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a b s t r a c t

Context: Ensembles of learning machines and locality are considered two important topics for the next
research frontier on Software Effort Estimation (SEE).
Objectives: We aim at (1) evaluating whether existing automated ensembles of learning machines gener-
ally improve SEEs given by single learning machines and which of them would be more useful; (2) ana-
lysing the adequacy of different locality approaches; and getting insight on (3) how to improve SEE and
(4) how to evaluate/choose machine learning (ML) models for SEE.
Method: A principled experimental framework is used for the analysis and to provide insights that are not
based simply on intuition or speculation. A comprehensive experimental study of several automated
ensembles, single learning machines and locality approaches, which present features potentially benefi-
cial for SEE, is performed. Additionally, an analysis of feature selection and regression trees (RTs), and an
investigation of two tailored forms of combining ensembles and locality are performed to provide further
insight on improving SEE.
Results: Bagging ensembles of RTs show to perform well, being highly ranked in terms of performance
across different data sets, being frequently among the best approaches for each data set and rarely per-
forming considerably worse than the best approach for any data set. They are recommended over other
learning machines should an organisation have no resources to perform experiments to chose a model.
Even though RTs have been shown to be more reliable locality approaches, other approaches such as
k-Means and k-Nearest Neighbours can also perform well, in particular for more heterogeneous data sets.
Conclusion: Combining the power of automated ensembles and locality can lead to competitive results in
SEE. By analysing such approaches, we provide several insights that can be used by future research in the
area.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Estimating the cost of a software project is a task of strategic
importance in project management. Both over and underestima-
tions of cost can cause serious problems to a company. For in-
stance, overestimations may result in a company loosing
contracts or wasting resources, whereas underestimations may re-
sult in poor quality, delayed or unfinished software systems. The
major contributing factor for software cost is effort [1]. So, models
for estimating software cost/effort can be used as decision support
tools, allowing investigation of the impact of certain requirements
and development team features on the cost/effort of a project to be
developed.

Several different software cost or software effort estimation
(SEE) approaches have been proposed [2]. Among them, effort esti-
mators based on machine learning (ML) approaches such as multi-
ll rights reserved.
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layer perceptrons (MLPs), radial basis function (RBF) networks and
regression trees (RTs) [3–9] have been receiving increased atten-
tion [2]. The motivation behind the use of such approaches is that
they make no or minimal assumptions about the function being
modelled and the data used for training. For instance, Tronto
et al. [7] showed that MLPs improve SEE over conventional linear
models because they are not restricted to linear functions, being
able to model observations that lie far from the best straight line.

More recently, ensembles of learning machines have attracted
attention of the SEE community for building SEE models
[9,8,10,11]. However, existing work on automated1 ensembles of
learning machines for SEE presents contradictory conclusions
regarding whether ensembles improve or not performance for SEE.
Section 2.1 presents more details on these works. In the current
work, we perform a principled and extensive analysis of existing
automated ensembles of learning machines to determine whether
they generally improve effort estimations given by single learning
1 We refer to an approach as automated when, given the project data, it does not
quire human intervention and decision-making in order to be used. More details
re
can be found in Section 2.1.
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2 The learning machines used to compose an ensemble are frequently called base
learning machines.
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machines. We build upon previous work and improve on their weak-
nesses by following a principled framework and doing an extensive
analysis.

The methodology used in our work has the following advanta-
ges in comparison to previous work using existing automated
ensembles:

� Use of principled experimentation, considering both parameter
choice, statistical tests and magnitude of improvements.
� Use of a more reliable non-asymmetric performance measure

(Mean Absolute Error – MAE) and a measure that facilitates
investigation of the magnitude of the differences in perfor-
mance (Standardised Accuracy – SA), rather than using only
measures based on the Magnitude of the Relative Error (MRE)
such as Mean MRE (MMRE) and the Percentage of Estimates
within N% of the actual values PRED(N).
� Comparison using three different ensembles of learning

machines (Bagging [12], Random [13] and Negative Correlation
Learning [14]) which present features potentially beneficial to
SEE.
� Use of a larger number of data sets (thirteen against five, the

highest number of data sets previously used in studies involving
automated ensembles), including both PROMISE [15] and ISBSG
[16] data sets, rather than just PROMISE data sets.
� Experimental analysis of the behaviour of promising

approaches, gaining insight on how to improve SEE.

Another area of research considered as promising in software
project estimation is locality [17]. Approaches that perform esti-
mations considering mainly training examples that are similar to
the project being estimated can be referred to as based on locality.
As SEE data sets tend to be relatively small and very heteroge-
neous, such approaches are likely to be more adequate. Examples
of works considering locality are Cuadrado Gallego et al. [18] and
Kocaguneli et al. [19]. Section 2.2 explains locality further. Even
though locality is a promising area, it is not yet clear what locality
approach would be more adequate for SEE. For instance, RTs are
promising due to the hierarchy of features that they create, but it
is not known whether this simply provides the same benefit as
other locality approaches or a feature selector. Our work investi-
gates different locality approaches for SEE, providing insight for fu-
ture approaches on improving SEE.

As an additional contribution, our paper builds upon previous
work and proposes an experimental framework for evaluation of
SEE approaches. The framework joins (1) the power of statistical
tests for comparison of multiple learning machines over multiple
data sets as recommended in the general ML literature [20], to
(2) an analysis of the approaches among the best, and to (3) the
use of a standardised measure proposed by Shepperd and Mc Do-
nell [21] for evaluating prediction systems in software project
estimation.

In short, our paper addresses the following research questions:

� RQ1: Do existing automated ensembles of learning machines
generally improve effort estimations given by single learning
machines, including potentially adequate locality learning
machines such as RTs? Which of them would be more useful?
� RQ2: What locality approach is more adequate for SEE tasks? In

particular, how well does RT locality do in comparison to other
locality approaches? On what type of data sets?
� RQ3: What insight on how to further improve SEE can we gain

by analysing competitive ensemble and locality approaches?
� RQ4: How to evaluate/choose ML models for SEE?

Our key contribution is not in a new algorithm, but a better
understanding/insight. Furthermore, such better understanding/
insight is based on experimental studies, not just an intuition or
speculation. We show that combining the power of automated
ensembles and locality can lead to competitive results in SEE. For
instance, when considering the symmetric performance measure
MAE, bagging ensembles of RTs perform well. They are highly
ranked in terms of performance across different data sets, are fre-
quently among the best approaches for each data set and rarely
perform considerably worse than the best approach for any data
set. So, they are recommended over other learning machines
should an organisation have no resources to perform experiments
to chose a model. Moreover, tailored approaches using ensembles
at a higher level and locality at a lower level may be particular use-
ful for improving performance on smaller data sets, whereas ap-
proaches using locality at a higher level may be particularly
useful for improving on larger data sets. Future work on SEE may
benefit from exploiting that further. In terms of locality approach,
RTs have been shown to be more reliable than other approaches
due to their ability to create hierarchies of features. Nevertheless,
k-means and k-nearest neighbours can also perform well, in partic-
ular for more heterogeneous data sets.

