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• Pillage games allow externalities between coalitions and allow power to depend on resources.
• They are richer than games in characteristic or partition function form.
• When n = 3, three axioms ensure stable sets’ uniqueness, and restrict them to no more than 15 elements.
• We present an algorithm for deciding existence and computing stable sets under these conditions.
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a b s t r a c t

Pillage games (Jordan, 2006a) have two features that make them richer than cooperative games in either
characteristic or partition function form: they allow power externalities between coalitions; they allow
resources to contribute to coalitions’ power as well as to their utility. Extending von Neumann and Mor-
genstern’s analysis of three agent games in characteristic function form to anonymous pillage games, we
characterise the core for any number of agents; for three agents, all anonymous pillage games with an
empty core represent the same dominance relation. When a stable set exists, and the game also satis-
fies a continuity and a responsiveness axiom, it is unique and contains no more than 15 elements, a tight
bound. By contrast, stable sets in three agent games in characteristic or partition function form may not
be unique, and may contain continua. Finally, we provide an algorithm for computing the stable set, and
can easily decide non-existence. Thus, in addition to offering attractive modelling possibilities, pillage
games seem well behaved and analytically tractable, overcoming a difficulty that has long impeded use
of cooperative game theory’s flexibility.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Opponents of a newly elected government nonetheless pay
taxes, knowing its supporters are more powerful than they are;
international alliances are formed and allies supported to main-
tain both their allegiance and their effectiveness; firms transfer

✩ We are grateful to Siddhartha Bandyopadhyay, Jim Jordan, Ehud Kalai, Emiliya
Lazarova, Herakles Polemarchakis and Konstantin Sonin for useful conversations,
to seminar audiences in Moscow, at ESEM 2008, FEMES 2008, LAMES 2008, SAET
2011, to the ESRC (RES-156-25-0022) and EPSRC (EP/J007498/1) for funding and to
three referees for their careful comments. Rowat thanks Birkbeck for its hospitality.
This paper draws on material contained in an earlier working paper (Kerber and
Rowat, 2009).
∗ Corresponding author. Tel.: +44 121 414 3754.

E-mail addresses: c.rowat@bham.ac.uk, c.rowat@espero.org.uk (C. Rowat),
m.kerber@cs.bham.ac.uk (M. Kerber).

http://dx.doi.org/10.1016/j.mathsocsci.2014.02.003
0165-4896/© 2014 The Authors. Published by Elsevier B.V. This is an open access artic
resources (such as patents) to other firms to help them compete
against mutual rivals (Kwong, 2011); junior staff often tolerate
abusive behaviour from their seniors without protest, knowing
that a challenge would become a power contest which they would
lose; merchant ships surrender rather than fight pirates or priva-
teers (Kontorovich, 2004).

All the above are examples of power contests in which power
is derived both from agents’ inalienable attributes as well as their
transferable resources. Further, while resources may be trans-
ferred, none are actually consumed by the contest.1

Their study presents two problems for typical analyses. First,
Aumann (2008) has argued that, in general, ‘‘procedures are not

1 This latter feature seems most consistent with common knowledge of power.
If so, the use of terms like ‘pillage’ and ‘jungle’ in the costless transfer literature
(Jordan, 2006a; Piccione and Rubinstein, 2007) may be misleading, calling to mind
exceptional interactions between relatively unknown parties.
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really all that relevant; that it is the possibilities for coalition form-
ing, promising and threatening that are decisive, rather thanwhose
turn it is to speak’’. This argument is especially strong when, in
the absence of strong institutions, any proposed game formswould
themselves be contested. Second, while cooperative game theory
works directly with a dominance relation defined on outcomes,
abstracting from game forms, its two most common formulations
treat power and utility dichotomously: the contested goods yield
utility, but cannot contribute to the contest of power.

Games in characteristic function form2 (CF) allow power to de-
pend only on coalitions’ absolute inalienable attributes; conse-
quently, analyses of such games tend to predict that the grand
coalition of all agents forms, ruling out the very real possibility of
conflict between coalitions ‘‘from the beginning’’ (Maskin, 2003).3

Games in partition function form (PF) generalise CF games, al-
lowing power to depend on coalitions’ relative inalienable at-
tributes, and therefore for externalities across coalitions (Thrall
and Lucas, 1963; Maskin, 2003; de Clippel and Serrano, 2008).
However, they remain unable to model the possibility that trans-
ferring resources may transfer power as well as utility.

Jordan (2006a) introduced pillage games, a class of cooperative
gameswhose dominance relations are represented by power func-
tions, increasing in both coalitional membership andmembers’ re-
source holdings. Thus, such games allow power to depend on both
inalienable attributes and holdings of transferable resources with-
out the imposition of restrictive game forms. As a result, they of-
fer an alternative and possibly fruitful tool for the study of power
contests.4 To emphasise their relation to the better known classes
of cooperative games, we also refer to pillage games as games in
power function form.

To compare more concretely, consider a CF game that allows
any sufficiently large coalition to split a pie. In its PF counterpart,
the majority game, absolute size is insufficient: instead, the coali-
tion must be larger than any other to split the pie. In the extension
to power function form (the majority pillage game of Jordan and
Obadia, 2004), larger coalitions again dominate, but ties in coali-
tional size are decided in favour of that with more resources.

Although games in power function form seem richer than PF
games in allowing power to depend on resource holdings, they are
nevertheless disjoint, replacing a constancy condition in PF games
with a strictmonotonicity condition. Further, the original theory of
PF games (Thrall and Lucas, 1963) also made the ‘‘bloodthirsty’’ as-
sumption (Ray and Vohra, 1997) that the residual agents opposed
any coalition; by contrast, in power function form, a coalition is
only opposed by those agents with opposed interests.5

Section 2 of this paper formally introduces games in power
function form. While their independence from game forms and
rich ability to model power are attractive, their behaviour is cor-
respondingly sensitive to the choice of power function. Jordan
(2006a) presented results for von Neumann and Morgenstern sta-
ble sets for three particular power functions: in the first, a unique
stable set was derived; in the second, a (possibly non-unique) sta-
ble set was derived for odd numbers of agents; in the third, a

2 While a small subset of von Neumann and Morgenstern’s abstract games, the
dominance of these gameswithin cooperative game theory is so complete that they
are often equated to cooperative game theory.
3 Rosenthal (1972) criticised characteristic functions as unable to model either

externalities or strategic conditionalities; Ray and Vohra (1997) noted that games
in partition function form share this latter failing.
4 Models of contest success functions (q.v. Skaperdas, 1992, 1996), a popular non-

cooperative approach, differ in two ways from those based on cooperative games:
game forms must be specified, and the power contest is costly, eliminating the
possibility of efficiency from the outset.
5 Kóczy (2007) reviewed more recent approaches to the residual agents in PF

games; its ownmodel imposed commitment assumptions on agents, allowing cores
to be defined recursively from those of singleton agents.
non-existence result was proven. Jordan also proved that a set is
stable in a pillage game if and only if there is a consistent expec-
tation for which it is the (farsighted) core in expectation.6 Thus, to
the extent that the property of being undominated is an appealing
one, and forward looking agents are seen as natural, stable sets are
a compelling solution concept for pillage games. This is particularly
fortunate given the problematic nature of specifying an extensive
form non-cooperative game to describe a contest in which agents
might seek to challenge such a game form: as noted by Harsanyi
(1974), elements in stable sets of games in characteristic function
formneed not satisfy this dynamic consistency property, spawning
– via Selten (1981) – a rich literature that seeks non-cooperative
underpinnings to cooperative solutions.

As even a finite agent set generates an infinite number of pos-
sible power functions, a number of questions arise naturally. How
are Jordan’s three results related? How many other classes of sta-
ble sets are possible?What determines uniqueness and existence?
Are there equivalence classes among power functions?

This paper answers these questions for three agents, when the
power function satisfies three additional axioms. Analysis is re-
stricted to three agents as stable sets are famously intractable:
even basic questions like existence in the simple environment of
CF games remained open for a quarter century (Lucas, 1968).7
Consequently, exhaustive analyses of stable sets for three agents
have been theoretically important8: von Neumann and Morgen-
stern (1953) provided these for CF games; Thrall and Lucas (1963)
for PF games.

First, though, Section 3 presents results on the core, the set of
undominated allocations. For anonymous n-agent pillage games,
we characterise the core: if it is non-empty, it must contain all
allocations giving thewhole endowment to each single agent (one-
way splits); it may also contain the set of all equal p-way splits, for
as many p between 2 and n as one wishes. When n = 3, there
are four possible non-empty cores; adding a responsiveness axiom
reduces this to two.

