal pyramid C2v
Pd7Ir3 -2.89 Two face-sharing octahedra with cap C2v
Pd8Ir2 -2.63 Two edge-sharing octahedra D2h
Pd9Ir -2.38 Incomplete fragment of centred Icosahedron C3v
Pd10 -2.09 Incomplete fragment of centred Icosahedron C3v

Additional homotop information.
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top Schlegel diagrams displayed below graph in the order of increasing energy.
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Figure 16: Relative energies of symmetry inequivalent homotop structures for Pd4Ir6.23



Table 9: Relative energies (∆E/eV) for various multiplicities ((2S + 1)) of Ir8 and three higher
energy minima from the BCGA-DFT search

1 2 3 4
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0 1 2.76 1 3.31 1 2.74
3 0.1 3 2.33 3 2.67 3 2.25
5 0.11 5 2.29 5 2.66 5 2.45
7 0.22 7 2.12 7 2.52 7 Waiting
9 0.25 9 2.04 9 2.36 9 2.38
11 0.25 11 2.20 11 2.31 11 Waiting
13 0.10 13 2.54 13 2.37 13 Waiting
15 1.66 15 3.09 15 2.71 15 Waiting
17 3.01 17 Waiting 17 3.11 17 Waiting

Table 10: Relative energies (∆E/eV) for various multiplicities ((2S+1)) of PdIr7 and three higher
energy minima from the BCGA-DFT search

1 2 3 4
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0.56 1 Waiting 1 Waiting 1 1.21
3 0.14 3 0.84 3 0.55 3 0.54
5 0.13 5 0.68 5 0.50 5 0.58
7 0.14 7 0.47 7 0.28 7 0.39
9 0.08 9 0.19 9 0.24 9 0.20

11 0.00 11 0.03 11 0.21 11 0.34
13 0.27 13 0.19 13 0.55 13 0.60
15 0.92 15 0.78 15 1.30 15 1.25
17 2.81 17 2.47 17 2.67 17 Waiting
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Table 11: Relative energies (∆E/eV) for various multiplicities ((2S+1)) of Pd2Ir6 and three higher
energy minima from the BCGA-DFT search

1 2 3 4
(2S+1) ∆E (2S+1) ∆E (2S+1) ∆E (2S+1) ∆E

1 0.56 1 Waiting 1 Waiting 1 1.21
3 0.14 3 0.84 3 0.55 3 0.54
5 0.13 5 0.68 5 0.50 5 0.58
7 0.14 7 0.47 7 0.28 7 0.39
9 0.08 9 0.19 9 0.24 9 0.20

11 0.00 11 0.03 11 0.21 11 0.34
13 0.27 13 0.19 13 0.55 13 0.60
15 0.92 15 0.78 15 1.30 15 1.25
17 2.81 17 2.47 17 2.67 17 Waiting

This material is available free of charge via the Internet at http://pubs.acs.org/.
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