The rest of this paper is organised as follows: Section 2 presents
related work on ensembles, locality and evaluation of models. Sec-
tion 3 describes the data sets used in our study. Section 4 explains
the experimental framework, which represents part of the answer
to RQ4. Section 5 presents the evaluation of existing automated
ensembles against single learning machines. It mainly aims at
answering RQ1, but also partly addresses RQ2 by considering a
promising locality approach namely RTs. This section also gives
some insights on how to improve SEE (RQ3) by revealing the suc-
cess of an approach joining the power of locality and ensembles
and by showing that bagging ensembles still have room for
improvement. As the analysis singles out a comparatively well per-
forming approach, Section 5 also complements the answer to RQ4.
Section 6 performs an analysis of locality approaches, answering
RQ2 and part of RQ3. Section 7 presents an analysis of RTs and tai-
lored approaches joining the power of ensembles and locality,
mainly addressing RQ3. Section 8 explains threats to validity. Sec-
tion 9 presents conclusions and future work.
2. Related work

2.1. Ensembles of learning machines for SEE

Ensembles of learning machines are sets of learning machines2

trained to perform the same task and combined with the aim of
improving predictive performance [22]. It is commonly agreed that
the base learning machines should behave differently from each
other. Otherwise, the overall prediction will not be better than the
individual predictions [23–25]. So, different ensemble learning ap-
proaches can be seen as different ways to generate diversity among
the base learning machines.

Ensembles of learning machines have recently attracted the
attention of the SEE community, as they can frequently improve
performance over single learning machines. For example, Boot-
strap Aggregating (bagging) [12], a well known ensemble approach
with solid theoretical background, is able to turn weak learning
machines into stronger ones. This can be particularly useful for
SEE, as the data sets are usually small, leading to typically less
accurate learning machines than in other applications of ML.

In this section, we briefly describe previous work on ensembles
for SEE. The works presented by Braga et al. [9], Kultur et al. [8] and
Kocaguneli et al. [10] represent the starting points of the research



Fig. 1. An example of RT for software effort estimation.
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on ensembles for SEE. However, besides using only asymmetric
performance measures based on MRE, they provide somewhat con-
tradictory results as outlined below.

Braga et al. [9] claims that bagging improves the SEEs produced
by several single learning machines, such as RTs and MLPs. How-
ever, the study uses only two versions of a single data set and nei-
ther tests the statistical significance of the results nor presents the
standard deviations of the performance. As the average perfor-
mances reported for the ensembles are very close to the perfor-
mances obtained by the single learning machines, it is not
possible to conclude that there was an improvement in the estima-
tions [26].

Kultur et al. [8] uses five data sets and shows that an adapted
version of bagging provides very large improvements in compari-
son to single learning machines. However, there is no information
about how the parameters of the approaches were chosen. When
performing ML experiments, the parameters choice can highly
influence the results. Depending on the choice, a certain approach
can become better or worse. So, even though Kultur et al.’s work is
a significant contribution, the literature still lacks more evidence in
support of ensembles.

Kocaguneli et al. [10] uses three data sets to compare the effect
of combining different types of learning machines to the use of
these learning machines separately. Even though this is not exactly
a comparison between single learning machines and ensembles,
their results suggest that ensembles do not improve the perfor-
mance of single learning machines. This is somewhat contradictory
in relation to Kultur et al. [8]’s work, which achieved very large
improvements when using an adapted version of bagging.
Kocaguneli et al. do not present information about the parameters
choice either.

In addition to the problems explained above, none of these pa-
pers compare the results obtained by different existing automated
ensemble learning approaches from the ML literature. Kocaguneli
et al. [10] present results obtained by some ensembles of learning
machines, but the analysis does not perform a statistical compari-
son among ensembles and single learning machines. Different
ensemble approaches can be more or less adequate for SEE and
should also be included in the comparisons. The papers do not pro-
vide analyses of the reasons for the results obtained either.

It is worth noting that even though some work in the SEE liter-
ature suggests that the performance of different models depends
significantly on the characteristics of the data set [27], existing
work on ensembles of learning machines suggests that they may
provide generally better results than single learning machines in
terms of MMRE and PRED(N) even when considering different data
sets [8].

As mentioned in Section 1, we overcome the problems of exist-
ing works on ensembles by using principled experimentation; by
using a more reliable symmetric performance measure; by consid-
ering the magnitude of the differences in performance; by compar-
ing three different ensembles of learning machines which present
different features potentially beneficial to SEE; by using a larger
number of data sets (including both PROMISE and ISBSG data sets);
and by performing an experimental analysis of the behaviour of
promising approaches to gain more insight on how to improve SEE.

We refer to an approach as automated when, given the project
data, it does not require human intervention and decision-making
in order to be used. This is an algorithmic feature which reduces
the complexity and cost of using the SEE tool, as a person operating
it would just need to provide the project data and push a button to
obtain a SEE. It is worth noting that parameter choice can usually
be automated as well. The ensemble approaches discussed in the
previous paragraphs [9,8,10] can be fully automated.

An approach that cannot be fully automated has higher tuning
complexity and cost, such as manual/visual inspection of experi-
ments to set/reconfigure the tool up. An example of such approach
is Kocaguneli et al. [11]’s. Their ensemble of learning machines has
very good performance in comparison to single learning machines.
However, it requires a large amount of manual work, including an
extensive experimentation procedure using several different types
of ‘‘solo-methods’’ (combinations of single learning machines and
preprocessing techniques) for creating the ensemble. It consists
of selecting the ‘‘best’’ solo-methods in terms of losses and stability
to compose the ensemble, by manually/visually checking and com-
paring their stability. The manual/visual checking process is
needed because it is necessary not only to determine what solo-
methods have the lowest number of losses, but also to check
whether these are the same as the ones comparatively more stable
and what level of stability should be considered as comparatively
superior or not.

As a fully automated approach would be desirable, the area of
ensembles for SEE still has room for improvement and can be con-
sidered as one of the promising topics of research in the area. In
our current work, we investigate fully automated approaches and
provide insight for future research on improving SEE in an auto-
mated way.
2.2. Locality for SEE

Approaches that perform estimations based mainly on training
examples that are similar to the project to be estimated can be re-
ferred to as locality approaches. As SEE data sets tend to be rela-
tively small and very heterogeneous, such approaches are likely
to be more adequate and perform better than approaches which
do not use locality.

An example of approach based on locality is presented by
Cuadrado Gallego et al. [18]. They use a clustering approach based
on Expectation Maximization (EM) to separate training examples
into different sets and construct a regression equation to model
each of them separately. This approach manages to achieve
improvements in terms of MMRE and PRED(30) over regression
equations created using the whole training set together. Another
study by Kocaguneli et al. [19] considers locality by using modified
RTs. They report improvements over traditional estimation by
analogy based on Euclidean distance nearest neighbours, which
is another form of locality approach.

There exist several types of RTs and they present many features
potentially useful for SEE even when no tailored modification is
introduced. RTs can be seen as rules to separate examples based
on their feature values. Each leaf node represents a subset of the
training examples used to create the tree. In order to make an esti-
mation, the leaf node most similar to the test example in terms of
input feature values is determined. So, RTs are based on locality. An
example of RT is shown in Fig. 1. As we can see, its rules are easily
readable by practitioners.
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RTs are created by considering not only the existing input fea-
tures of the training examples, but also the impact of the input fea-
ture values on the dependent variable. This is a potential advantage
over clustering approaches, which typically separate data accord-
ing to their input features only. Moreover, the locality approach
of determining the leaf node most similar to the example being
estimated may operate in such a way to give different importance
for different features, based on the levels of the tree in which they
are split. For example, if the most important feature for determin-
ing the effort is functional size, this feature would be used for the
highest level split of the tree. Less important features would be
used in lower level splits or even not used at all, as it happened
in Fig. 1. This hierarchy of features can be particularly useful for
SEE, as data sets frequently have many (more and less relevant)
features and few examples.