Section 4 turns to stable sets. Its first result is that the core
characterisation result does not generalise to stable sets — unsur-
prising given stable sets’ greater complexity. Strikingly however,
Section 4.1 proves that all anonymous, n = 3 power functions
yielding empty cores represent the same dominance relation – that
of the majority pillage game – and therefore yield the same stable
set.

Section 4.2 – which treats the case of the non-empty core – is
the heart of the paper, responsible formost of its notation and lem-
mas, and for its most involved reasoning. For three agent games, it
presents an algorithm for deciding stable sets and,when they exist,
computing them.9 This uses three arguments. First, allocations in
the core, a unique object, must belong to any stable set, a general
result in cooperative game theory. Second, when power is contin-
uous in resources, there may exist a balance of power locus, along
which themost powerful agent is just as powerful as the other two
combined; as dominance is transitive along this locus, external sta-
bility not only requires inclusion of allocations from the locus, but

6 See Anesi (2006) and the references therein for more motivations of stable sets
based on farsightedness.
7 For abstract cooperative games, we are grateful to Oleg Itskhoki for noting

that Condorcet cycles produce non-existence immediately: e.g. {x, y, z} and the
following dominance relations, x K y K z K x. See also Lucas (1992, p. 547).
8 Lucas (1971) notes that stable sets have only been ‘‘described for a few very

particular games with arbitrary n’’. See Maskin (2003) and de Clippel and Serrano
(2008) for an example of the difficulties of generalising beyond three agents.
9 An implementation of the algorithm in Theorema (Windsteiger et al., 2006), an

automated theorem prover plug-in for Mathematica is available at www.cs.bham.
ac.uk/∼mmk/economics/theorema. Kerber and Rowat (2009) presented results
on applying the algorithm to classes of power functions, and on deciding and
computing stable sets for power functions violating these three additional axioms.

www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
www.cs.bham.ac.uk/~mmk/economics/theorema
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uniquely determines the allocations. Third, dominance over the al-
locations that are neither members of the unique set built by the
first two steps, nor dominated by members of that set, is equiva-
lent to that in themajority pillage game; this has a unique stable set
of three allocations (Jordan and Obadia, 2004), producing a unique
stable set on this final domain.

When power satisfies anonymity, continuity and responsive-
ness axioms, this procedure both yields a unique stable set, when
one exists, and sets a tight upper bound of 15 allocations on it.
This bound ismuch tighter than the finite bound of Jordan (2006a),
the Ramsey bound of Kerber and Rowat (2011) or the doubly-
exponential one of Saxton (2011). It also identifies the source
of non-existence: stable sets do not exist when the balance of
power locus lacks a maximal element, a new application of an old
consequence of Zorn’s lemma (von Neumann and Morgenstern,
1953, Section 65.4.2).10 Similar arguments have been made pre-
viously to demonstrate the existence and uniqueness of stable sets
(Gillies, 1959; Chang and Chang, 1991). Here, the power function’s
monotonicity allows the actual computation of stable sets.

Section 5 contains two examples to illustrate and expand upon
points made in the preceding analysis.

Taken together, the paper identifies a well-behaved and
tractable class of pillage games.11 Furthermore, the stable sets in
this class of pillage games behave differently from those in three
agent CF or PF games. In the former, ‘‘stable sets are typically not
unique’’, but are guaranteed to exist (Lucas, 1992, pp. 562–563).
For ‘‘most’’ of the latter, they are unique, but are ‘‘often’’ larger than
those in CF games (Lucas, 1971, p. 511). Thus, this class of pillage
games allows richer modelling possibilities than either CF or PF
games for three agents, and allows tighter predictions—but subject
to the caveat that the stable set may not exist.

2. Pillage games

Let I = {1, . . . , n} be a finite set of agents; when indexed by
i, j and k, these refer to distinct agents. An allocation divides a unit
resource among them, so that the feasible set of allocations is a
compact, continuous (n − 1)-dimensional unit simplex:

X ≡


{xi}i∈I

xi ≥ 0,

i∈I

xi = 1


.

Let⊂ denote a proper subset, and use⊆ to allow the possibility
of equality. Jordan (2006a) defined a power function over subsets of
agents and allocations, so that π : 2I

× X → R satisfies:

(WC) if C ⊂ C ′
⊆ I then π


C ′, x


≥ π (C, x) ∀x ∈ X;

(WR) if yi ≥ xi ∀i ∈ C ⊆ I then π (C, y) ≥ π (C, x); and
(SR) if ∅ ≠ C ⊆ I and yi > xi ∀i ∈ C then π (C, y) > π (C, x).

Axiom (WC) requires weak monotonicity in coalitional inclu-
sion; (WR) requires weak monotonicity in resources; (SR) requires
strong monotonicity in resources. These axioms imply the follow-
ing representation12:

Lemma 1. Any power function, π (C, x), can be represented by an-
other, π ′


C, {xi}i∈C


, which depends only on the resource holdings of

its coalition members.

10 In the examples considered by Jordan (2006a), this occurred when the element
thatwould bemaximalwas dominated by a tyrannical allocation. Kerber and Rowat
(2009) showed that it may also occur when the power function is discontinuous in
resource holdings.
11 MacKenzie et al. (2013) are able to generatemultiple stable sets in pillage games
with four or more agents by relaxing the anonymity axiom.
12 Kerber et al. (2011) presented automated proofs of this lemma, as well as
Lemma 2, implemented in Theorema (Windsteiger et al., 2006).
Proof. Consider arbitrary x, y such that xi = yi ∀i ∈ C ⊆ I . Then
yi ≥ xi and xi ≥ yi so that axiom (WR) requiresπ (C, y) ≥ π (C, x)
≥ π (C, y). For this to hold, π (C, x) cannot depend on xj for any
j ∉ C . �

The axioms also imply that π (∅, x) is the smallest value that π
can take, and is independent of x.13 Without loss of generality, we
normalise π (∅, x) = 0.

The following additional axiomswill be used in establishing our
main result, on uniqueness conditions for stable sets:
(AN) let σ : I → I be a bijective function permuting the agent

set; if i ∈ C ⇔ σ (i) ∈ C ′ and xi = x′

σ(i), then π (C, x) =

π

C ′, x′


.

(CX) π (C, x) is continuous in x.
(RE) if i ∉ C and π ({i} , x) > 0 then π (C ∪ {i} , x) > π (C, x).
Anonymity axiom (AN) means that power does not depend on
the identity of agents, merely their cardinality and resources.14 It
therefore plays the same simplifying role that identical agent as-
sumptions play in other economic models, and is as restrictive.
One consequence (see the Discussion) is to restrict the datasets
on which the current theory can be tested. Continuity axiom (CX)
plays a standard technical role. Economically, its role is less clear:
as dominance will be seen to be discontinuous on its own, is a
second source of discontinuity needed? Example 2, below, will
show that the axiom does have bite. Finally, responsiveness axiom
(RE) (q.v. Jordan, 2009) states that the addition of an agent which
has positive power even as a singleton strictly increases the power
of its new coalition. Again, this will be seen to be technically useful.
Economically, it does rule out apparently plausible cases, such as
the champion power function, defined below.

A pillage game is then a triple, (n, X, π).
The three power functions defined by Jordan (2006a) arewealth

is power (WIP), strength in numbers (SIN) and Cobb–Douglas (CD):

πw (C, x) =


i∈C

xi; (1)

πv (C, x) =


i∈C

(xi + v) ; (2)

πc (C, x) = ∥C∥
α

·


i∈C

xi

1−α

; (3)

where v ≥ 0, ∥C∥ denotes the cardinality of C and α ∈ (0, 1).
When v > 1, SIN is themajority pillage game of Jordan and Obadia
(2004). All three power functions satisfy additional axioms (AN),
(CX) and (RE).

The following sinusoidal class of power functions appears less
intuitively motivated, but will be useful in exemplifying particular
cases and establishing the tightness of the upper bound on stable
sets that will be derived later in the paper:

πk (C, x) ≡


i∈C


xi +

sin (kϖ xi)
kϖ


; (4)

for k ∈ Z, where – to avoid confusion with the power function –
ϖ denotes the constant pi.

An allocation y dominates an allocation x, written y K x, iff
π (W , x) > π (L, x) ;

where W ≡ {i |yi > xi } and L ≡ {i |xi > yi }. By the strict inequal-
ity, domination is irreflexive; by axiom (SR), it is asymmetric.

