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A method based on a double emulsion system (solid-in-water-in-oil-in-water) has been developed for the
production of nanoparticles-in-microparticles (NIMs). The distribution of nanoparticles within the NIMs
was explored using light and electron microscopy and through assessment of drug loading and release
profiles. The extent of nanoparticle entrapment within the NIMs was found to be dependent on the state
(wet vs. dry) in which the nanoparticles were introduced to the formulation. The technique was readily
adaptable to produce NIMs of different morphologies. It is proposed that NIMs and this method to pro-
duce them have broad application in drug delivery research.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The applications of microparticles and nanoparticles as delivery
vehicles or therapeutic entities are widely described in the litera-
ture. Their combination, for example, as nanoparticle-in-micropar-
ticle (NIM) systems, offers the possibility of dual or multiple
functionalities within a formulation. For example, multiple release
profiles (burst release from outer particles and sustained release
from internal components) and/or combinations of features allow-
ing site specificity, in vivo protection, cellular interactions, imaging
capabilities and embolisation can all be envisaged. In recent exam-
ples, Veiseh et al. proposed multifunctional delivery systems com-
prising both imaging and therapeutic agents, in addition to a
functionalised surface to enhance specific cell interactions [1].
Pouponneau et al. produced a microparticle system that encapsu-
lated magnetic nanoparticles and showed that under the influence
of a magnetic field, the particles could be steered in vitro [2]. An-
other example includes theophylline-loaded NIM suitable for asth-
matic treatment in which Jelvehgari et al. utilised the outer
microparticle as a means to reduce burst release [3].

Various methods have been proposed for the preparation of
NIM systems. Spray drying techniques have been used to produce
NIMs for aerosols [4-7], oral [8,9] and intravitreal formulations
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[10]. Other methods include supercritical fluid techniques [11-
13]. There is, however, little information on how NIMs can be pro-
duced using the standard emulsion techniques that are widely and
conveniently used in the preparation of particles for drug delivery
research. Such methods for preparing single-component particles
(i.e. microparticles or nanoparticles alone) are renowned for their
application to both hydrophilic or hydrophobic drugs and a variety
of polymer systems [14]. Additionally, through modification of
process parameters, characteristics such as particle size distribu-
tion and morphology can be readily altered. While work such as
Jelvehgari et al. [3] provides methodology for NIM formation, there
is little convincing information in the drug delivery literature on
the internal structure of NIMs or the distribution of nanoparticles
therein. Given that this could have profound effects on characteris-
tics such as release profiles or in vivo distribution (e.g. whether
nanoparticles remain internalised or readily ‘escape’) it is impor-
tant to understand the relationship between the production tech-
nique and the structure of the resulting product.

The aim of the work described in this paper was to explore the
production of NIMs using a method based on traditional ‘double
emulsion’ techniques that are conventionally employed to make
drug-loaded microparticles. The distribution of nanoparticles with-
in the resulting NIM formulations was investigated, drawing on
evidence from imaging of the emulsion systems and the final par-
ticle products and also through characterisation of drug loading/re-
lease profiles. As stated earlier, NIMs have the broad range of
potential pharmaceutical uses. In this work, we had the application
of chemoembolisation in mind, where the inner nanoparticles are
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drug delivery vehicles and the outer microparticles act as emboli-
sation agents for cutting off the blood supply to tumours.

2. Materials and methods
2.1. Materials

Poly(e-caprolactone) (PCL), hydrocortisone acetate (HA),
poly(vinyl alcohol) (PVA), SPAN 80 and Nile red were purchased
from Sigma-Aldrich, UK. 50:50 poly(lactic-co-glycolic) acid (PLGA),
isomeric poly(i-lactic acid) (PLLA) and poly(pt-lactic acid) (PDLA)
were purchased from SurModic Pharmaceutical Inc., USA. Dichlo-
romethane (DCM), ethyl acetate (EA), acetonitrile (MeCN), acetone,
fluorescein, sodium acetate (NaOAc), sodium chloride, citric acid,
sodium hydroxide and acetic acid glacial were purchased from
Fisher Scientific, UK.