Nevertheless, it is not clear whether the separation of features
provided by the RTs is important only as a correlation-based fea-
ture selector or whether the relative importance of features is
essential for SEE. Analysis on this matter would provide good in-
sight for future approaches on improving SEE. The literature also
lacks comprehensive studies comparing locality approaches such
as RTs to clustering methods. So, it is not known whether RTs
would be more adequate locality approaches than cluster-based
approaches or which of them should be further exploited with
the aim of improving SEE. As briefly explained in Section 1, one
of the aims of the current paper is to address such questions.

2.3. Evaluation of different approaches for SEE

Current work on frameworks for evaluation of SEE models con-
siders issues such as explicit preprocessing [28], evaluation mea-
sures [29,21] and the importance of the magnitude of the
differences in performance [21]. There has also been work on sta-
tistical approaches for evaluating models across multiple data sets
in the general ML literature [20].

Foss et al. [29] show that measures based on MRE are poten-
tially problematic due to their asymmetry, biasing towards predic-
tion models that under-estimate. That includes a performance
measure very popular in the SEE literature: MMRE. Another mea-
sure, MAE, does not present asymmetry problems and is not
biased. However, it is difficult to interpret, since the residuals are
not standardised. So, measures such as MMRE have kept being
widely used by most researchers in the area. However, Shepperd
and Mc Donell [21] very recently proposed a new measure called
Standardised Accuracy (SA), defined as follows:

SA ¼ 1� MAEPi

MAEP0

;

where MAEPi
is the mean absolute error of the prediction model Pi

and MAEP0 is the mean value of a large number, typically 1000, runs
of random guessing. This is defined as predicting ŷ for the example t
by randomly sampling over the remaining n� 1 examples and tak-
ing ŷt ¼ yr , where r is drawn randomly with equal probability from
1; . . . ;n ^ r – t.

Even though this measure is a ratio, such as MMRE, this is not
problematic because we are interested in a single direction – better
than random [21]. SA can be interpreted as the ratio of how much
better Pi is than random guessing, giving a very good idea of how
well the approach does.

To judge the effect size, the following measure is suggested:

D ¼ MAEPi
�MAEP0

sP0

where sP0 is the sample standard deviation of the random guessing
strategy. The values of D can be interpreted in terms of the catego-
ries proposed by Cohen [30] of small (� 0:2), medium (� 0:5) and
large (� 0:8).

Shepperd and Mc Donell also suggested using the 5% quantile of
the random guessing to estimate the likelihood of non-random
estimation. However, we have found that comparing Pi’s SA to
P0’s 5% quantile can be a very conservative way to suggest whether
a model is or is not better than random. A possible reason for that
is the fact that the number of runs is not taken into account in such
a comparison. In our experiments, while Wilcoxon sign-rank tests
[31] detected significantly different models’ MAE in comparison to
random guessing with very low p-values (ranging from
1:6492� 10�4 to 5:0864� 10�18) and the effect size D against ran-
dom guess was very high, these models’ SAs were no better than
the 5% quantile of random guessing.

Nevertheless, the magnitude of the difference in performance
among different models is important and SA gives a very good idea
of how much better models are from random guessing. So, in our
work, we build upon previous work and we propose the use of
an evaluation framework that joins the power of statistical tests
as suggested by Demšar [20] to the importance of magnitude as
suggested by Shepperd and Mc Donell [21]. Our experimental
framework also explicitly considers the parameters choice, empha-
sising its importance.
3. Data sets

The analysis presented in this paper is based on several differ-
ent data sets from the PRedictOr Models In Software Engineering
Software (PROMISE) Repository [15] and from the International
Software Benchmarking Standards Group (ISBSG) Repository [16]
Release 10. As explained in Section 1, the fact that we use both
PROMISE and ISBSG data sets, as well as the high number of data
sets, are advantages of our work over previous works evaluating
ensembles for SEE. The data sets used in our work were chosen
to cover a wide range of features, such as number of projects, type
of features, countries and companies. Sections 3.1 and 3.2 provide
their description and explanation on how they were processed.

3.1. PROMISE data

The PROMISE data sets used in this study are: cocomo81,
nasa93, nasa, sdr and desharnais. Cocomo81 consists of the pro-
jects analysed by Boehm to introduce COCOMO [32]. Nasa93 and
nasa are two data sets containing Nasa projects from 1970s and
1980s and from 1980s and 1990s, respectively. Sdr contains pro-
jects implemented in 2000s and was collected at Bogazici Univer-
sity Software Engineering Research Laboratory from software
development organisations in Turkey. Desharnais’ projects are da-
ted from late 1980s. Table 1 provides some details about these data
sets. The next subsections explain their features, missing values
and preprocessing used.

3.1.1. Features
Cocomo81, nasa93 and nasa are based on the COCOMO [32] for-

mat, containing as input features 15 cost drivers, the number of
lines of code and the development type (except for nasa, which
does not contain the latter feature). The actual effort in person-
months is the dependent variable. Sdr is based on COCOMO II
[33], containing as input features 22 cost drivers and the number
of lines of code. The actual effort in person-months is the depen-
dent variable. The data sets were processed to use the COCOMO
numeric values for the cost drivers. The development type was
transformed into dummy variables.

Desharnais contains as input features the team experience in
years, the manager experience in years, the year the project ended,



Table 1
PROMISE data sets. The effort is measured in person-months for all data sets except desharnais, in which it is measured in person-hours.

Data set # Projects # Features Min effort Max effort Avg. effort Std. dev. effort

Cocomo81 63 17 5.9 11,400 683.53 1821.51
Nasa93 93 17 8.4 8211 624.41 1135.93
Nasa 60 16 8.4 3240 406.41 656.95
Sdr 12 23 1 22 5.73 6.84
Desharnais 81 9 546 23,940 5046.31 4418.77
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the number of basic logical transactions in function points, the
number of entities in the system’s data model in function points,
the total number of non-adjusted function points, the number of
adjusted function points, the adjustment factor and the program-
ming language. The actual effort in person-hours is the dependent
variable.

3.1.2. Missing values
The only data set with missing values is desharnais. In total, it

contains only four, out of 81 projects, with missing values. As this
is a small number of projects (about 5% of the total number of pro-
jects) and several previous papers have removed these projects
[8,27,34], we decided to remove them from our data set as well.

3.1.3. Preprocessing
Preprocessing data sets for detecting and removing outliers is

frequently necessary when building ML models. Works in the SEE
literature show that SEE data sets frequently contain a few outliers,
which may hinder the SEEs for future projects [35]. Outliers were
detected based on k-means. This method was chosen because it
has shown to improve performance in the SEE context [35]. K-
means is used to divide the projects into clusters. After that, clus-
ters with less than a certain number n of projects or projects with
negative silhouette values are considered outliers.

