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ABSTRACT 

Background: Urinary incontinence remains an important clinical problem 

worldwide, having a significant socio-economic, psychological and medical 

burden. Maintaining urinary continence and coordinating micturition are 

complex processes relying on interaction between somatic and visceral 

elements, moderated by learned behavior. Urinary viscera and pelvic floor 

must interact with higher centers to ensure a functionally competent system. 

This article aims to describe the relevant anatomy and neuronal pathways 

involved in the maintenance of urinary continence and micturition.  

Methods: Review of relevant literature was carried out focusing on the 

anatomy of the pelvic floor and urinary sphincters, and on the neuroanatomy 

of urinary continence and micturition. Data obtained from both live and 

cadaveric human studies are included. 

Results: The stretch during bladder filling is believed to cause release of 

urothelial chemical mediators, which in turn activates afferent nerves and 

myofibroblasts in the muscosal and submucosal layers respectively, thereby 

relaying sensation of bladder fullness. The internal urethral sphincter is 
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continuous with the detrusor muscle, but its arrangement is variable. The 

external urethral sphincter blends with fibers of the levator ani muscle. 

Executive decisions about micturition in humans rely on a complex mechanism 

involving communication between several cerebral centers and primitive sacral 

spinal reflexes. The pudendal nerve is most commonly damaged in females at 

the level of the sacrospinous ligament.  

Conclusion: We describe the pelvic anatomy and relevant neuroanatomy 

involved in maintaining urinary continence and in allowing micturition, 

subsequently highlighting the anatomical basis of urinary incontinence. 

Comprehensive anatomical understanding is important for appropriate 

medical and surgical management of affected patients, and helps guide 

development of future therapies. 

KEY WORDS: levator ani; pudendal nerve; urothelium; micturition; urinary 

incontinence 
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INTRODUCTION 

The maintenance of continence and the process of micturition in humans are 

complex mechanisms that rely on normal functioning anatomy and learned 

behavior, and a neurally orchestrated interplay between both (Fowler, 2006). 

Failure of any of these systems, for example through pathology, trauma or 

iatrogenic injury, may result in dramatic lifestyle changes due to its potential 

social, psychological and medical consequences (Minassian et al., 2003; 

Molinuevo and Batista-Miranda, 2012). Urinary incontinence (UI) is a 

worldwide problem that has a higher prevalence in females, particularly in 

individuals above 65 years of age (Perry et al., 2000; Minassian et al., 2003; 

Thirugnanasothy, 2010). In the UK, prevalence of UI in those over 65 years of 

age varies from 5% to 20% in women and 3% to 10% among men (Royal 

College of Physicians, 1995). Appreciation of the anatomy of the pelvic floor 

and its relations to the pelvic components of the urinary system are integral to 

understanding the pathophysiology of UI. This in turn enables provision of 

better operative and non-operative therapies for patients suffering from UI. 
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ANATOMY 

Endopelvic fascia, the pelvic floor and the perineal body 

Condensations of visceral fascia surrounding the pelvic organs form a dense, 

fibrous connective tissue layer called the endopelvic fascia (also referred to as 

visceral endopelvic fascia) (Raychaudhuri and Cahill, 2008). The endopelvic 

fascia is continuous with the transversalis fascia of the abdomen and the 

parietal pelvic fascia investing the obturator internus, piriformis, levator ani 

and coccygeus muscles (Raychaudhuri and Cahill, 2008). The endopelvic fascia 

attaches to each arcus tendineus fascia pelvis laterally. The arcus tendineus 

fascia pelvis can be seen running from the pubic bone ventrally to the ischial 

spine dorsally. The fascia helps to suspend the urinary bladder neck and 

urethra on the anterior vaginal wall – the basis of the hammock hypothesis 

(DeLancey, 1994a). Additionally, the fascia stabilizes the organs in position 

above the levator ani.  

 

The levator ani and coccygeus (also called ischiococcygeus) muscles form the 

lower limit of the true pelvis, referred to as the pelvic diaphragm. Three groups 
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of muscles form the levator ani, the main muscle of the pelvic floor: (i) 

iliococcygeus,  (ii) pubococcygeus , which is considered to have three divisions 

as outlined in Table 1, (iii) puborectalis (Ashton-Miller and DeLancey, 2007). 