13 See Beardon and Rowat (2013) for a slightly longer discussion.
14 Jordan and Obadia (2004) called this axiom ‘symmetry’, following the
terminology of CF games (Lucas, 1971).We regard ‘anonymity’ asmore precise, as it
restricts the symmetry to agents’ identity: intrinsically identical agents may differ
in power when their resources differ.
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The following result will be used later to prove Theorem 4:

Lemma 2. Let x, y ∈ X such that W = {i |yi > xi } = {1} and L =

{i |xi > yi } = {2}. Then, for any power function satisfying axiom
(AN), y K x ⇔ x1 > x2.

Proof. ‘If’: x1 > x2 ⇒ π ′ ({1} , x1) > π ′ ({1} , x2) = π ′ ({2} , x1),
where the first implication and its inequality owe to axiom (SR)
and the representation established by Lemma 1, and the equality
owes to axiom (AN). By transitivity, Lemma 1 and the definition of
dominance, π ′ ({1} , x1) > π ′ ({2} , x1) ⇔ y K x, completing the
proof in this direction.

The ‘only if’ direction only requires reversing thedirection of the
‘if’ step’s first implication, to show that π ′ ({1} , x1) > π ′ ({1} , x2)
⇒ x1 > x2. Suppose otherwise, so that x2 = x1 + 1x, with 1x ≥

0. Then, by axiom (WR) (resp. (SR)), π ′ ({1} , x2) ≥ π ′ ({1} , x1)
(resp. π ′ ({1} , x2) > π ′ ({1} , x1)), a contradiction, completing the
proof. �

For Y ⊂ X , let

D (Y ) ≡ {x ∈ X |∃y ∈ Y s.t. y K x } (5)

be the dominion of Y , the set of allocations dominated by an al-
location in Y . Similarly, U (Y ) = X \ D (Y ), the set of allocations
undominated by any allocation in Y .

As pillage games are examples of von Neumann and Morgen-
stern abstract games, the relationship between power functions
and the underlying dominance relation is the same as that between
utility functions and the underlying preference relation in utility
theory: in both cases, more than one function may represent the
same primitive.15 Monotonic transformations of power functions
clearly represent the same dominance relations (Jordan and Oba-
dia, 2004); we would like to know howmuch broader these equiv-
alence classes are.

3. The core

The core, K , is the set of undominated allocations, U (X) =

X \ D (X). Following Jordan (2006a), let t i ∈ X be a tyrannical allo-
cation such that t ii = 1 and t ij = 0 for all j ≠ i ∈ I . Then:

Theorem 1 (Jordan, 2006a, 2.6). The core is the set

K = {x ∈ X |{i : xi > 0} = {i : π ({i} , x) ≥ π (I \ {i} , x)} } .

In particular,

(a) for each i ∈ I, t i ∈ K iff π

{i} , t i


≥ π


I \ {i} , t i


; and

(b) if π

{i} , t i


< π


I \ {i} , t i


∀i ∈ I then K = ∅.

The inequality in item (b) was called the no-tyranny condition
by Jordan (2006b).16 The main result of this section characterises
the core for anonymous pillage games with three or more agents.
Doing so requires two preliminary lemmas:

Lemma 3. Let K be the core for some n-agent pillage game with
anonymous power function π . Consider a core allocation xwhich sets
xi > 0 for all i ∈ C ⊆ N, where ∥C∥ ≥ 2. Then, for those i ∈ C,
xi =

1
∥C∥

.

Proof. For x to belong to the core it must be undominated. This re-
quires, for any i, j ∈ C , that π ({i} , x) = π ({j} , x). By Lemma 1,
this may be represented as π ({i} , xi) = π


{j} , xj


which, by

anonymity, requires that xi = xj. �

15 The crucial distinction is that a rational preference ordering is transitive, a
property not required of dominance relations.
16 The Bondareva–Shapley theorem provides a parallel result for CF games.
Let E c be the set of egalitarian allocations that divide the endow-
ment equally among all coalitions of size c. Then:

Lemma 4. There is an n-agent pillage game with an anonymous
power function, whose core is

n
c=1 E c ; the core of any other anony-

mous n-agent pillage game is a subset of this.

Proof. Example 2.8 in Jordan (2006a) showed that this core is
achieved by the champion power function

π̄ (C, x) ≡ max
i∈C

xi. (6)

The subset property is an immediate consequence of Lemma 3. �

Jordan (2006a) referred to the champion power function as
πmax.17

Proposition 2.7 of Jordan (2006a) completely characterised the
core in two agent pillage games.We nowextend this result to char-
acterise the core for anonymous pillage games with three or more
agents:

Theorem 2. Let P be the union of {1} and any non-empty subset of
{2, . . . , n}. Then, for any pillage game with n ≥ 3 agents and an
anonymous power function, the core is either empty or is equal to

p∈P Ep.

The proof is based around the recognition that, for an equal
split of the endowment to be in the core, it must survive a number
of different pillage attempts: if three or more agents split the
resource, any agent holding resources must be as powerful as any
two agents holding resources; if only two agents split the resource,
then eachmust be as powerful as the other plus the agentswithout
resources; finally, if a single agent holds thewhole resource, itmust
be as powerful as all other agents combined. The proof therefore
defines a power function that is tailored to either allow or prevent
these sort of pillage operations, depending on whether the equal
split in question is to included in the core or not.

Proof. Aspreliminaries, note that: the case of an empty core is pos-
sible, as exemplified by the SIN power functionwith v > 1; by The-
orem 1, the tyrannical allocations must belong to any non-empty
core; by Lemma 4, the core must be a subset of ∪n

c=1 E
c .

Thus, it remains to show that arbitrary sets of equal splits
among three or more agents are possible. To do so, consider first
the following intervals, indexed by c = n, . . . , 2:

Jn ≡

0, 2

2n−1


, . . . , Jc ≡

 2
2c+1 ,

2
2c−1


, . . . , J2 ≡

 2
5 , 1


.

Now define the functions

m (C, x, c) ≡ nn−c max
i∈C

xi; and

s (C, x, c) ≡


nn−c


i∈C

xi if c > 2

nn−c

i∈C

(xi + ε) otherwise


where ε > 0 is small. Finally, let B ≡ ×

2
c=n {bc} be an ordered

(n − 1)-tuple, such that bc ∈ {m, s}, and define the piecewise func-
tion:

πB (C, x) ≡

m (C, x, c) if max
i∈C

xi ∈ Jc ∧ bc = m

s (C, x, c) if max
i∈C

xi ∈ Jc ∧ bc = s


.

We now prove that πB (C, x) is a power function. Start with ax-
iom (WR), for which there are two cases:

17 In addition to proving that its core was the set of all equal divisions of the unit
endowment among all non-empty coalitions, Jordan also proved that this was its
unique stable set.
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1. The increase from maxi∈C xi to maxi∈C yi preserves the interval
type (i.e. eitherm or s). The following three facts then hold: nei-
ther the sum nor the max is decreasing; the c index’s weak de-
crease increases nn−c ; the argument of s (C, x, c) increases by
∥C∥ε when c falls to two. Thus, πB (C, y) ≥ πB (C, x), so that
the result holds in this case.

2. The increase from maxi∈C xi to maxi∈C yi changes the interval
type:
(a) Fromm to s, changing power from nn−c maxi∈C xi to at least

nn−c′ 
i∈C yi, with c ′ < c. As yi ≥ xi ∀i ∈ C ⇒ nn−c′ 

i∈C yi
≥ nn−c maxi∈C xi, with n − c ′ > n − c , the result holds in
this case.

(b) From s to m, changing power from nn−c 
i∈C xi to nn−c′

maxi∈C yi, with c ′ < c. As yi ≥ xi ⇒ nmaxi∈C yi ≥


i∈C xi,
the result also holds in this case.

The same calculations with the strict inequality yi > xi estab-
lish that axiom (SR) holds as well. Similar calculations also estab-
lish axiom (WC). Now, though, the allocation remains x but C ⊂

C ′
⇒ maxi∈C xi ≤ maxi∈C ′ xi, so that the interval index, c , weakly

decreases with the addition of agents, weakly increasing nn−c .
We now turn to the attempted pillage operations that core al-

locations must survive. When the endowment is equally split be-
tween any subset of three of more agents, πB only grants power to
coalitions holding resources. Under these circumstances, if bc = m,
then a singleton coalition holding resources is as powerful as any
other coalition: for each p ∈ P \ {1, 2}, setting bp = m ensures that
all allocations splitting the resource equally between p agents are
undominated. If, though, bc = s under these circumstances, then
larger coalitions are more powerful than smaller ones: for each
p ∉ P ∪ {1, 2}, setting bp = s allows any two-agent coalition to
pillage any singleton coalition, ensuring all p-way equal splits are
dominated when p ≥ 3.