The silhouette [36] value for each project represents the simi-
larity of the project to the other projects in its cluster in compari-
son to the projects in the other clusters, ranging from �1 (more
dissimilar) to 1 (more similar). The silhouette values were calcu-
lated as follows: Consider that we use a clustering algorithm to
cluster a set of projects into a number of clusters. Repeat the fol-
lowing procedure for each project i. Let aðiÞ be the average dissim-
ilarity of i with respect to all other projects within A, where A is the
cluster to which i belongs. Here, we used Euclidean distance as the
measure of dissimilarity. Then, let dði;CÞ be the average dissimilar-
ity of i to all projects in C, where C is any of the clusters. After com-
puting dði;CÞ for all clusters C – A, let bðiÞ ¼minimumC–Adði;CÞ.
The silhouette value is defined as:

sðiÞ ¼ bðiÞ � aðiÞ
maxðaðiÞ; bðiÞÞ

The average sðiÞ for all projects is a measure of how appropriately
the projects have been clustered. So, it can be used to determine
the number of clusters k.

We used n ¼ 3, as in [35]. The number of clusters k was chosen
among k ¼ f2;3;4;5g, according to the average silhouette values.
The projects considered as outliers are shown in Table 2. The out-
Table 2
PROMISE data sets – outliers. The numbers identifying the outlier projects represent
the order in which they appear in the original data set, starting from one.

Data set K Outliers

Cocomo81 2 None
Nasa93 2 42, 46, 62
Nasa 2 2, 3
Sdr 2 9
Desharnais 2 9, 39, 54
lier identified for sdr was not eliminated because this data set is
very small (only 12 projects), providing not enough evidence to
consider the identified project as an outlier. As an additional step
of our experiments presented in Section 5, we verify and confirm
that such preprocessing is in practice recommendable.
3.2. ISBSG data

The ISBSG repository contains a large body of data about com-
pleted software projects. The release 10 contains 5,052 projects,
covering many different companies, several countries, organisation
types, application types, etc. The data can be used for several dif-
ferent purposes, such as evaluating the benefits of changing a soft-
ware or hardware development environment; improving practices
and performance; and estimation. In order to produce reasonable
SEE using ISBSG data, a set of relevant comparison projects needs
to be selected. With that in mind, we preprocessed the data set
(resulting in 621 projects) maintaining only projects with:

� Data and function points quality A (assessed as being sound
with nothing being identified that might affect their integrity)
or B (appears sound but there are some factors which could
affect their integrity/ integrity cannot be assured).
� Recorded effort that considers only development team.
� Normalised effort equal to total recorded effort, meaning that

the reported effort is the actual effort across the whole life
cycle.
� Functional sizing method IFPUG version 4+ or NESMA.
� No missing organisation type field.

After that, with the objective of creating different subsets, the
projects were grouped according to organisation type. Only the
groups with at least 20 projects were maintained, following
ISBSG’s data set size guidelines. The resulting organisation types
are shown in Table 3.

Table 4 contains additional information about the subsets. As
we can see, the productivity rate of different companies varies. A
7-way 1 factor Analysis of Variance (ANOVA) was used to confirm
the difference of productivity rates among the subsets, indicating
statistically significant difference at the 95% confidence interval
(p-value < 2:2� 10�16).

The next sections explain how the features were selected, how
to deal with the missing values and the preprocessing done after
dealing with features and missing values.
Table 3
ISBSG data – organisation types used.

Organisation type Id # Projects

Financial, property & business services 1 76
Banking 2 32
Communications 3 162
Government 4 122
Manufacturing; transport & storage 5 21
Ordering 6 22
Billing 7 21



Table 4
ISBSG subsets.

Id Unadjusted function points Effort Productivity

Min Max Avg Std Dev Min Max Avg Std Dev Min Max Avg Std Dev

1 43 2906 215.32 383.72 91 134,211 4081.64 15951.03 1.2 75.2 12.71 12.58
2 53 499 225.44 135.12 737 14,040 3218.50 3114.34 4.5 55.1 15.05 9.94
3 3 893 133.24 154.42 4 20,164 2007.10 2665.93 0.3 43.5 17.37 9.98
4 32 3088 371.41 394.10 360 60,826 5970.32 8141.26 1.4 97.9 18.75 16.69
5 17 13,580 1112.19 2994.62 762 54,620 8842.62 11715.39 2.2 52.5 23.38 14.17
6 50 1278 163.41 255.07 361 28,441 4855.41 6093.45 5.6 60.4 30.52 17.70
7 51 615 160.10 142.88 867 19,888 6960.19 5932.72 14.4 203.8 58.10 61.63

Table 5
ISBSG subsets – outliers. The numbers identifying the outlier projects represent the
order in which they appear in the original data set, starting from one.

Id K Outliers

1 2 38
2 2 None
3 2 80, 91, 103, 160
4 2 4, 10, 75, 89, 104
5 2 20
6 3 4
7 3 None
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3.2.1. Features
The ISBSG suggests that the most important criteria for estima-

tion purposes are the functional size; the development type (new
development, enhancement or re-development); the primary pro-
gramming language or the language type (e.g., 3GL, 4GL); and the
development platform (mainframe, midrange or PC). As develop-
ment platform is missing in more than 40% of the projects for
two organisation types, the following criteria were used as fea-
tures: functional size; development type; and language type.

The normalised work effort in hours is the dependent variable.
Due to the preprocessing, this is the actual development effort
across the whole life cycle.

3.2.2. Missing values
The features ‘‘functional size’’ and ‘‘development type’’ have no

missing values. The feature ‘‘language type’’ is missing in several
subsets. Even though this feature is never missing in more than
40% of the projects of any ISBSG subset, it is missing in 25 of the
76 projects (about 33%) of ISBSG subset org1. We consider this per-
centage to be too high to eliminate the 25 projects from this subset,
as we would loose too many data that are potentially useful in
improving a model’s performance [37,38]. We decided to adopt
an imputation method so that this feature can be kept without
having to discard the projects in which it is missing.

The imputation method was based on k-Nearest Neighbours (k-
NN). K-NN imputation has shown to be able to improve SEEs [39].
It is particularly beneficial to this area because it is simple and does
not require large data sets. Another method, based on the sample
mean, also presents these features, but k-NN has shown to outper-
form it in two SEE case studies [39].

According to Cartwright et al. [39], ‘‘k-NN works by finding the k
most similar complete cases to the target case to be imputed where
similarity is measured by Euclidean distance’’. When k > 1, several
different methods can be used to determine the value to be im-
puted, for example, simple average. For categorical values, vote
counting is adopted. Typically, k ¼ 1 or 2. As language type is a cat-
egorical feature, using k ¼ 2 could cause draws. So, we chose k ¼ 1.
The Euclidean distance considered normalised data sets.

3.2.3. Preprocessing
Similarly to the PROMISE data sets (Section 3.1), the ISBSG data

sets were preprocessed to detect and remove outliers through k-
means [40]. K was chosen among k ¼ f2;3;4;5g based on the aver-
age silhouette values. The chosen k was 2 for subsets 1–5 and 3 for
subsets 6 and 7. The number of outliers varied from none to 5, as
shown in Table 5. None of the data sets were reduced to less than
20 projects after outliers elimination.