Collectively, peripheral attachments of the levator ani muscle include the body 

of the pubic bone, the ischial spine and arcus tendineus fascia pelvis 

(Bharucha, 2006). 

 

Table 1: Differences in nomenclature between males and females of the three 

divisions of pubococcygeus muscle (Ashton-Miller and DeLancey, 2007; Yavagal 

et al., 2011; Molinuevo et al., 2012). 

 

Within the anterior portion of the levator ani is an opening called the 

urogenital hiatus through which only the urethra passes in the male, whereas 

both the urethra and vagina pass in the female. The urogenital hiatus is 

bounded ventrally by the pubic bone and levator ani, and dorsally by the 

perineal body (Ashton-Miller and DeLancey, 2007). The perineal body is a 

connective structure into which the levator ani, superficial transverse perineal 
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muscles and perineal membrane attach (Yavagal et al., 2011). Clinically 

important functions of the perineal body are summarized in Box 1 (Woodman 

and Graney, 2002).  

 

Compression of the urethra against the pubic bone and compression of the 

distal vagina against the posterior wall of the urethra is achieved by closure of 

the urogenital hiatus as a result of the normal baseline activity of the levator 

ani muscle. Further compression of the mid-urethra, distal vagina and rectum 

can be achieved by maximal voluntary contraction of puborectalis and 

pubococcygeal muscles (Ashton-Miller and DeLancey, 2007). 

 

Box 1: Summary of the clinically important functions of the perineal body. 

 

Bladder 

The urinary bladder is a reservoir, which when empty lies entirely within the 

true pelvis and adopts a tetrahedral shape. Upon filling, the bladder rises 
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anterosuperiorly into the abdominal cavity towards its apex, from where the 

median umbilical ligament (urachus) arises. The base of the bladder is located 

posteroinferiorly and is triangular in shape. Each ureter forms the 

superolateral angle of the triangular base, while the internal urethral orifice 

forms the anteroinferior angle. This triangle, within the base of the bladder, is 

referred to as the trigone and can be seen on cystoscopy. Its smooth 

appearance is attributed to the lack of trabeculations, seen in the bladder 

mucosa elsewhere (Standring, 2008). 

 

Fat in the retropubic space of Retzius separates the anterior surface of the 

bladder from the pubic symphysis. The superior surface of the bladder is 

covered by peritoneum which extends slightly on to the base and into the 

rectovesical pouch in males. However, in females, the peritoneum covers the 

superior surface of the bladder but is then reflected posteriorly onto the 

uterus to form the vesicouterine pouch anteriorly and rectouterine pouch of 

Douglas posteriorly. Each of the two inferolateral surfaces of the bladder is 

related anteriorly to the pubis and puboprostatic ligaments in males and to the 

pubis and pubovesical ligaments in females (Standring, 2008). 
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Histologically, the bladder wall is composed of the mucosal layer, the 

muscularis propria and the adventitia or serosa. Urinary bladder mucosa 

consists of the urothelium, a basement membrane and the lamina propria. 

Urothelium is a stratified epithelium lining the urinary tract between the renal 

calices and the urinary bladder, including the upper urethra and glandular 

ducts of the prostate (Birder, 2013). The urothelium is composed of at least 

three layers – a basal cell layer, an intermediate layer and an apical layer of 

‘umbrella’ cells. The urothelium has several functions : (i) as a barrier to 

infections and molecules,  (ii) in the release of signaling molecules (signaling 

role) and, (iii) in activating sensory neurons in response to physiological and 

chemical stimuli (transducer role) (Birder and de Groat, 2007). 

 

The lamina propria lies between the urothelial basement membrane and the 

more peripheral detrusor muscle. It is composed of several types of cells 

including the fibroblasts, sensory nerve endings and myofibroblasts (also 

referred to as interstitial cells) (Birder, 2013). Based on their location within 
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the bladder wall, several subgroups of interstitial cells have been identified 

(McCloskey, 2013). Interstitial cells of the lamina propria are stellate in shape 

and have been found to be linked extensively by gap junctions (Sui et al., 

2002). Detrusor interstitial cells are elongated non-networked cells arranged in 

circular, longitudinal and oblique orientation, on the boundary of smooth 

muscle bundles (McCloskey, 2013). Interbundle stellate-shaped interstitial 

cells, within the interstitial spaces between the detrusor bundles, form regions 

of interconnected cells close to nerves. Finally, perivascular interstitial cells 

have been identified on the periphery of small mucosal vessels in the bladder 

wall (McCloskey, 2013). 