2.2. Production of drug-loaded nanoparticles

PCL nanoparticles loaded with HA were prepared for the study
as follows: A solution of PCL in acetone (1% w/w) was prepared
to which HA was added, producing a drug-to-polymer mass ratio
of 1:2. 5 mL of the drug/polymer solution was then emulsified in
200 mL of 1% w/w PVA solution. The stirring was continued for
4 h for the particles to solidify. After that, the particles were col-
lected by centrifugation, and the supernatant decanted off. Before
the resultant nanoparticles (N) were further used in the production
of NIMs, they were either resuspended in 1 mL of 1% PVA solution
to produce a slurry of wet nanoparticles (Nsjyrry), Or oven-dried at
40 °C to produce dry nanoparticles (Nggeq). For visualisation stud-
ies, Nile red was used in the place of HA.

2.3. Production of NIMs

Two formulations were produced; NIMs formulated either with
the oven-dried nanoparticles (NIMgreq) Or with the wet slurry
nanoparticles (NIMgjyrry). For the NIMgieq formulation, 40 mg of
Nariea Was homogenised in 0.5 mL of 1% w/w PVA solution ([wq]),
and then homogenised (IKA Ultra-Turrax® T25 Digital homoge-
niser, Janke & Kunkel GMBH & Co. KG., Germany) in 3 mL of 1%
w/w 50:50 PLGA solution dissolved in EA (i.e. [0o]) with 0.02 g of
SPAN 80. The [Ngriea/W1/0] primary emulsion was then added drop-
wise to 200 mL of 0.5% w/w PVA solution (i.e. [w;]) under contin-
uous magnetic stirring to form the double emulsion. The stirring
was continued for 4 h for solvent evaporation and polymer solidi-
fication. Product recovery was by filtration and washing with
600 mL of distilled water. They were then oven-dried at 37 °C
and stored in a dessicator until further analysis. For the NIMgjyrry
formulation, 0.5 mL of the Ny Was used instead of Ngyjed. HA-
loaded microparticles were prepared for comparison with the
NIMs. These were prepared using a similar method to that used
for the NIMs; however, in the absence of nanoparticles 0.015 g of
HA was added directly to the 3 mL [o] phase of 1% w/w PLGA solu-
tion. Their average size was 113 £ 10 pum, with drug loading (see
Section 2.4) of 3.43 + 0.73%. Further studies to investigate how par-
ticle morphology and size could be manipulated were carried out
with PLLA and PDLA (dissolved in DCM). The PLA’s solutions were
incorporated into the [o] phase with PLGA at a PLGA/PLA volume
ratio of 1/2, all polymer solution at 1% w/w.

2.4. Drug loading and in vitro release studies

Drug quantification was achieved using HPLC (Shimadzu HPLC
system equipped with a SCL-10A system controller, LC-10AD
pump, SIL-10AD auto injector, CTO-10A column oven and

SPD-10AV UV detector units) with a Sunfire™ column (C18
3.5um, 4.6 x 100 mm with a guard cartridge (4.6 x 20 mm)
(Waters, UK). The chromatographic conditions were injection vol-
ume =50 pL, flow rate=1.0mL min~!, mobile phase =30/70
MeCN/NaOAc buffer (pH 2.65), and UV detection at i=248 nm.
To determine drug loading, approximately 8—-10 mg of drug-loaded
particles was dissolved in 50 mL of MeCN. Prior to injection, 1 vol-
ume of the sample solution was mixed with 2 volumes of the mo-
bile phase. Drug loading was defined as below:

% drug loading = [amount of drug/total dry particle mass]
x 100% (M

In vitro drug release studies were carried out in a USP Type II
dissolution apparatus. Approximately 8—10 mg of drug-loaded par-
ticles was incubated in 1 L of citric acid buffer (pH 4, in which drug
sink conditions could be readily maintained) at 37 °C and 150 rpm.
Solution sampling was carried out at regular intervals. A 2 mL ali-
quot was collected at each sampling point and replaced with an
equal volume of fresh buffer. Drug concentration was determined
using HPLC (as above).