4. Experimental framework

ML experiments involve three important points besides the
choice of data sets to be used: (1) choice of learning machines,
(2) choice of evaluation methods and (3) choice of parameters.
All these points should be considered carefully based on the aims
of the experiments, which in this case are the research questions
explained in Section 1. The framework presented in this section
concentrates mainly on evaluating and choosing ML models for
SEE. This is used at least partly to answer each of the research
questions of this work, as explained in more detail in the experi-
mental Sections 5 to 7. RQ4 (how to evaluate/choose a ML model
for SEE) is itself partly answered by the framework proposed in
the current section.
4.1. Choice of learning machines

As explained in Section 1, RQ1 involves determining whether
existing automated ensembles of learning machines generally im-
prove effort estimations given by single learning machines, includ-
ing potentially adequate locality approaches such as RTs. With that
aim, three ensemble and three single learning machines were cho-
sen to be used:

� Single learning machines:
– REPTree Regression Trees (RTs) [13,41];
– Radial Basis Function networks (RBFs) [42]; and
– MultiLayer Perceptrons (MLPs) [42].
� Ensembles of learning machines:

– Bagging [12] with MLPs (Bag + MLPs), with RBFs (Bag + RBFs)
and with RTs (Bag + RTs);

– Random [13] with MLPs (Rand + MLPs); and
– Negative Correlation Learning [43,14] with MLPs (NCL +

MLPs).

RTs were chosen because they are single learning machines
based on locality and present several potential advantages for
SEE, as outlined in Section 2.2. RBFs are based on locality as well,
due to the radial basis functions (typically Gaussians) used in their
hidden nodes. When the inputs are fed into the hidden layer, their
distances (e.g., Euclidean distances) to the centre of each neuron
are calculated. After that, each node applies a radial basis function
to the distance, which will produce lower/higher values for larger/
shorter distances. Each hidden neuron i is connected to each out-
put neuron j with weight wji and output neurons usually compute
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a linear function of their inputs when working with regression
problems. Due to the use of a radial basis function, changes in
the weights connecting a given hidden neuron to the output neu-
rons do not affect input values that are far from the centre of this
neuron. In short, RBFs use locality.

Even though the choice of RTs and RBFs was based on their rela-
tion to locality, MLPs are not local learning machines and were in-
cluded as an example of non-local approach. They were chosen for
being popular learning machines that can approximate any contin-
uous function [42]. They have also been investigated in the SEE
context [5,7,3,4,6,8,9]. For instance, Tronto et al. [7] showed that
they can outperform linear regression because they are able to
model observations that lie far from the best straight line. MLPs
can be easily combined using several different ensemble ap-
proaches, such as bagging, random ensembles and NCL. Other
non-local approaches that are not restricted to certain function
shapes were not chosen because they do not perform well for
regression tasks (e.g., Naive–Bayes [44]) or have not been so much
used for SEE (e.g., support vector machines).

Each of the chosen ensembles has a potential advantage and
disadvantage for SEE. So, they were selected in order to verify
which of these advantages is in fact more relevant. Bagging is
one of the most well known ensemble learning approaches in the
literature. It creates diversity by training each base learning ma-
chine with a different training set generated by sampling with
replacement from the available training data. By using this scheme,
bagging is able to turn weak learning machines into stronger ones
[12]. This can be particularly advantageous for SEE, as there are
usually very few projects to be used for learning, producing very
inaccurate base learning machines that may be considered as
weak. For instance, combining bagging with RTs may produce good
results, as this could be considered an automated way to join the
power of ensembles to locality.

On the other hand, each base learning machine in a bagging
ensemble is trained with only about 63.2% of the unique examples
from the available original training set [45]. So, another approach
called random committees/ensembles was also used. Random
ensembles are based on the fact that different initial conditions
may cause different neural networks to converge into different lo-
cal minima of the cost function. They turn an apparent disadvan-
tage, local minima in training neural networks, into something
useful by averaging (in the case of regression) the predictions of
base learning machines trained using different random seeds. De-
spite its simplicity, this procedure works surprisingly well in many,
but not all, cases [46–48]. If the base learning machines are inde-
pendent of each other, the squared prediction error of the ensem-
ble is equal to or less than the mean of the squared prediction
errors of the base learning machines [49]. The problem of this ap-
proach is that there is no guarantee that a good level of diversity
will be achieved, as random ensembles do not always lead to
uncorrelated base learning machines just by using different ran-
dom seeds [43].

NCL [43,14] was chosen for having strong theoretical founda-
tions for regression problems, explicitly controlling diversity
through the error function of the base learning machines [23]. Its
disadvantage is that it is usually used with strong learning ma-
chines. Besides, it can only be used with neural networks. Other
learning machines such as RTs cannot be currently used.

The choice of base learning machines for the ensembles was
based not only on combinations of local learning machines to
ensembles, but also on the ensemble’s intrinsics. The expected er-
ror of a predictor can be decomposed into bias and variance terms
[50]. The bias measures how different the expected predictions are
in comparison to the actual values. The variance measures how
much the predictor varies from one training set to another, drawn
from the same distribution. Bagging is an approach that can
improve ensemble performance by reducing the variance [12],
working well with learning machines such as MLPs, RBFs and
RTs. However, learning machines such as k-NN already have low
variance [51] and cannot be improved through bagging. For that
reason, we used MLPs, RBFs and RTs as base learning machines
for bagging, but not k-NN (or other analogy based learning ma-
chines). Learning machines such as deterministic regression trees
or k-NN do not produce different models with different random
seeds, so they cannot be used with a random ensemble, which is
typically used with neural networks [49].

RQ2 involves analysing different locality approaches and deter-
mining which of them is more adequate for SEE. With that in mind,
the following locality approaches were chosen:

� RTs;
� K-Nearest Neighbours (k-NN) [52] based on normalised features

and Euclidean distance; and
� Clustering approaches: Expectation Maximization (EM) [52];

Spectral Clustering (SC) [53,54]; and K-Means [52] based on
normalised features and Euclidean Distance.

K-NN was chosen because it represents a traditional way to per-
form SEE by analogy [34]. EM was chosen for having been previ-
ously successfully used in the SEE domain [18]. SC was chosen
because it is not restricted to hypersphere clusters in the space
of input features and there is no evidence that SEE data clusters
should have hypersphere shape. K-means was chosen for being a
very simple approach restricted to hypersphere shape, offering a
good comparison to indicate whether SEE data needs or not non-
spherical clusters.

In order to use the clustering approaches for predictions, a sin-
gle RT was created to learn each cluster of training examples. Sim-
ilarly to Cuadrado Gallego et al.’s work with regression equations
[18], whenever required to perform a prediction, the approach
determines to which cluster the example belongs and then uses
the corresponding RT for estimating the effort.

In order to answer RQ3, additional approaches which are based
on rules, similarly to RTs, were also used to compose an ensemble
of multiple types of base learning machines. These are Decision Ta-
bles, Conjective Rules and M5 Rules [13].

All the learning machines but NCL were based on the Weka
implementation [13]. The regression trees were based on the REP-
Tree implementation available from Weka. We recommend the
software Weka should the reader wish to get more details about
the implementation and parameters. The SC algorithm was the
one provided by Dragone [55]. The software used for NCL is avail-
able upon request.

4.2. Choice of evaluation methods

The following measures of performance were used in this work
[28,8,21]: Mean Magnitude of the Relative Error (MMRE), Percent-
age of Estimates within 25% of the actual values PRED(25), Mean
Absolute Error (MAE) and Standardised Accuracy (SA). MMRE and
PRED(25) were chosen because they were used in previous work
evaluating ensembles, and one of our aims is to build upon those
works to determine through principled experiments whether
ensembles are or not generally better than single learning ma-
chines (RQ1). The results of the ensembles evaluation using these
measures were published at PROMISE’11 [56]. Those experiments
are extended in the current work by using MAE and SA, which
are more reliable performance measures. Unless stated otherwise,
the analysis will always refer to the measures calculated on the
test set.