 

It is thought that interstitial cells play an amplification role in the sensory 

response to bladder-wall stretch, as occurs during bladder filling (Fry et al., 

2007). A dense nexus of sensory nerves lies in close proximity to the 

suburothelial layer of interstitial cells (Gosling and Dixon, 1974). Two major 

subtypes of afferent nerve fibers are Aδ (myelinated) and C (unmyelinated) 

fibers. The Aδ fibers are distributed mainly within the detrusor smooth muscle 

and are responsive to detrusor stretch during bladder filling. The C fibers are 
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more widespread and are distributed within the lamina propria in close 

proximity to the urothelium (Fowler et al., 2008). C fibers are believed to have 

a higher threshold for activation (de Groat and Yoshimura, 2010) and are 

thought to be involved in sensing noxious stimuli (Habler et al., 1990).  

 

Urothelial cells are specialized to detect both physical and chemical stimuli. 

This transducer role of the urothelium is enhanced by the close proximity to 

the urothelium of afferent and autonomic neurons (Jen et al., 1995; Grol et al., 

2008). Studies have shown the secretion of transmitters or mediators such as 

ATP (Ferguson et al., 1997; Wang et al., 2005), acetylcholine (Kullmann et al., 

2008), prostaglandins (Downie and Karmazyn, 1984), nitric oxide (Birder et al., 

1998) and cytokines (Wood et al., 2012) from the urothelium. The mechanism 

underlying the release of these chemical mediators remains unclear. 

Additionally, it is still not known whether different layers of the urothelium are 

responsible for secreting different mediators (Birder, 2011). The variety of 

transmitters and mediators, released in part by the urothelium, can activate 

the nerve plexi (Birder et al., 2010). The suburothelial nerve plexus is 

particularly prominent at the bladder neck but is relatively sparse at the dome 
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of the bladder (Gabella and Davis, 1998). This pattern of distribution is thought 

to be important in the non-painful sensation of bladder fullness and emptying, 

and in pain sensation. 

 

It is thus believed that the stretching associated with bladder filling causes a 

release of chemical mediators from the urothelium, which in turn activates 

afferent nerves and myofibroblasts in the muscosal and submucosal layers 

respectively, thereby relaying the sensation of bladder fullness (Fry et al., 

2004). 

 

URETHRAL SPHINCTERS 

Internal urethral sphincter (IUS) 

At the level of the bladder neck, the IUS surrounds the proximal urethra and is 

seen as a continuation of the detrusor smooth muscle, thereby favouring 

proximal urethral closure by constricting its lumen (Ashton-Miller and 

DeLancey, 2007). Smooth muscle fibers within the IUS are orientated in a 
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horse-shoe shaped arrangement, but Wallner et al., (2009) described the 

superior part of the urethra to have a completely circular arrangement of 

smooth muscle. Layers of striated muscle, arranged in a circular configuration 

and thought to be derived from levator ani, surround the smooth muscle layer 

of the IUS in the mid-portion of the urethra (Ashton-Miller and DeLancey, 

2007; Jung et al., 2012). The IUS is innervated by the sympathetic nervous 

system, and is therefore under involuntary control. 

 

External urethral sphincter (EUS) 

Skeletal muscle, derived from the inner fibers of the levator ani muscle, 

surrounds the urethra as it traverses the deep perineal pouch thus forming the 

EUS. In males, the EUS covers the inferior aspect of the prostate and is located 

at the level of the membranous urethra (Jung et al., 2012) where fibers are 

oriented in a horse-shoe shape and without anatomical fixation to the levator 

ani muscle. This implies that voluntary closure of the urethra in males is 

executed by the EUS alone, without any involvement of the levator ani muscle 
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(Yucel and Baskin, 2004). The EUS is under voluntary control via the pudendal 

nerve. 