When the endowment is equally split between only two agents,
b2 = m only grants power to coalitions holding resources; by ax-
iom (AN), these are equally powerful, and the corresponding allo-
cations undominated. When, on the other hand, b2 = s, a coalition
of two agents (one with resources, one without) has power 1

2 +

2ε > 1
2 + ε, allowing it to pillage the other resource-holding agent

(whose power is the latter term).
Finally, at a tyrannical allocation, πB


{i} , t i


= 1 + ε > (n −

1)ε ≥ πB

I \ {i} , t i


, so that the t i belong to the core. �

Thus, all allocations in the core, x ∈ K , lie on symmetry axes, so
that xj = xk for some j ≠ k. We shall later see that this need not be
true of allocations in stable sets.

As the focus of this paper are stable sets in n = 3 pillage games,
we shall present two corollaries of the theorem under that restric-
tion. They make use of some further notation, introduced now.

Let sjk ∈ X be a split allocation with sjki = 0 and sjkj = sjkk =
1
2 .

For the n = 3 SIN power function (as defined in Eq. (2)) with
v ∈ (0, 1), Fig. 1 illustrates the tyrannical and split allocations, as
well as their dominions. These latter are derived from Eq. (5):

D

t1


=

x ∈ X

t1 K x


= {x ∈ X |π ({1} , x) > π ({2, 3} , x) }
= {x ∈ X |x1 + v > (1 − x1) + 2v }

=


x ∈ X

x1 >
1 + v

2


. (7)

D

s23


=


x ∈ X |


1
2

> x2, x3; x2 + x3 >
1 − v

2


∪


1
2

= max {x2, x3} > min {x2, x3} > x1


. (8)

Finally, denote the simplex’ centroid by c ≡
 1
3 ,

1
3 ,

1
3


.

Wenowpresent the corollaries of Theorem2, characterising the
core when n = 3:
Fig. 1. Strength in numbers (SIN) when v ∈ (0, 1).

Corollary 1. When n = 3 and axiom (AN) holds, the core is one of:
(1) ∅; (2) E1; (3) E1

∪ E2; (4) E1
∪ E3; and (5) E1

∪ E2
∪ E3.

Proof. By Theorem 2, the core may be empty. If it is non-empty,
it must include the t i (which form E1), and may also include none,
either or both the two-way (E2) and three-way splits (the centroid,
E3). It may not include anything else. �

When axiom (RE) holds as well, the centroid may no longer
belong to the core:

Corollary 2. When n = 3 and axioms (AN) and (RE) hold, the core
is one of: (1) ∅; (2) E1; and (3) E1

∪ E2.

Proof. Axiom (SR) and the normalisation π (∅, c) = 0 ensure
that π ({i} , c) > 0. As axiom (AN) guarantees that π ({j} , c) =

π ({k} , c), axiom (RE) then ensures that π ({i, j} , c) > π ({k} , c).
Thus, c is dominated by any allocation that transfers resources
from k to i and j; as c > 0, such allocations exist, so that c can-
not belong to any core. �

4. Stable sets

A set of allocations, S ⊆ X , is a stable set iff it satisfies internal
stability,

S ∩ D (S) = ∅; (IS)

and external stability,

S ∪ D (S) = X . (ES)
The conditions combine to yield S = X \ D (S). While stable sets
may not exist, ormay be non-unique in general cooperative games,
the core necessarily belongs to any stable set; when the core also
satisfies external stability, it is the unique stable set.18

As stable sets are more complex objects than the core, Jordan
(2006a) derived results only for the WIP, SIN and CD power func-
tions defined in Eqs. (1)–(3), above: WIP has a unique stable set
consisting of the ∪k=0,1,...,⌊log2 n⌋ E2k ; for SIN, a stable set for odd n
is derived; no stable set exists for CD. This greater complexity pre-
vents even a weaker version of Theorem 2 holding for stable sets:

Theorem 3. For n ≥ 2m, there exists no power function satisfying
axiom (AN) such that, for any P ⊆ {1, . . . ,m} , ∪p∈P Ep is stable.

Proof. Let p̄ denote the maximal element of P and consider the
allocation

x ≡


1
2p̄

, . . . ,
1
2p̄

, 0, . . . , 0


∉ ∪p∈P Ep.

We establish that there is no y ∈ ∪p∈P Ep such that y K x; thus,
∪p∈P Ep fails external stability, and cannot be a stable set. The coali-
tion which could bring about a y ∈ ∪p∈P Ep that is most chal-
lenging to x consists of p̄ agents, each holding 1

2p̄ in x: a larger
coalition could not reward all of its members with an allocation in

18 Asilis and Kahn (1992) expressed this result in terms of transparency.
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∪p∈P Ep; these members are more powerful than those for which
xi = 0. Letting W ≡ {i ∈ I : yi > xi} and L ≡ {i ∈ I : xi > yi} sets
π (W , x) = π (L, x) by axiom (AN). �

Smaller sets satisfy external stability less easily; thus, relative
to Jordan’s Example 2.8, this result does not allow the candidate
stable set to be large enough.

The introduction mentioned that existing results either do not
apply to the present environment, or require furtherwork to apply.
The existence and uniqueness theorems of Berge (1962, Chapter
5) are in the former category: these either require symmetry of
domination (so that y K x K y, disallowed by axiom (SR)), or that
any allocation be dominated by only finitely many others, which is
impossible by the following result:

Lemma 5 (Convex Transitivity). If x K y then x K αx+(1 − α) y K
y ∀α ∈ (0, 1).

Proof. x K y ⇔ π (W1, y) > π (L1, y), where W1 ≡ {i |xi > yi }
and L1 ≡ {i |yi > xi }. Now define

Wα ≡ {i |αxi + (1 − α) yi > yi } ;

and Lα similarly for α ∈ (0, 1). It is then immediate thatWα = W1
(resp. Lα = L1) so that

αx + (1 − α) y K y.

The second dominance operation follows similarly. �

The existing algorithm for constructing stable sets in pillage
games owes to Roth (1976) via Jordan and Obadia (2004).19 It uses
a weaker condition than external stability, namely self-protection:

S ⊆ U2 (S) ; (SP)

whereU2 (S) ≡ U (U (S)). Whereas external stability requires that
all allocations outside the set in question be dominated by at least
one inside it, self-protection only requires this of those external
allocations that dominate allocations within the set.

Algorithm 1 The Roth–Jordan algorithm
1: S0 ≡ K
2: i = 1
3: repeat
4: Si ≡ U2 (Si−1)
5: i = i + 1
6: until Si = Si−1
7: if Si satisfies (ES) then
8: S = Si
9: end if

Algorithm 1 takes as input a non-empty set satisfying condi-
tions (IS) and (SP); if the core is non-empty, this is the natural
candidate to use. Each iteration of the algorithm generates weakly
larger sets S0 ⊆ S1 ⊆ · · · satisfying both (IS) and (SP). As pillage
games’ stable sets are finite (Jordan, 2006a), the algorithmwill ter-
minate after finitelymany iterations. If its final iterate also satisfies
condition (ES), then it is the unique stable set. The algorithm may,
however, terminate before this pointwithout finding a stable set.20

This general algorithm is therefore incomplete in four respects.
First, it provides no means for calculating the core. Second, when
the core is empty, it provides no clue for finding an internally stable
and self-protecting initial iterate, S0. Indeed, for some n > 2 pillage

19 See also Asilis and Kahn (1992) and Jordan (2006b, Proposition 3.9).
20 If S0 = ∅, which trivially satisfies (IS) and (SP), then the algorithm terminates
immediately.
Fig. 2. Strength in numbers (SIN) when v > 1 : S =

s12, s13, s23


.

games the only such sets are themselves stable (Jordan andObadia,
2004), in which case the algorithm cannot help find them. Third, it
does not specify an efficient way to compute U2 (Si−1). Finally, it
is not clear whether terminating at an Si which is not externally
stable means that no stable set exists, or merely that further steps
must be taken independently of the algorithm.

The next subsection proves that all anonymous, n = 3 pillage
gameswith an empty core represent the same dominance relation.
The subsequent subsection then proves that all such games with a
non-empty core, also satisfying the (CX) and (RE) axioms, have ei-
ther no stable set or a unique one containing no more than 15 ele-
ments. It does so by presenting a new algorithm that both decides
the stable set question for the class of pillage games considered,
and allows computation of their stable sets.

