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ABSTRACT

Background: The use of machine learning approaches for
software effort estimation (SEE) has been studied for more
than a decade. Most studies performed comparisons of dif-
ferent learning machines on a number of data sets. However,
most learning machines have more than one parameter that
needs to be tuned, and it is unknown to what extent param-
eter settings may affect their performance in SEE. Many
works seem to make an implicit assumption that parameter
settings would not change the outcomes significantly.
Aims: To investigate to what extent parameter settings af-
fect the performance of learning machines in SEE, and what
learning machines are more sensitive to their parameters.
Method: Considering an online learning scenario where
learning machines are updated with new projects as they
become available, systematic experiments were performed
using five learning machines under several different param-
eter settings on three data sets.

Results: While some learning machines such as bagging us-
ing regression trees were not so sensitive to parameter set-
tings, others such as multilayer perceptrons were affected
dramatically. Combining learning machines into bagging
ensembles helped making them more robust against differ-
ent parameter settings. The average performance of k-NN
across different projects was not so much affected by differ-
ent parameter settings, but the parameter settings that ob-
tained the best average performance across time steps were
not so consistently the best throughout time steps as in the
other approaches.

Conclusions: Learning machines that are more/less sen-
sitive to different parameter settings were identified. The
different sensitivity obtained by different learning machines
shows that sensitivity to parameters should be considered
as one of the criteria for evaluation of SEE approaches. A
good learning machine for SEE is not only one which is able
to achieve superior performance, but also one that is either
less dependent on parameter settings or to which good pa-
rameter choices are easy to make.
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1. INTRODUCTION

Studies using Machine Learning (ML) approaches for Soft-
ware Effort Estimation (SEE) have been done for many years
[29, 13]. Most studies involve comparisons among different
approaches. For instance, recent works have been pointing
out the relatively good performance achieved by ensembles
of learning machines [18, 26, 24, 16] and local methods that
make estimations based on completed projects similar to the
project being estimated [24, 22, 3].

These studies concentrate on how well a certain approach
is able to perform in comparison to others in terms of dif-
ferent performance measures. Several studies use statistical
tests to draw conclusions on whether the difference between
the performance achieved by different approaches is signifi-
cant [26, 24, 16]. A recent study also emphasizes the impor-
tance of using measures of effect size to quantify the practical
impact that differences in performance may incur [28].

Analyses of SEE approaches are affected by many factors,
which frequently lead different conclusions to be obtained
by different researchers [14, 12, 21]. Examples of factors
that may affect the results are the data sets used in the
study, the type of preprocessing, the method used to di-
vide data into training and test sets, the performance mea-
sures, and the amount of fine tuning of the approaches [23].
Among these factors, the effect that different data sets and
performance measures may have in the conclusions is rela-
tively well known [28, 11, 26, 24]. However, even though ML
approaches frequently have more than one parameter that
needs to be set prior to the training process, there has been
little work investigating the effect that different parameter
settings may have in ML approaches for SEE.

As explained in [24], the methodology used to chose pa-
rameter settings is frequently omitted from the experimental
framework reported in SEE papers, which thus seem to make



an implicit assumption that parameter settings would not
change the outcomes of the algorithms significantly. Nev-
ertheless, it is not known to what extent different param-
eter settings affect the performance of several of the ML
approaches that have been used for SEE. Such knowledge
would be very valuable for the SEE community, as it could
guide the choice of ML approaches for SEE. So, sensitivity to
parameter settings should be considered as another criterion
for the evaluation of SEE approaches.

There are several examples of how analyses of sensitivity
could allow for more informed choices of SEE models to be
made. For example, if two approaches are able to achieve
similar performance, but one of them is much less sensitive
to parameter settings than the other, it would be safer to
use the less sensitive approach. If a certain approach is fairly
sensitive to parameter settings, but is able to achieve much
better performance than a less sensitive approach, it may be
a good choice to use it if the person responsible for setting it
up and maintaining it has some knowledge on how to tune
parameters. Approaches that are very sensitive to parame-
ter settings could be considered by certain project managers
as undesirable because a wrong choice of parameter settings
may cause them to obtain very poor performance.

Another important point to be considered when evaluat-
ing SEE models is the chronology of the projects, i.e., the
fact that, when a new effort estimation needs to be per-
formed, SEE models can only be created using projects that
have already been completed at that time step (point in
time). The reason why it is important to consider chronol-
ogy is that environmental changes may happen with time
and affect the performance of SEE models [19, 25]. Sen-
sitivity to parameter settings may affect not only the best
choice of parameters in terms of average performance across
time steps, but also the best choice of parameters at each
time step. So, analyses of sensitivity to parameters should
ideally consider not only the effect of parameter settings
across time, but also their effect throughout time.

With that in mind, this study aims at answering the fol-
lowing research questions:

e RQI: Given an approach and a data set, how sensi-
tive is this approach to different parameter settings in
terms of its average performance across time steps?

e RQ2: Given an approach and a data set, does the
best parameter setting in terms of average performance
across time steps perform consistently well throughout
time steps in comparison to other parameter settings?

e RQ3: Ensembles of learning machines such as Bagging
have been showing to obtain relatively good results for
SEE [24]. Could Bagging also help to lessen the base
learners’ sensitivity to parameter settings?

Answering RQ1 and RQ2 for several different learning ma-
chines can also provide insight on which of these learning
machines are more sensitive to their parameters.