In females, the EUS begins at the inferior end of the bladder and includes (i) 

the sphincter urethrae muscle, (ii) the compressor urethrae muscle, and (iii) 

the urethrovaginal sphincter (Macura and Genadry, 2008; Jung et al., 2012). 

Dorsolateral extensions of the inferior portion of the sphincter urethrae 

muscle are continuous with compressor urethrae muscle, whose contraction 

causes compression of the ventral part of urethra. The urethrovaginal 

sphincter is a thin, broad and flat muscle. As the inferior portion of EUS, the 

urethrovaginal sphincter encircles both the anterolateral parts of urethra and 

lateral aspect of vagina (Jung et al., 2012). Based on their findings from fetal 

pelvises, Wallner et al., (2009) proposed the following urethral closure 

mechanism in females: (i) the contraction of the levator ani muscle compresses 

the vagina against the posterior urethra above the level of EUS, (ii) the 

simultaneous contraction of EUS and levator ani muscle induces an anteriorly 

convex bend in the midurethra, (iii) the contraction of the inferior part of the 

EUS induces a posteroinferor force on the urethra as a result of a tendinous 

connection between the inferior part of EUS and the puborectalis portion of 
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levator ani (Wallner et al., 2009). Histological (Sebe et al., 2005) and magnetic 

resonance imaging (Macura and Genadry, 2008) studies have demonstrated 

the smooth muscle component of the IUS and the striated muscle component 

of the EUS to be maximally thick in the middle third of the urethra, therefore 

forming the true annular sphincter surrounding the urethra. 

  

NEURONAL INNERVATION 

Autonomic 

Sympathetic innervation of the bladder and IUS originate as preganglionic 

neurons from the thoracolumbar segments T10 – L2. They traverse the 

paravertebral sympathetic chain bilaterally to join the pre-aortic plexuses. 

These preganglionic neurons ultimately converge on the superior hypogastric 

plexus, either via the aortic plexus in the case of the least splanchnic nerve 

from T12, or the inferior mesenteric plexus in the case of the lumbar 

splanchnic nerves from L1-L2. The superior hypogastric plexus is located in the 

midline at the level of the bifurcation of the aorta and above the sacral 

promontory. Along their course, the majority of these neurons will have 
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synapsed with their postganglionic sympathetic counterparts, which descend 

from the superior hypogastric plexus to the right and left inferior hypogastric 

plexuses via their respective hypogastric nerve. Preganglionic parasympathetic 

fibers from the pelvic splanchnic nerves, coursing from the ventral rami of S2-

S4, join company with the sympathetic nerve fibers to form the inferior 

hypogastric plexuses. The inferior hypogastric plexuses are located 

posterolateral to the urinary bladder, and give rise to vesical, prostatic, 

uterovaginal and rectal plexuses that innervate the bladder, prostate, uterus, 

vagina and rectum respectively (Bharucha, 2006; Standring, 2008). 

 

Visceral afferent fibers from the bladder are carried within the hypogastric and 

pelvic nerves to the dorsal root ganglia of the corresponding lumbosacral 

segments (Standring, 2008). Afferent nerve pathways provide input into the 

reflex circuits that control bladder filling and emptying. Additionally, afferent 

nerves are the source of non-painful sensations of bladder fullness (de Groat, 

2006; Birder, 2013). 
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Somatic 

Cholinergic motor innervation to the striated muscle fibers of the EUS is 

derived mainly from the pudendal nerve, whose cell bodies are located within 

spinal segments S2-S4. Cell bodies of the pudendal nerve motor neurons are 

located in Onuf’s nucleus – first identified as nucleus X located anteromedial to 

the anterolateral nucleus and extending between the distal part of S1 and the 

proximal part of S3 (Pullen et al., 1997). The ventral rami of sacral spinal nerves 

S2 – S4 give rise to the pudendal nerve, which is formed at the upper border of 

the sacrotuberous ligament. The pudendal nerve leaves the pelvis via the 

greater sciatic foramen to enter the gluteal region. It crosses the sacrospinous 

ligament close to its attachment with the ischial spine and then courses 

posterior to the ischial spine to enter the gluteal region. From here on, the 

pudendal nerve is susceptible to compression, descent and stretch during 

vaginal childbirth as it continues to course anteriorly within the pudendal canal 

(of Alcock). The inferior rectal, perineal and posterior scrotal nerves are 

branches of the pudendal nerve. Apart from somatic motor innervation to the 

EUS, the perineal nerve also supplies sensory and motor input to the following 

muscles within the pelvic floor and deep perineal pouch: transverse perinei, 
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bulbospongiosus, ischiocavernosus, anterior part of external anal sphincter and 

levator ani (Bharucha, 2006). The inferior rectal nerve is the main motor supply 

to the external anal sphincter (Shafik, 2000).  