4.1. Empty core

When the core is empty, the Roth–Jordan algorithm can obvi-
ously not use the core as its first iterate. This subsection demon-
strates that these cases do not actually pose a problem: any
anonymous three agent pillage game with an empty core yields
a unique stable set; further, as already noted in the discussion of
Theorem 1, the core’s emptiness is easily determined. The argu-
ment proceeds in two steps: an example of the preceding is found;
Theorem 4 then shows that all other anonymous three agent pil-
lage games with an empty core represent the same dominance or-
dering. Intuitively, the empty core leaves D


sjk

defined only by

the coalitional membership inequalities xj, xk < 1
2 , which are in-

dependent of π ().
Our example shall be the majority pillage game. This sets v > 1

in the SIN power function defined in Eq. (2). Propositions 4.2 and
4.3 of Jordan (2006a) proved general results which, in the n = 3
case, imply that: when v > 1 the core is empty, and E2 is stable.
This may be confirmed by deriving the dominion of a split alloca-
tion, such as D


s23

(q.v. Eq. (8)), which is illustrated in Fig. 2.

Theorem 4 (SIN Equivalence).When n = 3, all power functions sat-
isfying axiom (AN) and yielding an empty core represent the same
dominance ordering.

Proof. Fix an x and a y, in turn fixing W and L. By axiom (AN)
and Lemma 2, these power functions do not discriminate between
dominance orderings when the inducedW and L are singletons.

For the non-singleton W and L, make use of K = ∅. First con-
sider W = {1} and L = {2, 3}. There are no y and x yielding these
W and L for which y K x as

π ({1} , x) ≤ π

{1} , t1


< π


{2, 3} , t1


≤ π ({2, 3} , x) .

The strict inequality above follows, by Theorem 1, from K = ∅.
Asπ satisfies axiom (AN), the only remaining case to consider is

that in whichW = {2, 3} and L = {1}. Reading the above inequal-
ities from right to left reveals that any y and x generating theseW
and L set y K xwithout further conditions, just as for SIN. �

Corollary 3. When n = 3, all power functions satisfying axiom (AN)
and yielding an empty core have E2 as their unique stable set.
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Proof. Theorem 3.4 of Jordan and Obadia (2004) proved that E2 is
the unique stable set of SIN when v > 1 and n = 3. As this pillage
game has an empty core, the result follows from the theorem. �

4.2. Non-empty core

When the core is non-empty, D

sjk

will be defined not just

by the coalitional membership inequalities, but by particular
features of the power function. Thus, unlike the previous case,
power functions admitting non-empty cores cannot generally be
expected to represent the same dominance orderings, or even to
yield the same stable sets. To illustrate, we assert that both theWIP
power function and π√ (C, x) ≡


i∈C

√
xi have the same core –

K = E1
∪E2 –but different stable sets (for the former, add

 1
2 ,

1
4 ,

1
4


and its permutations to the core; for the latter, add

 2
3 ,

1
6 ,

1
6


and

its permutations).
In this subsection, we show that all anonymous n = 3 pillage

games with non-empty cores whose power functions also satisfy
the continuity and responsiveness axioms either have no stable
set, or have a unique stable set. In the former case, we isolate
the source of non-existence; analysis of both cases also yields an
algorithm for computing aswell as deciding the stable set question
in these games. This algorithm allows derivation of the previous
paragraph’s assertion about the stable sets of WIP and π√.

This subsection – the paper’s most involved – first introduces
some preliminary notation and results, then presents the algo-
rithm that decides and computes stable sets, and – finally –
presents and derives the results undergirding the algorithm.

The most important analytical object is the balance of power lo-
cus, the set of allocations such that one agent is just as powerful
as the other two. Understanding dominance relationships within
these loci turns out to be the most involved aspect of this analy-
sis. Whenever possible, we illustrate the concepts required by it
in Fig. 3, which is derived from Eq. (6)’s n = 3 champion power
function.

First, the balance of power locus of allocations lying between
D

t i

and D


sjk

is:

Bi
≡ {x ∈ X |π ({i} , x) = π ({j, k} , x) } .

In Fig. 3, Bi is comprised of two line segments, each running from
the simplex’ centroid, c , to one of the split allocations, sjk, inclusive.
For other power functions, Bi may be empty.When it is non-empty,
a number of objects are often of interest. The first is
b̄i

∈ Bi s.t. b̄ij = b̄ik,

the midpoint of Bi. In Fig. 3, b̄i
= c for all agents. The second is the

set ofmaximal elements from agent i’s point of view:

M i
≡


x ∈ Bi

\ D

t i
 xi = max

y∈Bi\D(t i)
yi


with elements mi

∈ M i, with M ≡

M i
3
i=1.

21 In Fig. 3, these are
the split allocations, sjk. Finally, there are the extremal elements of
the maximal set most favourable to each of the other two agents,
E i

≡

eij, e

i
k ∈ M i

eijj ≥ xj, eikk ≥ yk ∀x, y ∈ M i 
;

where eijj is the jth coordinate of eij, with E ≡

E i
3
i=1. In Fig. 3,

E i
= M i.
Clearly, when Bi is empty,M i and E i are as well, and b̄i does not

exist. These objectsmay also be empty or fail to exist if Bi is open in
particular ways. Finally, it may also be the case that b̄i

= eij = eik.

21 Fig. 1 illustrates how Bi
\D

t i

can differ from the simpler Bi: when v =

1
3 , x = 2

3 , 0, 1
3


belongs to both Bi and D


t i

; thus, it does not belong to Bi

\D

t i

. Subse-

quent proofs will build transitive chains; by Zorn’s lemma, maximal elements guar-
antee unique stable sets, while their absence guarantees non-existence. Defining
M i over Bi alonewould complicate this by forcing consideration of dominance by t i .
The next lemma will become useful in establishing dominance
along the balance of power locus, when it exists:

Lemma 6. ∀x, y ∈ Bi, if yi > xi then either yj > xj or yk > xk.

Proof. Suppose otherwise, so that yj ≤ xj and yk ≤ xk. Then, by
definition of Bi and axioms (WR) and (SR):

π ({i} , y) > π ({i} , x) = π ({j, k} , x) ≥ π ({j, k} , y) ;

contradicting y ∈ Bi. �

An implication of the lemma is that, when n = 3, a ray from t i
through the simplex cuts Bi atmost once.22 This assists in depicting
these pillage games in the simplex (q.v. Figs. 1, 3 and 4):

The subset of a balance of power in which the lone agent has
strictly more power than do either of the other two on their own
is also analytically important as, by anonymity, agent i is able to
dominate either of the other two agents for allocations within it.
Defining and analysing this subset is key to establishing dominance
relations within Bi:

Bi
+

≡

x ∈ Bi

 xi > max

xj, xk


,

For some power functions, the restriction to Bi
+

has no conse-
quence: in SIN with v ∈ (0, 1), for example, Bi

+
= Bi. For other

power functions, it is prohibitive: in Fig. 3’s champion power func-
tion, Bi

+
is empty although Bi is not.

With these preliminaries established,wepresent Algorithm2 to
outline the structure of the coming arguments about deciding and
computing stable sets in three agent pillage games satisfying the
three additional axioms. As the algorithm cites notation that has
yet to be defined, we ask that the reader regard it as a roadmap at
this point, identifying the cases thatmust be addressed to establish
our results. One case has already been addressed: line 2’s stable set
return for the empty core (line 1) was established in Corollary 3; it
is exemplified by SIN with v > 1, as illustrated in Fig. 2.

Algorithm 2 Stable sets in n = 3 pillage games satisfying the
additional axioms
1: if π


{i} , t i


< π


{j, k} , t i


then

2: S = E2 Section 4.1: Corollary 3
3: else
4: if E i

= ∅ then
5: return ‘‘no stable set exists’’ Section 4.2.1: Theorem 6
6: else
7: if π


{j} , sjk


≥ π


{i, k} , sjk


then

8: S = E1
∪ E2

∪

S i
3
i=1 Section 4.2.2: Theorem 7

9: else
10: S = E1

∪

S i
3
i=1 ∪ A Section 4.2.3: Theorem 9

11: end if
12: end if
13: end if
14: return S

Theorems 6, 7 and 9 each establish one of the algorithm’s re-
maining cases. Each of these cases is also non-empty: line 5’s non-
existence return (Theorem 6) is exemplified by CD or SIN with
v ∈ (0, 1) (q.v. Fig. 1); line 8’s stable set return (Theorem 7) is
exemplified by WIP (q.v. Fig. 4) or π9 (q.v. Eq. (4)); line 10’s sta-
ble set return (Theorem 9) is exemplified by the power function in
Example 1. Two further theorems play a role in establishing the al-
gorithm: Theorem 5 addresses existence and uniqueness of stable
sets on the balance of power loci; Theorem 8 extends a uniqueness
result of Jordan and Obadia (2004), allowing its use in Theorem 9.