2. RELATED WORK
2.1 ML in SEE

Algorithmic SEE models have been studied for many years
[5, 13]. Among them, ML algorithms have been increasingly
investigated [13]. A landmark study using ML for SEE is

the work of Shepperd and Schofield (1997) [29], who used
a k-Nearest Neighbour (k-NN) algorithm [4] based on nor-
malised attributes and on Euclidean distance as similarity
measure. This approach is also known as estimation by
analogy. Despite being first used for SEE more than fifteen
years ago, it has remarkably been shown to be competitive in
terms of how frequently it obtained the best Mean Absolute
Error (MAE) over thirteen data sets in comparison to other
approaches more recently applied for SEE, such as Regres-
sion Trees (RTs) [24]. Nevertheless, when it is not among
the best approaches for a certain data set it can perform
considerably worse than the best in terms of MAE [24].

Recent works have been emphasising the relatively good
performance achieved by ensembles of learning machines
[18, 26, 24, 16] and local methods that make estimations
based on completed projects similar to the project being
estimated [24, 22, 3]. For instance, a study involving a to-
tal of eight learning machines and thirteen data sets has
shown that RTs and Bagging ensembles of MultiLayer Per-
ceptrons (Bagging+MLPs) were frequently ranked best in
terms of Mean Magnitude of the Relative Error (MMRE)
and Percentage of predictions within 25% of the actual value
(PRED(25)). In terms of MAE, Bagging ensembles of RTs
(Bagging+RTs) were the most frequently ranked best, and
when they were not the best, they rarely obtained consider-
ably worse performance than the best [24].

There have also been SEE studies paying special attention
to the chronology of the projects [20, 19, 25]. SEE tasks op-
erate in so called online environments, where new completed
projects arrive with time. Such environments are unlikely to
be stationary, as software development companies and their
employees evolve with time. For example, new employees
can be hired or lost, training can be provided, employees
can become more experienced, etc. Changing environments
have been shown to affect the performance of SEE mod-
els [19, 25], and it is thus important to consider chronology
when evaluating SEE models.

2.2 Studies on Parameter Settings in Software
Engineering

Despite the existence of several works comparing ML ap-
proaches in the SEE literature, there has been little work on
quantifying the effect of different parameter settings on the
performance of such approaches. Minku and Yao (2012) [24]
emphasized the importance of explaining clearly how the pa-
rameters were chosen in SEE studies involving comparisons
of different approaches, as they may have significant influ-
ence in the conclusions obtained. Menzies and Shepperd
(2012) [23] also expressed concern regarding the effect that
spending more time tuning one approach than another may
cause in the conclusions of comparative studies. However,
these publications have not provided an analysis of the im-
pact that different parameter settings can have in SEE.

Few studies analyse the impact of different parameter set-
tings in ML for SEE. For example, Dejaeger et al. (2012)
[10] performed a comparison of several different ML ap-
proaches. Some of them used default parameters, the others
were tuned based on a validation procedure, and one of them
(k-NN) was directly included in the analysis using four dif-
ferent parameter choices. Their study based on nine data
sets revealed that the different values of k£ did not signif-
icantly affect k-NN’s performance. The impact of the pa-
rameter settings of the other approaches was not analysed.



Kocaguneli, Menzies and Keung (2013) [17] performed an
analysis of the impact of kernel types and bandwidth pa-
rameters in non-uniform weighting analogy-based effort es-
timation through kernel methods using nineteen data sets.
They concluded that these parameters did not affect the per-
formance of the approach significantly. Corazza et al. [8, 9]
pointed out the importance of parameter tuning when using
Support Vector Regression (SVR) into SEE. In particular,
Tabu Search has been proposed to search for an optimal
SVR parameter setting. An evaluation of this approach on
21 data sets showed that it outperformed several others in-
cluding widely used ones such as case based reasoning.

A comprehensive study of the impact of parameter set-
tings can be found in a software engineering area related to
ML in SEE. Arcuri and Fraser (2011) [2] performed a large
study of parameter settings in the field of test data genera-
tion using genetic algorithms. Their study specifically aimed
at answering questions such as how large the potential im-
pact of a wrong choice of parameter settings is, and how a
default setting compares to the best and worst achievable
performance. Their analysis showed that parameter tuning
can have critical impact on algorithmic performance, and
that overfitting of parameter tuning is a serious threat to
external validity of empirical analysis in search based soft-
ware engineering.

Nevertheless, the impact of the parameter settings of sev-
eral ML approaches for SEE, including approaches that have
been showing to obtain relatively good performance, is un-
known. As explained in section 1, a study analysing the
sensitivity of different SEE ML approaches to parameter set-
tings would be important for a more informed choice of what
SEE approach to adopt.

3. DATA SETS

The following data sets were used in this work: Kitchen-
ham, Maxwell and SingleISBSG. These data sets were cho-
sen because they provide time information that can be used
to sort projects to perform online learning. They are de-
scribed in sections 3.1, 3.2 and 3.3. For instance, the steps
used in the manual preprocessing of the data are explained.
No further manual preprocessing has been made, but some of
the learning machines employed in this study automatically
process the data further (e.g., data normalisation) accord-
ing to their needs, as explained in section 4.2. A thorough
analysis of these data sets is left as future work.

3.1 Kitchenham

This data set was obtained from the PRedictOr Mod-
els In Software Engineering Software (PROMISE) Reposi-
tory',and its detailed description can be found in [15]. Tt
comprises 145 maintenance and development projects un-
dertaken between 1994 and 1998 by a single software devel-
opment company. The following steps were performed to
process this data set for use in this work:

1. Sort the projects according to the actual start date
plus the duration. This sorting corresponds to the ex-
act completion order of the projects. The Appendix
lists the sequence of ids of the sorted projects.