Our previous work [56] shows that no learning machine is
consistently the best across different data sets. However, learning
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machines may be singled out as being most frequently among the
best. So, in the current work, we omit the evaluation done in our
previous work to determine whether a certain learning machine
is consistently the best based on Menzies et al.’s rejection rules
[28]. Those rules were previously used to determine whether a cer-
tain approach is the best for a given data set through pairwise com-
parisons with every other approach. Instead, we use Friedman
statistical test to determine whether the performance of the learn-
ing machines in terms of MAE is statistically significantly different
from each other considering multiple data sets.

Friedman was recommended by Demšar [20] as an adequate
test for comparing multiple learning machines across multiple data
sets. This statistical test also provides a ranking of algorithms as
follows. Let rj

i be the rank of the jth of k algorithms on the ith of
N data sets. The average rank of algorithm j is calculated as
Rj ¼ 1

N

P
ir

j
i. The rounded average ranks can provide a fair compar-

ison of the algorithms given rejection of the null hypothesis that
all the approaches are equivalent. Nevertheless, Wilcoxon sign-
rank tests [31] are typically used to compare a particular model
to other models across multiple data sets after rejection of the
Friedman null hypothesis, where necessary. Holm–Bonferroni cor-
rections can be used to avoid high Type-I error due to the multiple
tests performed.

As data sets are very heterogeneous in SEE and the performance
of the approaches may vary greatly depending on the data set, it is
also important to check what approaches are usually among the
best and, when they are among the worst, whether the magnitude
of the performance is much worse from the best approach for that
data set or not. This type of analysis also helps to identify on what
type of data sets certain approaches behave better. It is worth not-
ing that statistical tests such as Friedman and Wilcoxon are based
on the relative ranking of approaches, thus not considering the real
magnitude of the differences in performance when used for com-
parison across multiple data sets. So, even if a Friedman test ac-
cepts the null hypothesis that all approaches perform similarly
across multiple data sets, it is still valid to check what approaches
are most often among the best, on what type of data sets, and the
magnitude of the differences in performance. In our previous work
[56], we only checked what approaches were among the best (in
terms of MMRE and PRED(25)), not considering the magnitude of
the differences in performance. In the current work, we extend
the evaluation framework to (1) check the approaches among the
best in terms of MAE and (2) check the magnitude of the differ-
ences in performance by determining whether an approach has
SA worse than the best approach for each given data set in more
than 0.1 units.

So, building upon out previous work [56], recent work on eval-
uation of models for SEE [21], and Demšar’s work on comparison
over multiple data sets [20], we use an evaluation framework
based on the following three steps:

1. Friedman statistical test and ranking across multiple data sets
to determine whether approaches behave statistically signifi-
cantly differently considering several data sets.

2. Determine which approaches are usually among the first and
second highest ranked approaches and, possibly, identify to
which type of data sets approaches tend to perform better.

3. Check how much worse each approach is from the best
approach for each data set.

A good approach would be highly ranked by Friedman and sta-
tistically significantly different from lower ranked approaches,
would be more frequently among the best, and would not perform
too bad in terms of SA when it is not among the best.

The evaluation was based on 30 rounds of executions for each
data set. In each round, for each data set, 10 examples were
randomly picked for testing and the remaining were used for the
training of all the approaches being compared. Holdout of size 10
was suggested by Menzies et al. [28] and allows the largest possi-
ble number of projects to be used for training without hindering
the testing. For sdr, half of the examples were used for testing
and half for training, due to the small size of this data set.

The experiments use the PROMISE data sets explained in Sec-
tion 3.1, the ISBSG subsets explained in Section 3.2 and a data
set containing the union of all the ISBSG subsets. The union was
used in order to create a data set likely to be more heterogeneous
than the previous ones.
4.3. Choice of parameters

The choice of parameters is a critical step in ML experiments, as
results can vary greatly depending on it. For instance, a learning
machine that would have better performance under certain
choices could have worse performance under other choices. It is
important that the method used for choosing the parameters is
made clear in papers using ML, so that differences in the results ob-
tained can be better understood.

In order to choose the parameters, we performed five prelimin-
ary rounds of executions using all the combinations of parameters
shown in Table 6 for each data set and learning approach. The
parameters providing the lowest MMRE for each data set were cho-
sen to perform 30 rounds of final executions, which were used in
the comparison analysis. In this way, each approach enters the
comparison using the parameters that are most likely to provide
the best results for each particular data set. These parameters were
omitted due to the large number of combinations of approaches
and data sets used. The performance measure MMRE was chosen
for being used in all previous work evaluating existing automated
ensembles.

When ensembles of multiple types of base learning machines
were used, parameter values for conjunctive rules varied among
f3;4;5g for choosing number of folds for pruning. Parameter val-
ues for M5 rules varied among f2;4;8g for choosing the minimum
number of instances at a leaf node.

In this work, clustering approaches were used together with
RTs, as explained in Section 4.1. The RT parameters were chosen
as explained above. However, the parameters of the clustering ap-
proaches were selected using a different strategy. The silhouette
values were used as a heuristic to automatically tune parameters
for each set of training examples. The value (among the values
shown in Table 7) that provided the highest average silhouette va-
lue was chosen, unless it leads to a single cluster or to cluster sizes
smaller than three. In this case, the parameter value generating the
second highest average silhouette value was chosen and so forth.
5. Evaluation of existing automated ensemble approaches
against single learning machines

This section mainly aims at determining whether existing auto-
mated ensembles of learning machines generally improve effort
estimations given by single learning machines, including poten-
tially adequate locality approaches such as RTs, and which of them
would be more useful (RQ1). This is done by evaluating ensemble
learning approaches against single learning machines using the
framework presented in Section 4. This section also partly investi-
gates RQ2 by evaluating the performance of RT and RBF, which are
locality approaches. All the analyses in terms of MAE, SA and D are
new to this paper, whereas analyses based on MMRE and PRED(25)
were previously published in our PROMISE’11 paper [56].

As a pre-analysis, we can observe that very different perfor-
mances were obtained for different data sets: The MMRE obtained



Table 6
Parameter values for preliminary executions.

Approach Parameters

MLP Learning rate = f0:1;0:2;0:3;0:4;0:5g
Momentum = f0:1;0:2;0:3;0:4;0:5g
# epochs = f100;500;1000g
# hidden nodes = f3;5;9g

RBF # clusters = f2;3;4;5;6g
Minimum std. deviation for the
clusters = f0:01;0:1;0:2;0:3;0:4g

REPTree Minimum total weight for instances in a leaf = f1;2;3;4;5g
Minimum proportion of the data variance at a node for splitting
to be performed = f0:0001;0:001;0:01;0:1g

Ensembles # base learning machines = f10;25;50g
All the possible parameters of the adopted base learning
machines, as shown above

NCL Penalty strength = f0:3;0:4;0:5g

K-NN Number of neighbours = f1;2;4;8;16g

Table 7
Parameter values for clustering approaches.

Approach Parameters

EM Minimum standard deviation = f10�6;10�5;10�4;10�3g
Maximum number of iterations = 1000
Number of clusters automatically determined by cross-validation

SC Maximum normalised cut value = f0:3;0:5;0:7;0:9g

K-Means Cluster size = f2;3;4;5g
Maximum number of iterations = 500

Table 8
SA and effect size D for approaches ranked as first, second and last in terms of SA for
each data set.