22 If x and y lie on such a ray then yi > xi implies yj < xj and yk < xk , contradicting
Lemma 6.
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Fig. 3. The champion power function, π̄ (C, x).

The additional structure of these games therefore allows Algo-
rithm 2 to overcome the limitations of the more general Roth–
Jordan algorithm. First, the core need never be calculated; further,
even if it must be, this is easily done. Second, the case of the empty
core is dealt with. Third, the problem of calculating U2 (Si−1) is re-
placed by easier calculations; the most difficult of these is the de-
termination of whether the extremal set, E i, is empty.23 Fourth, the
algorithm decides and, when a stable set exists, computes it in all
cases.

The subsections that follow each address one of the cases aris-
ing from algorithm.24 Before beginning, we establish some further
notation and results. The most important of these latter is Theo-
rem 5, which addresses existence and uniqueness of a stable set
within the balance of power loci. A set of allocations K i

⊆ Y ⊆ X
that satisfies K i

= Y \D (Y ) is the core on Y . Similarly, a set of allo-
cations S i ⊆ Y ⊆ X satisfying S i ∩ D


S i


= ∅ and S i ∪ D

S i


= Y ,
is stable on Y .25

Theorem 5 requires a standard definition and a lemma:

Definition 1. The dominance operator, K, is a strict total order on
a set of allocations, X , iff, for any x, y, z ∈ X the following hold:
1. trichotomy: exactly one of x = y, x K y and y K x holds; and
2. transitivity: x K y K z implies that x K z .

This is also called a complete ordering (von Neumann and Mor-
genstern, 1953, Section 65.3.1). For concision’s sake,we adopt their
convention.

The lemma will allow use of Zorn’s lemma, via von Neumann
and Morgenstern (1953, Section 65.4.2), to obtain either unique-
ness or non-existence of a stable set on


Bi

+
∪ E i


:

Lemma 7. Let n = 3 andπ satisfy axioms (AN) and (RE). Then dom-
inance completely orders the set of allocations, x ∈


Bi

+
∪ E i


which

satisfy xj > xk.

The proof of Lemma 7 requires two further lemmas which we
state and prove here:

Lemma 8. When n = 3 and π satisfies axiom (AN), if either
1. x, y ∈ Bi are such that yi > xi ≥ xj > xk and yj > xj; or
2. x ∈ Bi

+
and y ∈ Bi are such that yi > xi;

then y K x.

Proof. In the first case, W ≡ {l |yl > xl } = {i, j} and L ≡ {l |xl >
yl} = {k} by assumption. In the second case, the sameW and L can
be assumed without loss of generality by Lemma 6.

23 In the Theorema implementation, we typically supply this information.
24 Whereas the conditions in the algorithm are designed to be computable, the
section headings are chosen for expositional clarity.
25 Gillies (1959) called this Y -stable while Thrall and Lucas (1963) called this
stable for Y . Our notation uses the index i rather than the more natural Y as we
will only be interested in stability on Bi; using the natural index would require the
double-index SB

i
.

Fig. 4. Wealth is power (WIP).

In the first case, xi > xk is assumed; in the second, it follows
from x ∈ Bi

+
. In both cases, axioms (AN) and (SR) then ensure that

π ({i} , x) > π ({k} , x); by axiom (WC), it follows that π (W , x) >
π (L, x), hence y K x. �

Lemma 9. When n = 3 and π satisfies axioms (AN) and (RE), if the
extremal set is non-empty and x > 0 lies in Bi

\

E i

∪

b̄i


, then
x ∈ D


E i

.

Proof. First consider the case in which x lies in M i
\

E i

∪

b̄i


,
so that agent i is indifferent between allocation x and those in E i.
As x ≠ b̄i let, without loss of generality, xj > xk, so that, by axiom
(AN), π ({j} , x) > π ({k} , x). This, in turn, implies eij K x, which
establishes the result.

The remaining case to consider is that in which x lies in Bi
\

M i
∪

b̄i


. Consider this in two subcases:

1. x ∈ Bi
+

\

M i

∪

b̄i


. The set of agents preferring eij to x there-
fore includes i (by definition of M i) and at least one other (by
Lemma 6). As x ∈ Bi

+
, xi > max


xj, xk


so that π ({i} , x) >

π


argmax

xj, xk


, x

. By axiom (WC), eij K x.

2. x ∈ Bi
\

Bi

+
∪ M i

∪

b̄i


. Without loss of generality, this im-
plies that

eiji > xi = xj > xk > 0,

with the first inequality owing to eij ∈ M i
∌ x, the equality

(without loss of generality) to x ∉ Bi
+
, the second inequality

to x ≠ b̄i and the final to x > 0. Then the set of agents pre-
ferring eij to x includes i and, by Lemma 6, at least one other;
in the worst case, this is k. As xk > 0 and axiom (RE) holds,
π ({i, k} , x) > π ({i} , x) = π ({j} , x) so that eij K x. �

Proof of Lemma 7. Without loss of generality, let xi ≥ yi. Then,
under the stated conditions, for any two x and y:
1. xi > yi, implies x K y (by Lemma 8); and
2. xi = yi and xj > yj, implies x K y (by axiom (AN), applied as in

Lemma 9).
3. xi = yi and xj = yj, implies x = y.
Thus, K completely orders allocations in the stated domain. �

Finally, define

S i ≡ E i
∪


b̄i
∩ M i . (9)

Theorem 5. Let n = 3, and π satisfy axioms (AN) and (RE). When
the extremal set is non-empty, the unique stable set to exist on
Bi

+
∪ E i


is S i; otherwise, if the extremal set is empty, there is no sta-

ble set on Bi
+
.

By contrast to the other conditions in Algorithm 2, we do not
have a computable condition that characterises the extremal set’s
non-emptiness, E i

≠ ∅. Such a condition would depend on the
properties of M i which, in turn, depends on the global properties
of Bi. As even basic operations (e.g. computing the set of zeros)
rapidly fail to have closed form solutions in even well-behaved
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functions (e.g. polynomials), we suspect that a computable char-
acterisation is impossible, and that even sufficient conditions for
non-emptiness will be extremely restrictive. In practice, this may
not be much of an impediment: computing stable sets requires
computing Bi, which then allows determination of whether E i

= ∅

on a case-by-case basis.

Proof of Theorem 5. If eij ≠ b̄i, then it belongs to

Bi

+
∪ E i


such

that xj > xk. As eij ∈ M i, it must also be that eiji ≥ xi for all other
x in this set. When this inequality is strict, eij is the set’s maximal
element by the first case of Lemma 7; otherwise, as eij ∈ E i, the
second case makes eij the maximal element. In either case, it is the
unique stable set on the set; otherwise, the set has no stable set on
it (von Neumann and Morgenstern, 1953, Section 65.4.2).

When E i
=

b̄i

, the same reasoning applies to eij over


Bi

+
∪ E i


such that xj ≥ xk. Otherwise, if E i

≠

b̄i

, consider the restriction

of

Bi

+
∪ E i


to xj = xk, the singleton, b̄i.When b̄i exists, it is trivially

the unique stable set on itself.
Finally, as neither eij K eik nor the reverse, both must belong to

any stable set on

Bi

+
∪ E i


; b̄i will also belong to any stable set on

Bi
+

∪ E i

iff b̄i

∈ M i as it will, otherwise, belong to D

E i

. �

The proof may be compared to that by Jordan (2006a, Proposi-
tion 4.6), which established non-existence of a stable set for the
Cobb–Douglas power function, πc , and the SIN power function
when v ∈ (0, 1).26 In that case, the proof demonstrated that any
stable set that might exist was infinite, a contradiction; the proof
here establishes a complete ordering over Bi

+
∪ E i.

4.2.1. Stable sets when K ≠ ∅, E i
= ∅

The first casewe consider is that of a non-empty core, but empty
extremal set. The main result of this section is Theorem 6, which
proves that no stable set exists in this case, justifying Algorithm 2’s
if E i

= ∅ then block.
First, though:

Lemma 10. Let S i be the unique stable set on

Bi

+
∪ E i


. If the core is

non-empty, x ∈ S i, π satisfies axioms (AN) and (CX), and y K x then
y ∈ D


t i

.