2. Remove the attributes project id, actual start date,
actual duration, estimated completion date, first es-

http://code.google.com/p/promisedata/

Table 1: Maxwell data set input attributes.

Application size in function points Database
Efficiency requirements User interface
Where developed (in-house/outsourced) | Tools use
# different development languages used | Telon use

Methods use
Standards use
Hardware platform
Staff availability
Staff team skills
Staff tool skills
Staff analysis skills

Customer participation
Development environment adequacy
Software’s logical complexity
Requirements volatility

Quality requirements

Installation requirements

Staff application knowledge

timate and first estimate method. Project id was re-
moved because it is irrelevant for training a SEE model.
Actual start date was removed because the projects are
sorted according to their completion date. Completion
date together with start date would give the duration
of the project, and duration was removed because it
is considered as a dependent variable. The other at-
tributes were removed because they are themselves es-
timations of completion date or effort, or represent the
method used for such estimations. This preprocessing
resulted in the three input attributes (adjusted func-
tion points, project type and client code) and one out-
put attribute (effort in hours).

3. Treat missing values using 1-NN imputation [7]. There
were in total ten projects with missing values.

3.2 Maxwell

This data set was also obtained from the PROMISE Repos-
itory, and its detailed description can be found in [27]. It
contains 62 projects from one of the biggest commercial
banks in Finland, covering the years 1985 to 1993 and both
in-house and outsourced development. The following steps
were performed to process this data set for use in this work:

1. Sort the projects according to syear + duration/12,
where syear is the start year and duration is the dura-
tion of the project in months. This sorting corresponds
approximately to the completion order of the projects.
The reason why the exact completion order is unknown
is that the month of the year that the project started
is not provided by the data set.

2. Remove the attributes start year, time and duration.
Start year and time (time = syear — 1985 4 1) were
removed because the projects are sorted according to
their completion year. Completion year together with
start year would give the duration of the project, and
duration was removed because it is considered a de-
pendent variable. This preprocessing resulted in the
23 input attributes listed in table 1 and one output
attribute (effort measured in hours).

3. There were no missing values in this data set.

3.3 SingleISBSG

This data set is a subset of the International Software
Benchmarking Standards Group (ISBSG) Repository® Re-
lease 10 which has been previously used in [25]. It comprises
69 projects from a single-company. Information on what
projects belong to this single anonymous company has been

*http://www.isbsg.org/



provided to us by ISBSG upon request. These projects have
the following characteristics:

e Data and function points quality A (assessed as being
sound with nothing being identified that might affect
their integrity) or B (appears sound but there are some
factors which could affect their integrity).

e Recorded effort that considers only development team.

e Normalised effort equal to total recorded effort, mean-
ing that the reported effort is the actual effort across
the whole life cycle.

e Functional sizing method IFPUG version 4+ or iden-
tified as with addendum to existing standards.

e Implementation date after the year 2001.

The following steps were performed to process the projects
of this data set:

1. Sort the projects according to the implementation date.

2. Select development type, language type, development
platform and functional size as input attributes, as rec-
ommended by ISBSG. The output attribute is the ef-
fort in hours. Remove all other attributes.

3. Treat missing values using 1-NN imputation [7]. There
were in total only two projects with missing values.

4. EXPERIMENTAL FRAMEWORK

This section presents the experimental framework used to
accomplish the goals of this work.

4.1 Online Scenario

As briefly explained in section 1, it is important to con-
sider the chronology of projects when evaluating SEE ap-
proaches. SEE operates in an online scenario, where ad-
ditional projects are completed with time and can be used
for training SEE models. Whenever a new effort estima-
tion needs to be provided, only projects that have already
been completed can be used for building an SEE model to
make the estimation. As the environment where the SEE
approaches operate is unlikely to be stationary (new employ-
ees can be hired or lost, training can be provided, etc), the
characteristics of the projects being completed may change
with time, be it a change in the frequency of certain input
values or in the effort that would normally be necessary to
complete a project. As such changing environment has been
shown to affect the performance of SEE models [25], it is im-
portant to evaluate models considering not only their overall
performance across time steps, but also their performance
throughout time.

With that in mind, similarly to [25], we consider an on-
line learning scenario in which a new project completed by
a company is received as a training example at each time
step, forming a data stream. Different from the strict on-
line learning scenario, we do not discard training examples
received in previous time steps. At each time step, the SEE
approach is trained on all completed projects received so far,
i.e., one training project is used for training at the first time
step, two at the second, three at the third, and so on. At
each time step, after the training, the next ten projects of
the data stream are estimated. The performance of the SEE

approach at a certain time step in terms of a certain measure
is calculated based on the estimations given to this window
of ten projects. Window size of ten has also been used in
previous work [25], and we consider it reasonable because
not so many projects are produced per year by a company.
Since our major aim is to investigate the effect of different
parameter settings of the learning machines, other outside
factors such as different window sizes used in the evaluation
procedure are left as future work.

4.2 Learning Machines and Parameter Settings
Investigated

We investigate the following five approaches in this study:
k-NN, RTs, MLPs, Bagging+RTs, and Bagging+MLPs. We
do not investigate k-NN combined with Bagging because
Bagging is known to improve accuracy for unstable proce-
dures® such as MLPs and RTSs, while it can slightly degrade
the performance of stable procedures such as k&-NN [6]. An
online learning class has been developed so that the WEKA
implementations of these approaches could be used. RTs
were based on the REPTree implementation without prun-
ing, k-NN was based on IBK with normalised attributes and
Euclidean distance, and the other approaches were based on
the implementations with the same name in WEKA. All
MLPs used a single hidden layer and were set to automati-
cally normalise dependent and independent variables and to
use the nominal to binary filter.