Approach SA D

Cocomo81 Bag + MLP 0.5968 0.9679
RT 0.5902 0.9572
RBF 0.3024 0.4904

Nasa93 RT 0.6205 1.2647
Bag + RT 0.6167 1.2569
NCL 0.1207 0.2460

Nasa Bag + RT 0.6423 1.5401
RT 0.6409 1.5367
RBF 0.2618 0.6277

Sdr RT 0.2626 0.7508
Bag + RT 0.2066 0.5907
Rand + MLP �2:9981� 108 �1:3140� 108

Desharnais Bag + MLP 0.5248 1.7132
Bag + RT 0.5049 1.6484
RBF 0.3724 1.2157

Org1 MLP 0.4573 0.6670
Bag + MLP 0.4441 0.6478
RT 0.2245 0.3275

Org2 Bag + RBF 0.2719 0.9941
Bag + MLP 0.2716 0.9930
NCL 0.0280 0.1025

Org3 Bag + RT 0.5511 1.3237
RT 0.5347 1.2843
NCL 0.4331 1.0402

Org4 MLP 0.3276 0.6995
RBF 0.3175 0.6779
NCL 0.0248 0.0530

Org5 Bag + RT 0.4259 1.9993
Bag + MLP 0.4038 1.8957
NCL 0.2117 0.9939

Org6 Bag + RBF 0.4930 2.2358
MLP 0.4680 2.1224
NCL 0.3617 1.6405

Org7 Bag + RBF 0.3017 1.3739
Bag + MLP 0.2948 1.3425
RBF 0.0285 0.1300

OrgAll Bag + RT 0.4416 1.0523
RT 0.4318 1.0288
Bag + MLP 0.3319 0.7907

Table 9
Friedman ranking of approaches in terms of MAE.

Rounded avg. rank Avg. rank Std. dev. rank Approach

3 2.77 1.69 Bag + RT
3.38 2.18 Bag + MLP
3.46 1.98 Bag + RBF

4 4.15 2.58 RT

5 4.54 2.22 MLP
5.23 1.54 Rand + MLP

6 5.92 2.02 RBF

7 6.54 1.66 NCL + MLP

9 9.00 0.00 Random Guess
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by the best performing approach for each particular data set varied
from 0.37 to 2.00. The MdMRE varied from 0.21 to 0.78. The
PRED(25) varied from 0.17 to 0.55. The correlation between esti-
mated and real effort varied from 0.05 to 0.91. The SA varied from
0.26 to 0.64. Table 8 shows the SA and effect size D in comparison
to random guess obtained by the approach with the highest, sec-
ond highest and lowest SA for each data set.

5.1. Friedman ranking

As a first step of the evaluation, the Friedman ranking of the
ensembles, single learning machines and random guess in terms
of MAE was determined and Friedman statistical test was used to
check whether these approaches have statistically significantly dif-
ferent MAE. The ranking generated by the test is shown in Table 9.
The Friedman test rejects the null hypothesis that all approaches
perform similarly (statistic Ff ¼ 12:124 > Fð8;96Þ ¼ 2:036). As we
can see from the table, random guess was always ranked last. An
additional test was performed without including random guess
and the null hypothesis was also rejected (statistic Ff ¼ 4:887 >
Fð7;84Þ ¼ 2:121).

All bagging approaches performed comparatively well, being on
average ranked third. RTs were ranked on average just below, as
fourth. As the null hypothesis that all approaches perform similarly
was rejected, Wilcoxon sign-rank tests with Holm–Bonferroni cor-
rections were performed to determine whether the RT’s MAE is
similar or different from Bag + RT’s, Bag + MLP’s and Bag + RBF’s
across multiple data sets. Table 10 shows the p-values.

The tests reveal that ensembles in general do not necessarily
perform better than an adequate locality approach such as RTs.
Bag + MLP and Bag + RBF obtained statistically similar performance
to RTs. However, Bag + RT, which is an ensemble of locality learn-
ing machines, obtains higher and statistically significantly different
Friedman ranking in terms of MAE from single RTs. The number of
win/tie/loss of Bag + RT vs RT is 10/1/2, further confirming the good
performance of Bag + RTs.

Even though single RBFs use locality, they did not perform so
well. A possible reason for that is that, even though locality is used
in the hidden nodes, the output nodes are based on linear
functions.



Table 10
Wilcoxon sign-rank tests for comparison of RT’s
MAE to Bag + RT’s, Bag + MLP’s and Bag + RBF’s
across multiple data sets. The p-value in italics
represents statistically significant difference
with Holm-Bonferroni corrections at the overall
level of significance of 0.05.

Approaches compared p-Value

RT vs Bag + RT 0.0134
RT vs Bag + MLP 0.4143
RT vs Bag + RBF 0.4143

Table 11
Number of data sets in which each learning machine was ranked first or second
according to MAE, MMRE and PRED(25). Learning machines never among the first or
second are omitted.

PROMISE data ISBSG data All data

(a) According to MAE
RT: 4 Bag + MLP: 4 Bag + RT: 7
Bag + RT: 4 Bag + RT: 3 RT: 6
Bag + MLP: 2 Bag + RBF: 3 Bag + MLP: 6

MLP: 3 MLP: 3
RT: 2 Bag + RBF: 3
RBF: 1 RBF: 1

(b) According to MMRE
RT: 4 RT: 5 RT: 9
Bag + MLP: 3 Bag + MLP 5 Bag + MLP: 8
Bag + RT: 2 Bag + RBF: 3 Bag + RBF: 3
MLP: 1 MLP: 1 MLP: 2

Rand + MLP: 1 Bag + RT: 2
NCL + MLP: 1 Rand + MLP: 1

NCL + MLP: 1

(c) According to PRED(25)
Bag + MLP: 3 RT: 5 RT: 6
Rand + MLP: 3 Rand + MLP: 3 Rand + MLP: 6
Bag + RT: 2 Bag + MLP: 2 Bag + MLP: 5
RT: 1 MLP: 2 Bag + RT: 3
MLP: 1 RBF: 2 MLP: 3

Bag + RBF: 1 RBF: 2
Bag + RT: 1 Bag + RBF: 1
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5.2. Approaches most often ranked first or second in terms of MAE,
MMRE and PRED(25)

As a second step of the evaluation, the learning machines most
often ranked as first or second in terms of MAE, MMRE and
PRED(25) were determined. Part of the reason to report results in
terms of MMRE and PRED(25) here is to allow comparison of our
conclusions to previous works in the area, which are based on
these measures. However, verifying whether different results are
achieved when using different performance measures can also pro-
vide interesting insight on the behaviour of the approaches, as dis-
cussed in Section 5.4. Some results in terms of SA are also
presented in order to provide more easily interpretable results.

In order to check how valid this analysis is, we first compare the
SA and effect size D of the approach ranked as first, second and last
in terms of MAE for each data set. Table 8 shows these values. As
we can see, the approaches ranked first or second frequently
achieve SA at least 0.20 higher (better) than the worst approaches.
That is reflected in the overall average SA considering all data sets,
which improves from 0.2251 (approaches ranked last) to 0.4599
and 0.4712 (approaches ranked first and second, respectively).
The effect size D in relation to random guess is frequently changed
from small/medium to large, emphasising the importance of using
higher ranked approaches. Wilcoxon rank-sum statistical tests
using Holm–Bonferroni corrections at the overall level of signifi-
cance of 0.05 for comparing the approaches ranked first and second
against random guess detect statistically significant difference for
all cases. The p-values are very low, ranging from 1:6492� 10�4

to 5:6823� 10�19, confirming that the performance of these ap-
proaches is indeed better than random guessing.