 

Figure 1: Neuronal innervation of the urinary bladder. 

 

MAINTENANCE OF CONTINENCE 

Continence can only be maintained if mechanisms that cause the intra-urethral 

closure pressure to exceed urinary bladder (intravesical) pressure are 

functioning normally, both at rest and during times of raised intra-abdominal 

pressure (Allen and Keane, 2005). This involves integration of complex 

neuronal input (outlined below) into the anatomical components described 

above. 
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MICTURITION 

The elimination of urine after forming at the renal collecting ducts involves two 

phases; the storage phase – where the urinary bladder acts a reservoir for the 

collection of urine – followed by the voiding phase, which is initiated once a 

bladder threshold volume of urine is reached. Both phases are controlled by 

reflex mechanisms within the autonomic and somatic nervous systems. The 

process of micturition is also influenced by supraspinal central nervous system 

input mechanisms, which are discussed below (Drake et al., 2010). 

 

During bladder filling, stretch-sensitive mechanoreceptors in the bladder wall 

are activated. First-order visceral afferent neurons convey sensory information, 

via the pelvic nerves, to a cell group in the lateral dorsal horn and lateral part 

of the intermediate zone within the sacral spinal cord termed Gert’s nucleus 

(Holstege, 2005; Holstege, 2010). Through complex interneuron circuitry 

within the spinal cord, parasympathetic innervation of the detrusor is inhibited 

(Fig. 2). Supraspinal input ensures that the voiding reflex remains under 

voluntary control as the decision to void is based on a combination of 



Continence and Micturition: An anatomical basis 

 

20 

 

emotional, social and visceral sensation factors (Fowler et al., 2008). Therefore, 

to maintain continence, simultaneous stimulation of the pudendal nerve to the 

EUS and sympathetic activity to the bladder neck and IUS via the hypogastric 

nerve occurs (Fig. 2). The process of maintaining continence throughout 

bladder filling is called the guarding reflex (Park et al., 1997; Fowler, 2006; 

Fowler et al., 2008; Drake et al., 2010). The net effect of the guarding reflex is 

caused by closure of both the IUS and EUS and prevention of bladder 

contraction. 

 

From Gert’s nucleus, second-order afferent fibers ascend within the fasciculus 

gracilis to relay sensory information pertaining to bladder filling to the 

midbrain periaqueductal gray (PAG) matter (Kavia et al., 2005; Griffiths and 

Tadic, 2008), where third-order neurons originate. Higher centers such as the 

insula, thalamus, anterior cingulate gyrus (ACG) and prefrontal cortices have 

multiple connections with the PAG. Together, these higher centers determine 

the temporal and social appropriateness for micturition to occur (Fowler, 

2006). Bladder afferents received by PAG are relayed onto the insula – often 

referred to as the sensory cortex of the autonomic nervous system (Drake et 
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al., 2010). The insula and ACG have shown increased signal activation on brain 

functional imaging, particularly during bladder filling rather than voiding (Kavia 

et al., 2005). 

 

Figure 2: Neuronal pathways involved in the guarding reflex, thereby 

maintaining continence during bladder filling. 