RTs, Bagging+RTs and Bagging+MLPs were chosen be-
cause they have been shown to perform well in comparison
to several other ML approaches in SEE [24], as explained in
section 2. Nevertheless, the evaluation of these approaches
provided in the literature did not consider their sensitivity to
parameter settings. Knowledge on whether these approaches
are very sensitive or not to parameter choices would be im-
portant for deciding whether to use them, or which one of
them to use for SEE. Additionally, ensembles such as bag-
ging have been shown to be able to improve the frequency
that their base learners are ranked first in terms of MAE
[24]. So, it would be good to know whether they could also
make these approaches less sensitive to parameter settings.

K-NN is among the simplest learning machines, and we
have included it in the analysis because it can perform fre-
quently very well, but sometimes considerably worse than
the best approach depending on the data set [24]. It would
be useful to know whether the same sensitivity to the data
set also applies to the sensitivity to its parameters, or if the
simplicity of this approach could make it more robust to
parameter settings.

MLPs have not been shown to be so frequently among
the best approaches as the other approaches included in our
analysis [24]. However, it is not known whether this ap-
proach is performing worst because it is simply frequently
not able to achieve better performance than the others, or
if it is highly sensitive to parameter settings and thus diffi-
cult to tune, or if in fact some guidelines on its parameter
choices could improve its performance. So, the main rea-
son to include MLP in the analysis is to provide a better
understanding of the behaviour of this approach for SEE.

The parameter values investigated in this paper are shown
in table 2. Their default values are emphasized with bold
and correspond to the default values from WEKA. For RTs,

3Unstable here means when small changes in the training
sample can result in large changes in the model learnt.



Table 2: Parameter Values

Parameters

M(mim.# instance/leaf)={1,2,3,6,12,20}

V(mim.varience for split)=
{0.0001,0.001,0.01,0.1,10}

RTs L(max.tree depth)={-1,2,6,10,15,20}

NN (% neighbours)=11,3,5,7,9,11,13,15,17,19,21}

L(Learning rate)={0.1, 0.2, 0.3, 0.4, 0.5}

M(Momentum)={0.1,0.2,0.3,0.4,0.5}

N(# epochs)={100,500,1000}

H(# hidden nodes)={a,1,3,5,9}

# I(iteration for Bagging)={5,10,25,50,75}

All the possible parameters of the adopted

base learners, as shown above.

Approach

MLPs

Bagging

the maximum depth of -1 means unlimited depth. For MLPs,
the default value a in the number of hidden nodes is calcu-
lated as follows: a = (#attributes + #classes)/2, where
Ftattributes is the number of input attributes in the data
set, and #classes is the number of outputs, which equals to
one in the case of SEE.

It is impossible to use all possible parameter values here,
as that would be infinite. We believe that the values shown
in table 2 form a good range for each of the parameters.
Additional values could be investigated as future work.

4.3 Evaluation Criteria

Given a data set and an approach described in Section 4.2,
we run the approach with all the combinations of parameter
values shown in table 2, to calculate the performance at each
time step as well as the average performances across times
steps considering the online scenario from section 4.1. From
that we can determine the best/worst parameter settings in
terms of the average performances across time steps, as well
as the performance of the default parameter setting. The
standard deviation of the performances across time steps
can also be calculated.

For the non-derteministic approaches (MLPs, Bagging+RT's

and Bagging+MLPs), 30 runs were performed to obtain the
mean performance at each time step, which was then aver-
aged across time steps. The corresponding mean standard
deviation across time steps was calculated by means of the
pooled standard deviation as follows:

I

stdyooied = \/std% + std3 + ... + std2
n
where n is the the number of runs (30 in our case) and std;
is the standard deviation across time steps in the 7** run.
The performance at each time step was measured by the
Mean Absolute Error (MAE) over the predictions on the
next ten projects of the data stream. MAE is defined as
>, w, where n = 10 is the number of samples con-
sidered, y; is the actual value of the variable being predicted
and g; is its estimation. MAE was chosen for being a sym-
metric measure not biased towards under or overestimations
[28]. Lower MAE indicates higher/better performance.
With the aim of investigating to what extent an approach
is sensitive to its parameter settings given a certain data set,
the performances of the best and worst parameter settings
were first compared based on Wilcoxon sign-rank test with
Holm-Bonferroni corrections considering the total number of
comparisons made for the corresponding learning machine,
at the overall level of significance of 0.05. Even when there is
statistically significant difference, that does not necessarily
mean that the differences are large enough to have significant

effect in practice [28]. So, the effect size (Cohen’s d) was
checked. Effect size is simple a way of quantifying the size
of the difference between two groups. It was calculated using
pooled standard deviation as follows:

_ MAE, — MAFE;

1=
[ std?+std2
2

where M AFE; is the average MAE across time steps of the
model created using the parameter setting ¢, ¢ € {best, worst},
and std; is its corresponding standard deviation across time
steps. Similarly to the above, Wilcoxon test with Holm-
Bonferroni corrections were also computed for the compar-
isons between the best and the default, and the default and
the worst parameter settings, when deemed necessary. The
effect sizes corresponding to these comparisons are referred
to as d2 and ds, respectively.

As will be explained in section 5, in some cases it was not
possible to use a pooled standard deviation in the analysis.
In these cases, one of the parameter settings being com-
pared was selected as the control setting, and the standard
deviation used to calculate the effect size was the standard
deviation of the model created using the control parameter
setting, instead of the pooled standard deviation.