2.5. Particle characterisation

The particle size distributions of NIMs were measured using la-
ser diffraction particle sizing (Mastersizer 2000, Malvern Instru-
ments, UK) giving overall average from three independent
formulations each measured at least three times (+ standard error
of the mean). Size analysis using photon correlation spectroscopy
(High Performance Particle Sizer, Malvern Instruments, UK)
showed the nanoparticles to be 513 + 46 nm in z-average diameter.
Fluorescent microscopy was carried out using an Axiolab (Carl
Zeiss Ltd.) fluorescence microscope. Confocal imaging was done
using a Carl Zeiss LSM 510 microscope equipped with an argon
photon laser (laser power, 10-75%) with excitation wavelength,
/=488 nm and LP 505 filter. Image viewing and processing were
performed using LSM 510 software.

The morphology of particles was assessed using a Philips XL30
scanning electron microscope. Prior to imaging, the specimens
were mounted on a stub and platinum coated for 3 min using an
EMscope SC 500 sputter coater (Quorum Technologies, UK). Cryo-
fracture SEM to reveal the internal structure of NIMs was per-
formed using a Philips XL30 Environmental Scanning Electron
Microscopy with Field Emission Gun. For specimen preparation, a
suspension of the microparticles in distilled water was placed into
a four well stub specimen holder that then underwent rapid
freezing in liquid nitrogen. The holder was then inserted into the
cryo-preparation chamber attached to the SEM unit, which was
maintained under vacuum at 107> Torr and —180°C. Specimen
fracturing was achieved in situ with a razor slicing through the fro-
zen specimen. The fractured specimen was then gold-coated in situ
for 3 min before being transferred into the imaging chamber for
imaging at a typical acceleration voltage of 3 kV.

3. Results and discussion
3.1. Distribution of nanoparticles within the primary [w;/o] emulsion

The first stage in the production of NIMs is to prepare a stable
primary emulsion [w;/o]. With further processing steps (Sec-
tion 2.3), the aqueous phase [w,] becomes the interior of the par-
ticle and the organic phase [o], the particle wall. The distribution of
nanoparticles within the primary emulsion therefore influences
their ultimate destination in the final NIMs. Fig. 1A and B illus-
trates how the Ngurry had a tendency to accumulate in [w4], which,
as discussed below, appears to have facilitated to their subsequent
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A. Schematic representation of the primary
emulsion comprising the [Ngm,/W1/0] mix.
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B. No surfactant

D. PVA and Span 80

Fig. 1. (A) A schematic illustration of the primary emulsion comprising the [Ngjury/w1/0] mix. (B) Fluorescent microscopy images showing the suspension of slurry
nanoparticles (Ngjyry) in the primary emulsion with no emulsifier. Fluorescein and Nile red were used to stain the PVA [w;] phase and PLGA [o] phase, respectively. (C) Only
PVA and (D) both PVA and SPAN 80 were used in the primary emulsion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

internalisation within the microparticles. In addition to ensuring
such residency of the nanoparticles in the correct phase of the
emulsion, it is also important to ensure proper emulsification of
the immiscible [w;] and [o] phases, so that nanoparticles are dis-
tributed throughout the microparticle population. In Fig. 1C and
D, the importance of the two emulsifiers, PVA and SPAN 80, used
in the primary emulsion can be seen. While PVA will adsorb at
phase interfaces and stabilize emulsions via a steric hindrance ef-
fect [15], the SPAN 80, with a hydrophile-lipophile balance of 4.3,
is important in the formation of the initial water-in-oil emulsion
system [16].