Proof. As x ∈ S i it is also in Bi. If y K x then one of the following
three disjoint cases applies:
1. yi > xi so that, by axiom (SR),π ({i} , y) > π ({i} , x). As x ∈ S i it

is also in M i. Therefore, it cannot be that π ({i} , y) = π({j, k} ,
y) as then y ∈ Bi with yi > xi, so that x ∉ M i, a contradiction.
If π ({i} , y) > π ({j, k} , y) then y ∈ D


t i

, the desired result.

Finally, suppose that π ({i} , y) < π ({j, k} , y); then, as K ≠ ∅,
π

{i} , t i


≥ π


{j, k} , t i


so that axioms (SR) and (CX) guaran-

tee that there exists a z such that 1 ≤ zi > yi and π ({i} , z) =

π ({j, k} , z), again contradicting x ∈ M i.
2. yi = xi and, permuting indices j and k if necessary, yj > xj >

xk > yk. (Without xj > xk, y would not dominate x under axiom
(AN).) As this precludes x = b̄i, it follows from Theorem 5 that
x = eij. It cannot be thatπ ({i} , y) = π ({j, k} , y) as then y is an
element of M i with yj > xj, contradicting the assumption that
x = eij. Finally, π ({i} , y) < π ({j, k} , y) is ruled out by imply-
ing the existence of the same z that yielded the contradiction in
the previous case.

3. yi < xi. As x ∈ Bi, π ({i} , x) = π ({j, k} , x), so that y K̸ x, a
contradiction. �

26 There, the allocations indexed by λ defined a generalised version of Bi . The
present lemma is obviously more restrictive insofar as it only applies to the n = 3
case, but more general in applying to a broader class of power functions.
We now have the basis for Algorithm 2’s if E i
= ∅ then block:

Theorem 6. If n = 3, π satisfies axioms (AN), (CX) and (RE), and
the core and extremal set are non-empty, then any stable set, S, must
contain S i, as defined in Eq. (9). If the extremal set is empty, no stable
set exists on X.

Proof. By assumption, Bi
+
∪E i is non-empty. By Theorem5, S i is the

unique stable set on it. Finally, as t i must belong to S (as E1
⊆ K ⊆

S), no allocation in D

t i

can belong to S. Lemma 10 then ensures

that including S i is necessary for external stability. If it does not
exist, no stable set can exist on X . This establishes the result. �

4.2.2. Stable sets when K = E1
∪ E2 and E i

≠ ∅

If K , E i
≠ ∅, so that the core and extremal set are non-empty,

then the preceding theorem and general cooperative game theory
imply that both the S i and the core must belong to any stable set.
The set of tyrannical allocations, E1, necessarily belong to a non-
empty core. The set of split allocations, E2, need not though. Each
of the next two subsections treats one of these two cases.

This section contains two results: the next lemma bounds the
difference between Bi and Bi

+
; the main result uses the lemma to

compute the unique stable set under the conditions of this section
(corresponding to lines 7 and 8 of the algorithm).

Lemma 11. When n = 3 and π satisfies axioms (AN) and (RE),
Bi

\ Bi
+

⊆ E2.

Proof. By definition,

Bi
\ Bi

+
=

x ∈ X

xi = max

xj, xk


, π ({i} , x) = π ({j, k} , x)


.

Without loss of generality, let xi = xj ≥ xk. It is immediate that
xi = 0 yields the infeasible x = 0. However, it must be that xk = 0:
otherwise, π ({k} , x) > 0 by axiom (SR) and the non-negativity
normalisation so that, by axiom (RE), π ({j, k} , x) > π ({j} , x);
as axiom (AN) sets π ({i} , x) = π ({j} , x), it would follow that
π ({i} , x) < π ({j, k} , x), preventing x ∈ Bi

\ Bi
+
, a contradiction.

With xi = xj and xk = 0, the result follows from feasibility. �

Theorem 7. If n = 3, π satisfies axioms (AN), (CX) and (RE), the
core is E1

∪ E2, and the extremal set is non-empty, then there exists a
unique stable set, S = E1

∪E2
∪

S i
3
i=1, where S i is defined in Eq. (9).

Proof. By Lemma 11, Bi
\ Bi

+
⊆ E2 under the conditions of the

theorem.
As any stable set must contain the core, it must include the

tyrannical allocations; thus, it cannot includeD

E1

, which is com-

prised of the three

D

t i


=

x ∈


X \ E1

|π ({i} , x) > π ({j, k} , x)

.

Further, as the core includes the split E2, no stable set can include
D

E2

, comprised of the three

D

sjk


=

x ∈


X \


E1

∪ E2
|π ({i} , x) < π ({j, k} , x)


.

Finally, any x such that π ({i} , x) = π ({j, k} , x), belong to Bi. As,
by Theorem 5, the S i are the unique stable sets on Bi

\

Bi

+
∪ E i


⊆

Bi
\ Bi

+
, which, by Lemma 11, are subsets of E2, the remaining al-

locations in X are forced to either belong to S or are necessarily
excluded. �

4.2.3. Stable sets when K = E1 and E i
≠ ∅

The final case to consider is that of the small core, K = E1 and
the non-empty extremal set. As the sjk do not belong to the core,
this corresponds to the else clause in line 9 of Algorithm 2. The sec-
tion’s main result is Theorem 9, which presents the unique stable
set under these conditions—corresponding to line 10 in the algo-
rithm.
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The preliminary results used to establish the main theorem are
Theorem 8 (which modifies the three agent version of the unique-
ness result of Jordan and Obadia, 2004), Lemma 12 (which estab-
lishes that,whenE2 is not in the core, it dominated by allocations in
S i
3
i=1), and Lemma 13 (which establishes that certain allocations

are undominated by the core and the allocations stable on the S i).

Theorem 8. For the anonymous, n = 3 SIN pillage game with v = 1,
the unique stable set is S = E1

∪ E2.

Proof. It is immediate that the core consists of the tyrannical
allocations, K = E1, so that

U (K) =

x ∈ X

x > 0 ∪ x ∈ E2  .

Adding E2 to the core produces the stable set in the theorem’s
statement.

To establish uniqueness, recall that, for v > 1, Jordan and Oba-
dia (2004, Theorem 3.4) proved that E2 is the unique stable set
on X . Two steps are required to extend their result to the case of
v = 1. First dominance on X when v > 1 is equivalent to domi-
nance on U


E1

when v = 1: for any y, x,W ≡ {i |yi > xi } and

L

j
yj < xj


, y K x iff either:

1. ∥W∥ = 2 > ∥L∥ = 1, or
2. ∥W∥ = ∥L∥ = 1 such that xi > xj.

Second, the geometry of U

E1

must allow the arguments used

on X by Jordan and Obadia (2004). This is ensured by replacing Jor-
dan andObadia’s

 3
4 , 0,

1
4


with

 3
4 , ε,

1
4 − ε


for small ε > 0. Thus,

E2 is the unique candidate for addition to the core, E1, when v = 1;
as E1

∪ E2 is stable, the result follows. �

The previous theorem’s reasoning is used to establish the al-
gorithm’s line 10, albeit on a restricted domain within X . Under
Theorem 9’s conditions, dominance over this restricted domain is
similar to that over the full domain of the three agent majority
pillage game considered by Jordan and Obadia (2004), again es-
tablishing uniqueness. Whereas the original domain, X , is a closed
triangle, the restricted domain is open:

X− ≡

x ∈ X

x1 > e211, x2 > e322, x3 > e133

.

Define also the averages,

ajk
≡

1
2


eji + eki


, and

A ≡

a12, a13, a23 .

Thus, if E is empty, so is A. Equally, X− may be empty. As the ajk are
the midpoints of the edges of the closure of X−, they are undomi-
nated by allocations in E i.

The next two lemmas establish some dominance relationships
that will be used to establish Theorem 9:

Lemma 12. If n = 3, π satisfies axioms (AN), (CX) and (RE), and
the core and extremal set are non-empty, then E2

⊂ K ∪D


S i
3
i=1


.

Proof. If E2 belongs to the core (which, by Corollary 2, it may), the
result holds directly.

Now assume that E2
⊈ K , but is dominated by some allocation,

x. By axiom (AN), refer, without loss of generality, to the dominated
allocation as sjk. Axiom (AN) prevents x K sjk where W = {j} and
L = {k}. Axioms (WC) and (AN) together prevent x K sjk where
W = {j} and L = {i, k}. Similar logic rules out any domination by
an x setting W = {i}.