The effect size was interpreted in terms of the Cohen’s
categories [28]: small (= 0.2), medium (= 0.5) and large
(= 0.8). If dy is small (around 0.2) for a certain data set, the
performances of the best and the worst parameter settings
are considered quite similar for this data set, and we could
claim that this approach is not sensitive to different param-
eter settings for this data set. If this behaviour extends to
other data sets as well, then this approach is considered ro-
bust to parameter settings.

If di is medium (around 0.5) or large (around 0.8), the
approach is somewhat or highly sensitive to its parameter
settings. In this case, d2 will reveal whether a default pa-
rameter setting could provide reasonable performance de-
spite the approach’s sensitivity to parameter settings. If da
is small or small/medium, it means that even though this
approach is sensitive to the overall parameter choices, its de-
fault parameter setting is fairly good, and we could simply
use its default parameter setting. However, if d2 is not small
enough, the performance of default parameter setting is sig-
nificantly worse than the performance of the best parameter
setting, and we should pay attention to tune the parameters
of this approach.

For this kind of approach, we could still step further by
calculating ds. If ds is large (more than 0.8), that means
that even though the performance of the default parameter
setting is significantly worse than the best one, it is still
significantly better than the worst one and thus somewhat
helpful. On the other hand, if ds is not large, then this
approach is too sensitive to its parameter settings, and a tiny
change to its parameter settings could cause a significantly
bad effect on its performance. Therefore, one may consider
this approach as not recommended for SEE.

S. EXPERIMENTAL ANALYSIS

5.1 Sensitivity in Terms of Average Performance
Across Time Steps

This section mainly aims at answering RQ1: Given an

approach and a data set, how sensitive is this approach to



different parameter settings in terms of its average perfor-
mance across time steps?

5.1.1 MLPs and Bagging+MLPs

Table 3 shows the average MAE across time steps of MLPs
and Bagging+MLPs in their best, default and worst pa-
rameter settings, as well as the statistical tests and effect
sizes of the differences in performance between these pa-
rameter settings. As we can see from tables 3(a) and 3(b),
the performances of the worst parameter settings of MLPs
and Bagging+MLPs are so inferior that most of their stan-
dard deviation across time steps are infinite, which makes it
impossible to compute the effect size with pooled standard
deviation. Instead, we will calculate the effect size with the
best one as the control approach for both MLPs and Bag-
ging+MLPs, to measure the performance difference between
a certain parameter setting with the best one. We found
that the performances with the worst parameter settings of
MLPs and Bagging+MLPs are sensitive to starting points,
e.g., the initial weights of the MLPs. Depending on the
starting point, the predictions given to a few examples get
extremely high error, causing the average MAE to be also
extremely large, and the standard deviation to be infinite.

As shown in tables 3(a) and 3(b), intuitively we can con-
clude that both MLPs and Bagging+MLPs are extremely
sensitive to different parameter settings, since the difference
of the average performance between the best and the worst
parameter settings are significiantly large both for MLPs
and Bagging+MLPs. Such supposition can be further con-
firmed by the Wilcoxon tests and effect sizes listed in tables
3(c) and 3(d), which show that there is statistically signifi-
cant difference and the effect sizes between the best and the
worst are all extremely large in all the investigated data sets
both for MLPs and Bagging+MLPs.

However, both MLPs and Bagging+MLPs in the best and
default parameter settings can achieve a fairly good perfor-
mance, which are competitive to the counterparts of all the
other learning machines investigated in this paper shown in
tables 4(a), 4(b) and 5(a). Even though the performance
of the default parameter settings are statistically signifi-
cantly different and usually rather worse than the best ones
in terms of effect size, they are acceptable compared with
the worst ones. Moreover, since their standard deviations
across time steps are all finite values (see table 3(a) and
3(b)), we can conclude the default and the best parameter
settings are not so sensitive to the starting points. There-
fore, we recommend the project manager to use the default
parameter settings when he/she has little experience of tun-
ing parameters or he/she does not have time to do so.

Furthermore, when exploring deeper, we found that the
best parameter setting for MLPs across all data sets is the
simplest one with the number of hidden nodes equal to one,
and for Bagging+MLPs their best parameter settings are
the ones with the simplest base learners.

Overall, in the SEE literature about MLPs either on their
own or ensembled with Bagging, some researchers said they
did not achieve a good performance, but others disagreed
[10, 24, 30]. However, our experiments show that they can
achieve a relatively good performances, but they are very
sensitive to parameter choice, and even to the starting point.
This can at least partly explain the previous controversial
conclusions in the literature. Moreover, the best parameters
for different data sets were the same. Therefore, in future

work, we will investigate more data sets, and if this param-
eter setting is still competitive, we could claim that using
simple MLP both on its own and combined with Bagging is
good for SEE.

5.1.2 RTs and Bagging+RTs

Table 4(a) and 4(b) show the average MAE across time
steps of RTs and Bagging+RTs in their best, default and
worst parameter settings. As shown in table 4(c) and 4(d),
there is statistically significant difference between the best
and worse parameter settings for all data sets. The cor-
responding effect sizes using pooled standard deviation are
small (0.126) and small (0.199) in Kitchenham, small (0.310)
and medium (0.453) in Maxwell, and large (0.768) and large
(0.665) in SingleISBSG for RTs and Bagging+RTs respec-
tively. This means that both RT's and Bagging+RT's are not
sensitive to different parameter settings given Kitchenham
and Maxwell, but a bit sensitive in SingleISBSG. The rel-
atively small standard deviations in SingleISBSG could be
a reason for the large effect size. However we still need to
explore further whether SingleISBSG is the real “exception”
as well as the cause for this exception, which will be left
as our future work. These effect sizes show that RTs and
Bagging+RT's are much less sensitive to parameter settings
than MLPs and Bagging+MLPs.