 

The PAG acts as an interface between the afferent and efferent limbs of 

bladder control circuits. It has main control of the pontine micturition centre 

(PMC), also known as the M-region or Barrington’s nucleus. The PMC is located 

in the dorsal part of the caudal pontine tegmentum, adjacent to the locus 

coerulus (Fowler et al., 2008; Holstege, 2010). The PAG informs the PMC about 

the degree of bladder fullness and mediates higher influences on the PMC such 

that higher centers ensure maintenance of voluntary control of the voiding 

reflex. From the PMC, long fibers descend to the parasympathetic sacral 

bladder motor neurons and to the inhibitory interneurons to Onuf’s nucleus 

(Holstege, 2010). When a critical level of bladder distension is reached, 
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maximal bladder afferent activity within the PAG results in stimulation of the 

PMC (Fig. 3). As a result of this spinobulbospinal reflex, voiding occurs. The 

PMC is therefore regarded as the final efferent nucleus of the micturition 

pathways that co-ordinates inhibition of the sphincters and initiation of 

detrusor contraction. Hence, activity of the PMC needs to be inhibited during 

the bladder filling and storage phases. If the spinobulbospinal reflex were to 

act alone without any input from higher centers, for example in suprapontine 

cerebral lesions or thoracolumbar cord lesions, involuntary voiding would take 

place whenever the bladder volume reached a critical level. It is thought that 

the pre-frontal cortex of the frontal lobe is the seat of planning cognitive 

behaviors, expression of personality and appropriate social behavior (Fowler, 

2006). During functional brain imaging, the pre-frontal cortex was found to be 

activated during both the urine-withholding and voiding phases (Kavia et al., 

2005). It therefore plays a major executive role in deciding whether or not 

micturition occurs, and if so, the appropriate time and place. 

 

Figure 3: Neuronal pathways involved in initiation of micturition. 
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(+) denotes stimulatory effect, (-) denotes inhibitory effect 

 

UNDERSTANDING INCONTINENCE 

Incontinence is defined by the International Continence Society as the 

involuntary loss of urine that is a social or hygienic problem. In females, 

genuine stress incontinence (GSI) remains the major cause of UI. GSI is defined 

as the involuntary loss of urine when the intra-vesical pressure exceeds the 

maximal urethral pressure in the absence of detrusor activity (Abrams et al., 

2002). One possible explanation for GSI is the pressure transmission theory, 

where hypermobility of the bladder neck and urethra as a result of inadequate 

supporting structures causes them to lie below the general level of the pelvic 

floor. Therefore increases in intra-abdominal pressure result in GSI due to 

failure of counteractive pelvic floor and pelvic fascia pressure (Allen and Keane, 

2005). One group has shown that the medial pubovisceral muscle 

(pubococcygeus) undergoes the largest stretch of any levator ani muscle 

during vaginal childbirth (DeLancey et al., 2003; Lien et al., 2004). However, 

studies from other groups have shown stretch-related muscular defects in the 
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puborectalis muscle resulting from vaginal birth (Hoyte et al., 2008; Svabik et 

al., 2009) and caesarean delivery (Novellas et al., 2010). Damage to the 

branches of the pudendal nerves or the pudendal nerve itself close to the 

ischial spine results in levator ani muscle atrophy. The endopelvic fascia and 

suspensory ligaments take over responsibility for pelvic organ support, but 

with time these connective tissue structures stretch leading to pelvic organ 

prolapse  (DeLancey and Ashton-Miller, 2004; Dietz and Lanzarone, 2005; 

Ashton-Miller and DeLancey, 2007). 

 

Detrusor overactivity (DO) is defined by the International Continence Society 

as ‘a bladder shown to contract, spontaneously or on provocation, during 

urodynamic bladder filling while the patient is attempting to inhibit 

micturition’ (Abrams et al., 2002). As described earlier, higher centers inhibit 

the PMC and therefore maintain voluntary control of the voiding reflex (Fig. 3). 

However, an intact spinobulbospinal reflex in the absence of higher centre 

control causes involuntary voiding during bladder filling. Thus, suprapontine 

lesions as a result of vascular, degenerative or neoplastic etiology affecting the 

anterior (frontal) brain or degeneration of the dopaminergic neurons as in 
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Parkinson’s disease result in removal of the tonic inhibitory control over the 

PMC, and thereby DO. However, suprapontine lesions are characterized by an 

intact micturition reflex and therefore symptoms in these patients range from 

UI, urinary retention and DO. Incontinence occurs early in multiple system 

atrophy (MSA), a neurodegenerative disorder characterized by prominent cell 

loss in the pons, descending sympathetic pathways, in the interomediolateral 

cell column and in Onuf’s nucleus, resulting in incomplete bladder emptying, 

open bladder neck (i.e. a patent internal urethral orifice resulting from 

decreased IUS tone) and weakness of the striated urethral sphincter (Fowler, 

2006; Fowler et al., 2008). 