Thus, if x K sjk, it must be that W = {i, j} and L = {k}. As
dominance depends on coalitions and resources at the original al-
location, any x generating these coalitions will dominate a sjk ∉ K .
A non-core sjk cannot belong to Sk: as the only possible domi-
nating allocations set W = {i, j} and L = {k}, domination would
imply that sjk ∉ Bk, a pre-requisite for membership of Sk.

If sjk ∉ Sk, then it must also not belong to Mk: if it did, it would
belong to Ek, as it is extremal, and therefore to Sk. Thus, by not
belonging to Mk, it is dominated by any x ∈ Sk, which each set
W = {i, j} and L = {k}. �

Lemma 13. If n = 3, π satisfies axioms (AN), (CX) and (RE), and
the core and extremal sets are both non-empty, then A∪X− ⊂ U


E1

∪
S i
3
i=1


, where S i is defined as in Eq. (9).

Proof. First show that A ⊂ U

E1

: defineW ≡


h
ekjh > aikh


and

L ≡


h
ajkh > ekjh


so that W = {k} and L = {i}. By Lemma 6

and axiom (WR) it follows thatπ

W , aik


< π


I \ W , aik


, so that

aik
∉ D


ekj

; comparing aikh to tkh expands L to {i, j} so that, by axiom

(WC), aik
∉ D


tk

either. Repeating this calculationwith permuted

indices establishes the result.
Proving that A ⊂ U


S i
3
i=1


is similar: repeat the above, now

comparing aikh to the remaining possible elements of S i, namely b̄kh
and ekih. In both cases, W = {k} and L = {i, j}. Thus, as above,
aik

∉ D

Sk

. Again, permuting the indices yields the result.

Finally, the above may be repeated to show that X− ⊂ U

E1


and X− ⊂ U


S i
3
i=1


. In all cases, the leading cases produce

W = {k} and L = {i, j}. �

Our final result is therefore:

Theorem 9. If n = 3, π satisfies axioms (AN), (CX) and (RE), the
core is E1, and the extremal set E i is non-empty, then there exists a
unique stable set, S = E1

∪

S i
3
i=1 ∪ A, where S i is defined in Eq. (9).

Proof. The core must belong to any stable set; by Theorem 5, so
must


S i
3
i=1. This excludes D


E1

and D


S i
3
i=1


. The remaining

allocations to consider are:

1. E2: by Lemma 12, these belong to D


S i
3
i=1


, so are excluded.

2. A ∪ X−: by Lemma 13, these are undominated by E1
∪

S i
3
i=1.

Applying the steps used in the proof of Theorem 8 to extend
Jordan and Obadia (2004, Theorem 3.4) to Xi establishes that P
is the unique stable set on X− ∪ A. �

4.2.4. A tight bound on the cardinality of stable sets
Collectively, the results presented above bound the number of

elements in any stable set for a three agent pillage game satisfying
the additional axioms:

Theorem 10. When n = 3, and π satisfies axioms (AN), (CX) and
(RE), if a stable set, S, exists, then ∥S∥ ≤ 15.

Proof. The preceding establishes that Algorithm2 provides a com-
plete classification of stable sets for n = 3 pillage games satisfy-
ing additional axioms (AN), (CX) and (RE). The largest stable set for
such gamesmay be found directly by counting the allocations aris-
ing from each of the cases. The case of an empty core yields a stable
set containing only three allocations. When the core is non-empty,
the three tyrannical allocation belong to S; each S i contributes up to
three more; finally, either E2 or A can contribute up to three more
allocations. �

This bound improves enormously on the finite bound by Jor-
dan (2006a), Kerber and Rowat’s Ramsey bound, and the doubly
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exponential bound by Saxton (2011). The first two of those bounds
derived implications of axiom (SR) alone; the last also took axiom
(WC) into account. Further, the bound is tight. Setting k = 9 in
the sinusoidal power functions defined by Eq. (4), yields – by Theo-
rem9– E1

∪E2
∪

S i
3
i=1, as its unique stable set; as each S i contains

distinct eij and eik as well as a b̄i, ∥S∥ = 15.

5. Examples

This section presents two examples that help to illustrate or ex-
pand upon points made in the body of the paper’s analysis, above.

First we analyse the power function cited as exemplifying line
10 of Algorithm 2:

Example 1. Let

π (C, x) =


i∈C

√
xi + v


where v ∈ (0, 1). Now the conditions in both lines 1 and 7 of the
algorithm are failed, so that line 10 returns the unique stable set,
S = E1

∪

b̄1, b̄2, b̄3


∪ A, where each b̄i

= S i ∈

b̄1, b̄2, b̄3


implicitly solves


b̄ii =


2

1 − b̄ii


+ v and b̄ij = b̄ik, and A is

1+qii
4 ,

1+qii
4 ,

1−qii
2


and its permutations.

The next example shows that axiom (CX) is necessary for the
proof of Lemma 10: when it is violated, a y ∉ D


t i

may be found

to dominate x ∈ Bi:

Example 2. Consider a discontinuous version of SIN, so that

π (C, x) ≡


i∈C


1
2
xi + v if xi ≤

1 − v

2
xi + v otherwise

 ; (10)

where v ∈
 1
7 , 1


. The existence of Bi requires that xi > 1−v

2 ≥

xj, xk:

Bi
=


x ∈ X

xi =
1 + 2v

3
,max


xj, xk


≤

1 − v

2


.

Thus, if depicted in the simplex, Bi is a line that stops short of the
edges. As xi remains constant over Bi,M i

= Bi
; b̄i sets b̄ii =

1+2v
3

and b̄ij = b̄ik =
1−v
3 ; finally, E i

=

eij, e

i
k


, where eij sets e

i
ji =

1+2v
3 ,

eijj =
1−v
2 and eijk =

1−v
6 . There is therefore a y ∈ D


sjk

with

yi = eiji and yj > eijj such that y K x for any x ∈ Bi with xi = eiji and
xj > xk.

While Lemma 10 therefore does not apply to this example,

E1
∪ E2

∪

b̄1, b̄2, b̄3

∪ E

is, nonetheless, stable.

6. Discussion

The paper’s main result is that, when a stable set exists in an
n = 3 pillage game satisfying axioms (AN), (CX) and (RE), it is
unique and contains no more than 15 allocations, a tight bound.
Furthermore, the paper presents an algorithm for deciding and
deriving stable sets which is fully computational in all but one
step, namely the determination of whether E i

= ∅. We think that
progress on converting this into a computational step is likely to
require more structure than that which we impose. We also note
that the algorithm implies that any two pillage games satisfying
its conditions and sharing a Bi share a stable set, if they have one:
the common Bi ensures that they both pass or fail the conditions in
lines 1, 4 and 7 in the sameway; the elements of the ensuing stable
sets, if they exist, depend entirely on the geometry of the shared Bi.

By contrastwith the cardinality boundderived for pillage games
here, for n = 3 CF games, the best known class of cooperative
games, ‘‘stable sets are typically not unique’’, but existence is guar-
anteed (Lucas, 1992, pp. 562–563).

To understand reasons for this difference, consider some x in
a CF game. An infinite subset of the allocations near x may be in-
comparable, in the sense that neither x K y nor y K x (q.v. Lucas,
1992, Examples 3, 4), allowing construction of infinite stable sets.
In pillage games, where power dependsmonotonically on resource
holdings, the domain of this incomparability is reduced. This re-
duced domain also seems responsible for the finitude of stable sets
in pillage games. Indeed, as Lucas (1992) notes, only one n = 3 CF
game has a finite stable set, namely the majority game in which
y K x iff two agents prefer y to x. In this case, the regions of in-
comparability are 1-dimensional curves in the simplex, which still
admit a family of infinite stable sets.27

The paper provides guidance on handling the n > 3 case as
well: there may be a D


t i

region around each t i, separated from

the rest of X by a Bi. Analysis of D

t i

and Bi likely proceeds as in

the n = 3 case. On the other side of the Bi, the game will again
be equivalent to the SIN game with v > 1, for which few results
are known (Jordan and Obadia, 2004). Thus, progress in analysing
n > 3 pillage games likely depends on progress in analysing these
SIN games.

Relaxing the anonymity axiom is likely an easier extension of
the current analysis.28 Success in doing sowill ease empirical appli-
cations of the theory: natural applications include the three-player,
empty-core version (Straffin, 1993) of the ten-player problem
of how to launch and share communications satellites (McDon-
ald, 1977), or the Hellman and Wasserman (2011) dataset on eq-
uity divisions in over 500 new ventures, many of them with three
founders.
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