Even though RTs are a bit sensitive to different parameter
settings in SingleISBSG, the effect size with pooled standard
deviation between the best and the default, and between
the default and the worst parameter settings are medium
(0.419) and medium (0.398) respectively. That means that
their default parameter settings can achieve relatively good
performance, even though there exist statistically signifi-
cant improvements if the parameter settings are tuned care-
fully. For Bagging+RTs, the effect size between the best and
the default parameter settings in SingleISBSG is very small
(0.105), which indicates that even though Bagging+RTs is
slightly sensitive in SingleISBSG across all parameter set-
tings, the performance difference between the best and the
default parameter settings is quite tiny.

Overall, RTs and Bagging+RT's are usually not very sensi-
tive to parameter settings in SEE — it will be a good option to
simply use the default parameters if tuning parameters is not
allowed. However, we still suggest to tune the parameters
in order to achieve better performance. In comparison to
other learning machines such as MLPs and Bagging+MLPs,
the performance of RTs and Bagging+RTs under the worst
parameter setting is not so much worse than the best one.
So, blind parameter tuning will not cause so much problem
for RTs and Bagging+RTs.

5.1.3 K-NN

Experiments indicate that k-NN is not sensitive to pa-
rameter choices in SEE. As we can see from table 5(b)), the
effect sizes are always small or medium, and for SinglelS-
BSG no statistically significant difference has been found in
the comparisons. However, it is worth noting that the de-
fault parameter setting (k = 1) is always the worst (see table
5(a)). Therefore, we recommend not to use 1-NN in SEE.
One of the possible reasons is that there exists much noise
in the data sets of SEE, so the performance can be strongly
affected only using the nearest neighbour.

Further investigation reveals that the best performances
are always achieved when k equals to three or five (see ta-



Table 3: Average Performance, Effect Size and Statistical Tests Across Time Steps for MLPs and Bagging+MLPs. In 3(c) and
3(d), '+/-’ indicates whether or not there is significant difference based on Wilcoxon test with Holm-Bonferroni corrections,
considering the 6 comparisons; the corresponding p-values are in parentheses. Here, 'std’ is short for the standard deviation
across time steps in terms of MAE. Effect sizes that are considered as medium/large are in yellow/red (light/dark gray).

(a) Performance of MLPs

(b) Performance of Bagging+MLPs

MAE across time steps | Kitchenham Maxwell SingleISBSG MAE across time steps | Kitchenham Maxwell SingleISBSG
Best PS MAE 2046.35 5358.02 2754.78 Best PS MAE 1946.18 5089.75 2705.77
s std. 2868.96 1979.71 1006.01 8 std. 2883.74 1918.31 790.20
MAE 2474.78 7893.26 3682.47 MAE 2188.81 5932.99 3025.83
Default PS std. 2846.06 3629.54 1254.03 Default PS std. 2892.06 2262.39 860.47
MAE 7A2E+138 | 1.19BE+155 | 1.07E+153 MAE 9.26E+151 | 1.33E+153 | 4.52E+153
Worst PS std. 4.71E+140 Inf Inf Worst PS std. Inf Tnf Inf

(c) Effect size and p-value of MLPs with the best as the (d) Effect size and p-value of Bagging+MLPs with the best

control as the control
Effect Size Kitchenham Maxwell SingleISBSG Effect Size Kitchenham Maxwell SingleISBSG
best vs. worst  FETTE21)+ | (6.15E-10)+ | (3.51E-11)+ best vs. worst RS E-21)+ | (7.35E-10)+ | (2.44E-09)+
best vs. default 0.149 best vs. default 0.084 U0 0.4
: (2.66E-22)+ | (6.15E-10)+ | (3.51E-11)+ : (2.00E-19)+ | (2.80E-09)+ | (7.15E-09)+

Table 4: Average Performance, Effect Size and Statistical Tests Across Time Steps for RTs and Bagging+RTs. In 4(c) and
4(d), ’+/-’ indicates whether or not there is significant difference based on Wilcoxon test with Holm-Bonferroni corrections,
considering the 7 and 6 comparisons; the corresponding p-values are in parentheses. Here, ’std’ is the standard deviation
across time steps in terms of MAE. Effect sizes that are considered as medium/large are in yellow/red (light/dark gray).

(a) Performance of RTs

(b) Performance of Bagging+RT's

MAE across time steps | Kitchenham | Maxwell | SingleISBSG MAE across time steps | Kitchenham | Maxwell | SingleISBSG
Best PS MAE 2249.14 5629.51 2751.86 Best PS MAE 2055.24 5110.56 2814.39
std. 2928.71 2426.86 852.77 std. 2908.12 2606.10 941.08
MAE 2618.38 5930.50 3144.56 MAE 2209.14 5260.25 2915.74
Default PS | "y 2899.82 2611.51 1016.74 Default PS | "y 2926.48 2572.87 986.80
Worst PS MAE 2618.96 6429.93 3621.96 Worst PS MAE 2634.56 6230.56 3356.18
std. 2935.13 2725.38 1356.32 std. 2926.55 2327.33 665.64

(d) Effect Size and p-value of Bagging+RT's Using Pooled

(c) Effect Size and p-value of RTs Using Pooled Std. Dev. §td. Dev.

ble 5(c)), which can be interpreted as follows: though using
more neighbours would lessen the effect of noise existed in
the data sets, as k growing bigger, more less relevant sam-
ples can be involved into predicting, which is not preferred.
Considering the small data sets of SEE, three or five (or a bit
more like seven) nearest neighbours may be a good choice
to avoid both extremes. Figures 1-3 further support that.
In our experiments, we find that the simple learning ma-
chine k-NN is quite competitive with all learning machines
we are investigating, including RTs, Bagging+RTs, MLPs
and Bagging+MLPs. Another advantage is that its average
performance across time steps is not very sensitive to differ-
ent parameter settings. However, as we will see later, the
parameter settings that obtain the best average performance
across time steps for k-NN are not so consistently the best
throughout time steps as in the other approaches.