3.2. Distribution of nanoparticles within NIM formulations: NIMsjurry
VS. NIMgyrieq

With reference to Figs. 2 and 3, comparisons between the nano-
particle distribution of NIMgrieq and NIMgyry can be made, the for-
mer being associated with lower nanoparticulate encapsulation.
Indeed for NIMg;ieq, @ Non-entrapped agglomerated mass of nano-
particles was evident around the exterior of the microparticles

Un-entrapped
nanoparticles

when examined under the light microscope (Fig. 2B) and nanopar-
ticles were also seen on the outer surface of microparticles under
the SEM (Fig. 3A). While it is difficult to determine from the confo-
cal microscopy images shown in Fig. 3C and D whether the nano-
particles are within the wall of the microparticles or surface
associated, the intensity of the nanoparticle signal is much stron-
ger in Fig. 3D than for Fig. 3C, indicating better entrapment or im-
proved nanoparticle loading with NIMgjqry-

PCL nanoparticles are known to be hydrophobic [17], which will
naturally hinder their suspension in the internal aqueous phase
[wi]. Given the improved nanoparticle entrapment seen with
NIMgiurry (Figs. 2C, 3B and D), it appears that the maintenance of
the wet state/absence of the oven-drying stage in the preparation
of Ngiurry Was important. This helped to impart surface characteris-
tics that facilitated nanoparticle residency in [w;] and/or pre-
vented drying-induced augmentation of the hydrophobicity
associated with PCL. With respect to the former hypothesis, main-
taining the wet state of the nanoparticles and resuspending them
immediately in PVA solution may have allowed a satisfactory
PVA ‘corona’ to form around the nanoparticles. It has previously

200 pm

Entrapped
nanoparticles

200 pm

Fig. 2. Images obtained using a fluorescent microscope showing: (A) blank PLGA microparticles (no nanoparticles), (B) NIMgjeq and (C) NIMgjyry Where the Nile red stained
nanoparticles can be seen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Spot Magn  Det WD f—— 20 pm Acc V' Spot Magn  Det WD ————1" 50um i
B.OkV 4.0 260x SE 123 5.00kV.5.7 400x BE: .12l Ly

Fig. 3. A comparison of NIMgieq and NIMygy,ry particles prepared using dry and wet nanoparticles in the primary emulsions, respectively. SEM images of (A) NIMgyieq and (B)
NIMjyrry. Confocal images of (C) NIMgyieq and (D) NIMgyyry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

/4
)

/ 5potMagn Dot wn:;}—————-l 20.ym AcoV et \ 5 i,
kv 310 J8473%<) SE “6.7 "Ly £ 0

(iii)

Nanoparticles

Hollow
core

“Microcapsule”

Fig. 4. (A) Cryo-fracture SEM images showing a cross sectional view of a NIMyyy particle, revealing entrapped nanoparticles. (B) Suggested mechanism for how
nanoparticles become wall-associated: (i) The [Ns/w;/o/w;] emulsion system is created upon mixing of the four components; (ii) a “polymeric shell” is instantaneously
formed due to rapid solvent diffusion and polymer solidification. The aqueous phase continues to diffuse out, transporting dissolved solvent through the shell and the
nanoparticles (which are suspended in wy) to the shell wall, where they are too large to pass through; (iii) the nanoparticles are trapped at the shell wall and a hollow core is
seen. Ns = nanoparticles suspended in PVA solution or slurry nanoparticles. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 5. (A) In vitro drug release profiles of HA-loaded PCL nanoparticles (¢), HA-
loaded PLGA microparticles (O), NIMgieq () and NIMgjyrry (4) for all four systems.
(B) Drug release over a period of 2 weeks for NIMjyry. Results = mean + standard
deviation, n = 3 independent formulations.