 

In spinal cord injuries occurring rostral to the lumbosacral cord level, voluntary 

and supraspinal control of voiding are blocked. Clinically, complete urinary 

retention is initially noted as a result of an areflexic bladder. This is followed by 

a slow development of automatic micturition and neurogenic DO that is 

mediated by development of spinal reflex pathways (de Groat and Yoshimura, 

2006), eventually resulting in detrusor sphincter dyssynergia (DSD) and a low 

compliance bladder – a urinary bladder that demonstrates large increases in 
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detrusor pressure when filled with a small volume as a result of fibrosis and 

decreased elasticity within the bladder wall (Sand and Ostergard, 1995). The 

International Continence Society defines DSD as ‘a detrusor contraction 

concurrent with an involuntary contraction of the urethral and/or periurethral 

striated muscle.’ (Abrams et al., 2002; Bacsu et al., 2012). Autonomic 

dysreflexia may be a significant problem in patients with lesions above 

vertebral level T6. The urinary bladder is subject to high pressure that can lead 

to damage to the upper urinary tract. Briefly, autonomic dysreflexia results 

from noxious stimuli below the level of spinal cord injury, for example from 

bladder distension. Sensory input from noxious stimuli is carried to the spinal 

cord below the level of the injury, which results in an unopposed sympathetic 

response manifesting with cardiovascular symptoms (Milligan et al., 2012). 

Conus/cauda equine lesions lead to a lower motor neuron-type injury 

characterized by an areflexic, acontractile bladder with urethral sphincter 

weakness, thus leading to stress and overflow UI. The urinary bladder tends to 

be low pressure and therefore no upper urinary tract dilatation is seen. 
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UI in men is a potential complication of radical prostatectomy. Damage to the 

horse-shoe shaped EUS during dissection at the bladder neck may be 

responsible for post-operative UI. Furthermore, the neurovascular structures 

that innervate the IUS and EUS tend to be located posterolaterally and are 

symmetrical on either side of the prostate. These are susceptible to injury 

during radical prostatectomy, despite maximal efforts to carry out nerve-

sparing radical procedures (Stolzenburg et al, 2007; Raychaudhuri and Cahill, 

2008). The maximum urethral closure pressure (MUCP) and functional urethral 

length in men are lower post-radical prostatectomy. Nerve sparing radical 

prostatectomy produces better continence rates, longer functional urethral 

length and improved MUCP. 

 

CONCLUSION 

The levator ani muscle and the endopelvic fascia play an important role in 

supporting the pelvic organs. Damage to these structures, most commonly in 

females during pregnancy and childbirth, may result in pelvic organ prolapse 

and GSI. The neural control of micturition is a complex mechanism, with 
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primitive sacral spinal reflexes communicating with higher centers in the brain, 

allowing humans to make executive decisions about micturition. Pathology 

involving the higher centers can result in UI, while spinal cord injury rostral to 

the lumbosacral cord can result in neurogenic DO. Understanding the 

anatomical basis of continence and micturition enables the development of 

therapies to treat, non-operatively and operatively, pelvic organ prolapse and 

UI resulting from pelvic floor trauma. Furthermore, clinicians can minimize the 

risk of pelvic floor injuries that may occur during childbirth. Most importantly, 

an understanding of the anatomy can aid clinicians in improving significantly 

the quality of life of patients suffering from UI. 
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LEGENDS 

 

Table 1: Differences in nomenclature between males and females of the three 

divisions of pubococcygeus muscle (Ashton-Miller and DeLancey, 2007; Yavagal 

et al., 2011; Molinuevo and Batista-Miranda, 2012). 

 

Box 1: Summary of the clinically important functions of the perineal body. 

 

Figure 1: Neuronal innervation of the urinary bladder. 

 

Figure 2: Neuronal pathways involved in the guarding reflex, thereby 

maintaining continence during bladder filling. 

 

Figure 3: Neuronal pathways involved in initiation of micturition. 

(+) denotes stimulatory effect, (-) denotes inhibitory effect 