5.2 Performance of the Best Parameter Set-
ting at Each Time Step

In the previous section, we presented the overall perfor-
mance across all time steps, and analyzed the sensitivity of
each approach to different parameter choices. In this sec-
tion, we will look into each time step to investigate RQ2:

Effect Size Kitchenham Maxwell SingleISBSG Effect Size Kitchenham Maxwell SingleISBSG
best vs. worst 0.126 0310 best vs. worst 0.199 Ua
(2.52E-10)+ | (0.0104)+ | (4.94E-07)+ (1.89E-20)+ | (1.67E-09)+ | (2.09E-07)+
best vs. default 0.127 0.119 D2 best vs. default 0.053 0.058 0105
(1.35E-11)4 | (2.94E-05)+ (7.12E-05)+ (3.71E-08)4 | (1.01E-07)+ (0.0011)+
default vs worst - B AR
(5.77E-05)+

Given an approach and a data set, do the best parameter
settings in terms of average performance across time steps
perform consistently well throughout time steps in compar-
ison to other parameter settings?

According to figures 4 to 9 (the other figures are omit-
ted due to space restriction), we can conclude that though
there are a few time steps in which the default or even the
worst parameter settings outperform the best ones, usually
the best ones achieve a better performance than the oth-
ers. For instance, in figure 7, at the time steps between
ten and fifteen, the worst parameter setting outperforms
the best and the default ones, which hints that there still
exists room for improvement in terms of the performance
throughout each time step providing proper adaptive pa-
rameter settings. Even so, we find that in the majority of
the time steps, the best parameter setting is better than the
default and the worst ones.

Furthermore, comparing figures 6, 9, and 10 with 4, 5,
7, and 8, we find the frequency that the worst parameter
settings for k-NN outperform the best ones is higher than
others. It indicates the best parameter setting for k-NN
is more dependent on the moment in time than for other
approaches. In other words, k-NN is less stable than others




Table 5: Average Performance, Effect Size, and Statistical Tests Across Time Steps plus Parameter Settings for K-NN. In
5(b), +/-’ indicates whether or not there is significant difference based on Wilcoxon test with Holm-Bonferroni corrections,
considering the 6 comparisons; the corresponding p-values are in parentheses. Here, 'std’ is short for the standard deviation
across time steps in terms of MAE. Effect sizes that are considered as medium/large are in yellow/red (light/dark gray).

(a) Performance of k-NN

(b) Effect Size and p-value of k-NN Using Pooled Std. Dev.

MAE across time steps | Kitchenham | Maxwell | SingleISBSG Effect Size Kitchenham Maxwell SingleISBSG
Best PS MAE 1889.67 4642.61 2937.49 best vs. worst 0.152 0.430 0.378
; std. 2770.78 2574.22 688.85 S Worst | (g 62E-17)+ | (4.55B-04)+ |  (0.0265)-
MAE 2315.12 5667.09 3394.39 0.152 0.430 0.378
Default PS std. 2838.20 2172.91 1562.69 best vs. default | gom 174 | (4.55E-04)+ |  (0.0265)-
Worst PS MAE 2315.12 5667.09 3394.39
b std. 2838.20 2172.91 1562.69
(c) Parameter Settings of k-NN
k Kitchenham | Maxwell | SingleISBSG
Best PS k=3 k=3 | k=%
Defaul PS k=1
Worst PS k=1
k-NN in Kitchenham k-NN in Maxwell k-NN in SinglelSBSG
2400 5800 3400
2300 5600 3300
2200 5400
3200
€ 2100 < 5200 <
= = =
3100
2000 5000,
1900 4800, 3000
1800, 5 10 15 20 25 4600y 5 10 15 20 25 2900 5 10 15 20 25
Kin k-NN Kin k-NN Kin k-NN

Figure 1: k in k-NN in Kitchenham

in terms of the consistency of the best parameter settings
throughout time steps.

Besides, figure 10 presents the performance of k-NN through-

out time steps in Kitchenham, which shows that all param-
eter settings could perform quite well throughout time steps
except the ones between 65 and 74. And such a situation also
happens to all the other approaches, which means maybe
certain projects in time steps between 65 and 74 are the
so-called “bad samples” or “outliers”, which are not easy to
predict universally. Therefore, the performance of the learn-
ing machines in SEE may be improved if the outliers are
removed. This could be investigated as future work.

Additionally, figures 4 and 5 are the average performance
throughout time steps for thirty runs. We can see that for
the worst parameter settings, the performance at most time
steps are quite competitive with the best and the default
ones, but there are only a few time steps for each, at which
the learning machines so extremely bad that they cannot
even be shown in the figures (they are not necessarily un-
limited, but they are so large that showing them will make
other part of the figures much less visualized).

In summary, usually the performance of the best param-
eter settings outperform the other two in most time steps.

5.3 How Could Ensemble Help?

In this section, we focus on answering RQ3: Could Bag-
ging help to lessen the base learners’ sensitivity to parameter
settings?