been suggested that PVA can strongly absorb on the surface of pro-
tein-loaded PLGA nanoparticles [18], while its hydroxyl groups
have also been envisaged to fix to the acetyl group of PLGA
and thus improving the rehydration-ability of freeze-dried nano-
particles [19]. In the present work, the vinyl acetate segment of
the partially hydrolysed PVA could have interpenetrated with the
PCL molecule when the solvent diffuses towards the aqueous
phase during the polymer solidification process [20]. The adsorp-
tion of PVA on polymeric particles surface during their prepara-
tions is common [21-23]. It could be suggested that subsequent
drying has disrupted the interaction between the PVA and
the PCL molecules resulting in a more hydrophobic product (i.e.
Naried)-

Fig. 4A shows that when fractured to reveal their interiors,
NIMsiurry particles are seen to have a hollow core with nanoparti-
cles embedded within the wall of the microparticles. A mechanism
leading to nanoparticle residency in the wall is proposed in Fig. 4B.
The hollow core may be advantageous if capacity for the

encapsulation of other agents is desired. Alternatively, if disadvan-
tageous (e.g. leading to mechanical weakness), decreasing the vol-
ume of [w;] or reducing water droplet size could be employed to
reduce the volume of the void, or redistribute it into a number of
smaller, individual voids.

3.3. Drug loading and release profiles

To determine the drug loading of typical NIM systems, three
separate batches of NIMgrieq and NIMgjrry were prepared and three
samples taken from each for analysis. Drug loadings were found to
be 3.80+0.82% and 6.46+1.26% for NIMgreq and NIMgyry,
respectively. This difference is statistically significant
(Mann-Whitney U-Test; o =0.05), again suggesting improved
nanoparticle entrapment for NIMgjyry. The in vitro cumulative drug
release profiles are shown in Fig. 5 and provide further evidence of
the different entrapment profiles for NIMgjyrry and NIMgyieq. For the
latter, the drug release profile was very similar to that seen for
nanoparticles alone, supporting other evidence that the nanoparti-
cles were largely surface associated (Fig. 3A). For NIMgjyry, an ini-
tial lag phase was observed (no release for ~1 day; only ‘noise’ on
HPLC chromatograms). This may be due to the time required by the
polymer of the outer microparticle to become hydrated [24] and
provides clear evidence of nanoparticle internalisation. When the
polymer becomes hydrated, its glass transition temperature is low-
ered and it will undergo phase transition from a glassy state to a
rubbery state. The mass transfer resistance is thus lowered, and
this permits subsequent solute transport and drug diffusion from
the entrapped nanoparticles.

3.4. Control of NIM size and morphology

Fig. 6A shows that the NIMs prepared from PLGA (as described
in Section 2.3) tended to be of irregular and non-spherical mor-
phology. By introducing PDLA and PLLA into the [o] phase with
PLGA at the ratio of PLA-to-PLGA of 1:2, the morphology could
be manipulated (Fig. 6B and C). The change in polymer and corre-
sponding change in viscosity was also hypothesised to provide a
means for controlling the size of the NIMs. The PLGA systems,
NIMgriea and NIMgjyrry, were found to have average sizes of
145+ 19 pm and 132 + 24 pm, respectively (from laser diffraction
particle sizing, three independent formulations, mean + standard
deviation). With equivalent homogenisation conditions during for-
mulation (i.e. same energy input into the system), this increased to
405 + 54 pm and 406 + 61 um with the introduction of PLLA and
PDLA, respectively. This further illustrates the importance of for-
mulation conditions in influencing product properties and the
adaptability of the method.

Fig. 6. SEM images of NIM,y produced using (A) PLGA alone, (B) PLGA/PDLA mix and (C) PLGA/PLLA. For the latter two mix, the PLA’s were added to the [o] phase at a

volume ratio of PLGA/PLA, 1/2 and all polymer were at the same concentration.
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4. Conclusion

A protocol for producing a NIM system from a double emulsion
has been described. During production of the NIMs, it is essential to
ensure nanoparticle residency in the internal phase in order to
maximise their entrapment. This method does not require expen-
sive equipment and coupled with the fact that size and morphol-
ogy can be readily adapted through alteration of formulation
conditions, this makes it ideal for day-to-day drug delivery
research.
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