From tables 3(c) and 3(d), we can see that the effect size
between the best and the default parameter settings for Bag-
ging+MLP are all smaller than the ones for MLPs in all
data sets. The effect sizes decrease from 0.149 (Kitchen-

Figure 2: k in k-NN in Maxwell

Figure 3: k in k-NN in SingleISBSG

ham), 1.281 (Maxwell), and 0.922 (SingleISBSG) for MLPs
to 0.084 (Kitchenham), 0.440 (Maxwell), and 0.405 (Sin-
gleISBSG) for Bagging+MLPs. That means that the perfor-
mance of the default parameter settings for Bagging+MLPs
is closer to the best ones than that for MLPs on their own.
Also, the default and the best curves are much closer in fig-
ure 5 than the ones in figure 4, which indicates that besides
helping to shorten the difference of average performance be-
tween the default and the best parameter settings obtained
by MLPs, Bagging also helps to shorten the difference in
terms of each time step.

From table 4(c) and 4(d), we can see that a similar re-
sult is obtained by Bagging+RTs and RTs: the effect size
between the best and the default parameter settings for Bag-
ging+RT's are all smaller than the ones for RTs in all data
sets, which means the performance of the default ones for
Bagging+RTs is closer to the best ones than that for RTs on
their own. Furthermore, figure 7 and 8 show that Bagging
helps to drag the curves of the default parameter settings
closer to the best one throughout time steps.

Overall, our experiments indicate that combining learning
machines into bagging can help making the performance of
the default parameters to get closer to the best ones.

6. THREATS TO VALIDITY

There exists many learning machines such as Radial Ba-
sis Function Networks (RBFs), Bagging with RBFs, Nega-
tive Correlation Learning (NCL) with MLPs used in SEE,
and some other standard data sets. Due to the limitation
of time, in this paper, we only performed experiments on
five representative approaches using three standard data sets
to investigate whether sensitivity to parameter settings dif-
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fer accordingly. Additional learning machines and data sets
should be investigated in the future.

Another potential threat is the fact that the possible val-
ues for a parameter are unlimited when its definition do-
mains belongs to the real number field, and it is impossible
to use all possible parameter values here. So, it is impossible
for any study to draw the full picture of a learning machine’s
sensitivity to different parameter settings. We believe that
the values shown in table 2 form a good range for each of
the parameter considered in the study, but additional values
should be investigated in future work.

7. CONCLUSIONS

This paper performs systematic experiments aiming at in-
vestigating to what extent parameter settings affect the per-
formance of learning machines in SEE, and whether different
learning machines are more/less sensitive to their parame-
ters. It provides answers to the research questions as follows:

RQ1: Given an approach and a data set, how sen-
sitive is this approach to different parameter set-
tings in terms of its average performance across time
steps? Different learning machines have different sensi-
tivity to their parameter settings. For instance, RTs and
Bagging+RTs are not quite sensitive to different parameter
settings in terms of average performance across time steps,
but parameter tuning is suggested in order to achieve a bet-
ter performance. Though MLPs and Bagging+MLPs can
achieve very good performance, they are extremely sensitive
to their parameter settings, and even to the starting points.
K-NN is not very sensitive to its parameter settings, but
its performance when k equals to one (1-NN) behaves badly
(k =1 was the worst parameter setting in all data sets).

RQ2: Given an approach and a data set, does the
best parameter setting in terms of average perfor-
mance across time steps perform consistently well
throughout time steps in comparison to other pa-

for Bagging+RTs in SingleISBSG

for K-NN in SingleISBSG

rameter settings? The best parameter settings commonly
achieve a better performance than the default and the worst
ones, though there are a few time steps in which the de-
fault or even the worst parameter settings outperform the
best ones. k-NN is less stable than others in terms of the
consistency of the best parameter settings across time steps,
since it happens more frequently in £-NN than others that
the best parameter settings perform the worst in some time
steps.

RQ3: Could Bagging also help to lessen the base
learners’ sensitivity to parameter settings? Combin-
ing learning machines into bagging ensembles can help mak-
ing the performance of the default parameters closer to the
best parameter settings. Therefore, it would be an accept-
able choice to combine MLPs and RTs into Bagging when
using the default parameter settings, when there is no time
to perform parameter tuning.

Among others, future work includes the investigation of
other learning machines and data sets; other types of effect
size, in particular non-parametric ones [1]; and other window
sizes for the evaluation of the online learning procedure.
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9. APPENDIX

Sequence of project ids from Kitchenham data set sorted
according to completion order used in this study: 110, 115,
48, 112, 117, 125, 131, 79, 108, 46, 133, 47, 116, 119, 113, 111, 100,
107, 106, 19, 104, 44, 20, 98, 114, 18, 83, 105, 144, 99, 84, 109, 141,
22, 65, 118, 64, 85, 69, 92, 30, 17, 23, 55, 71, 66, 70, 86, 49, 53, 38,
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97, 34, 41, 77, 82, 51, 88, 140, 43, 132, 58, 60, 50, 81, 93, 31, 54, 57,
75, 76, 29, 1, 101, 102, 90, 16, 39, 67, 61, 24, 103, 35, 87, 59, 62, 68,

121,
135,

52,

126,

134, 32, 56, 137, 26, 91, 120, 10, 40, 27, 45, 36, 89, 139, 2, 13,
136, 5, 73, 138, 11, 15, 143, 63, 28, 96, 74, 4, 42, 127, 78, 12, 14,
123, 25, 8, 124, 72, 37, 129, 33, 80, 94, 95, 6, 142, 21, 3, 9, 122,
7, 128, 145, 130. We are unable to provide the sequence

of ids for the other data sets.
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