Table 11a shows the learning machines ranked most often as
first or second in terms of MAE. The results show that Bag + RTs,
Bag + MLPs and RTs are singled out, appearing among the first
two ranked approaches in 27%, 23% and 23% of the cases, whereas
all other approaches together sum up to 27% of the cases. It is
worth noting that Bag + RBF, which achieved high Friedman rank,
does not appear so often among the best two approaches. One
might think that Bag + RBF’s rank for each data set could be more
median, but more stable. However, the standard deviation of the
ranks (Table 9) is similar to Bag + RT’s and Bag + MLP’s. So, the lat-
ter approaches are preferable over Bag + RBFs.

The table also shows that RTs are comparatively higher ranked
for PROMISE than for ISBSG, achieving similar ranking to bagging
approaches for PROMISE, but lower ranking for ISBSG. Even though
RTs perform statistically similarly to Bag + MLPs and Bag + RBFs
(Section 5.1), the difference in performance is statistically signifi-
cant in comparison to Bag + RTs. Further Wilcoxon sign-rank tests
to compare RTs and Bag + RTs considering separately PROMISE and
ISBSG data show that there is no statistically significant difference
considering PROMISE on its own (p-value 1), but there is consider-
ing ISBSG (p-value 0.0078). So, approaches joining the power of
bagging ensembles to the locality of RTs may be particularly help-
ful for more heterogeneous data.
Table 11b shows the two learning machines most often ranked
as first and second in terms of MMRE. Both RTs and Bag + MLPs are
very often among the first two ranked learning machines according
to MMRE. The trend can be observed both in the PROMISE and
ISBSG data sets. For PROMISE, RTs or Bag + MLPs appear among
the first two ranked approaches in 70% of the cases, whereas all
other learning machines together sum up to 30%. For ISBSG, RTs
or Bag + MLPs appear among the first two ranked in 62.5% of the
cases, whereas all other learning machines together sum up to
37.5%. Wilcoxon sign-rank tests show that these two approaches
perform similarly in terms of MMRE (p-value of 0.2439).

The analysis considering PRED(25) shows that both RTs and
Bag + MLPs are again frequently among the first two ranked
(Table 11c), but Rand + MLP becomes more competitive. If we con-
sider PROMISE data by itself, ensembles such as Bag + MLPs are
more frequently ranked higher than single learning machines, even
though that is not the case for ISBSG. However, a Wilcoxon sign-
rank test across multiple data sets shows that Bag + MLPs and
RTs are statistically similar in terms of MMRE (p-value of
0.7483). Tests considering PROMISE and ISBSG data separately do
not find statistically significant difference either (p-value of
0.8125 and 0.3828, respectively).

As we can see, RTs and Bag + MLPs are singled out as more fre-
quently among the best both in terms of MMRE, PRED(25) and
MAE and they perform statistically similarly independent of the
performance measure. Other approaches such as Rand + MLP and
Bag + RTs become more or less competitive depending on the per-
formance measure considered. Bag + RBFs, differently from the
Friedman ranking, is not singled out, i.e., it is not frequently among
the best. Our study also shows that Bag + RTs outperform RTs in
terms of MAE mainly for ISBSG data sets, which are likely to be
more heterogeneous.
5.3. Magnitude of performance against the best

In this section, we analyse how frequently an approach is worse
than the best MAE approach in more than 0.1 units of SA. There are
34 cases in which approaches are worse than the best MAE



Table 12
Number of times that an approach is worse than the best
MAE approach of the data set in more than 0.1 units of
SA.

Approaches Number of times

RT, Bag + RT 1
Bag + MLP, Bag + RBF, MLP 3
Rand + MLP 5
RBF 8
NCL + MLP 10
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approach of the data set in more than 0.1 units of SA. p-Values of
Wilcoxon tests to compare these approaches to the best MAE are
below 0.05 in 28 cases. If we apply Holm–Bonferroni corrections
considering all the 34 comparisons, the difference is statistically
significant in 20 out of 34 cases (59%). So, it is reasonable to con-
sider the number of times that each approach is worse than the
best in order to evaluate its performance.

Table 12 shows how many times each approach is worse than
the best MAE approach in more than 0.1 units of SA. As we can
see, RTs and Bag + RTs are rarely worse than the best MAE ap-
proach in more than 0.1 SA. They are worse in only 1 in 13 data
sets. Bag + MLPs, Bag + RBFs and MLPs behave slightly worse, with
the difference in SA higher than 0.1 SA in three data sets.
5.4. Discussion

Summarizing, we can see that Bag + RTs present a very good
behaviour for SEE. They have higher average (Friedman) rank, are
more frequently among the best in terms of MAE and are rarely
worse than the best MAE approach of the data set in more than
0.1 units of SA. This is an example of how joining the power of bag-
ging ensembles to a good locality approach can help improving
SEE. Bag + RTs were particularly helpful to improve performance
in terms of MAE for ISBSG data sets, which are likely to be more
heterogeneous. Such a behaviour provides part of the answer to
RQ1: adequate ensemble approaches benefiting from locality, such
as Bag + RTs, are singled out as performing in general compara-
tively better than single learning machines for SEE, including local-
ity approaches such as RTs. These results also provide the insight
that future research on improving SEE using automated learning
machines may benefit from further exploiting the advantages of
ensembles and locality together, contributing to answer RQ3.

The analysis also shows that, even though RTs perform worse
than Bag + RTs in terms of MAE, they do not perform poorly in
comparison to other approaches. Their MAE is statistically similar
to Bag + MLPs and Bag + RBFs, showing that the power of ensem-
bles on its own is not enough to generally outperform adequate
locality learning machines such as RTs, complementing the answer
to RQ1. The comparisons performed in this section are also partly
related to RQ2, showing that the locality approach RT performs
well in comparison to other approaches and is rarely worse than
the best performing approach in more than 0.1 units of SA.

The analysis from this section, together with the framework
presented in Section 4, provide an answer to RQ4. As no approach
is always the best independent of the data set, ideally, an organisa-
tion should perform experiments following a principled framework
in order to choose a model for their particular data set. Neverthe-
less, if an organisation has no resources to perform such experi-
ments, Bag + RTs are more likely to perform comparatively well
across different data sets and are rarely worse than the best ap-
proach for a particular data set in more than 0.1 SA. Even though
single RTs may perform slightly worse than Bag + RTs, they do
not perform bad in comparison to other approaches and may be
used if the practitioners would like to understand the rules used
by the learning machine to perform estimations.

The conclusions above are mainly drawn based on MAE and SA,
which are considered as more adequate and reliable performance
measures than MMRE and PRED(N). In terms of behaviour indepen-
dent of the performance measure used, RTs and Bag + MLPs are al-
ways singled out as being frequently first or second ranked,
whereas Bag + RT is less frequently among the best in terms of
MMRE and PRED(25). So, in terms of MMRE and PRED(25), ensem-
bles cannot be considered as generally outperforming adequate
single learning machine approaches such as RTs. Such a difference
in the evaluation based on MAE and MRE-based measures gives us
an interesting insight. It suggests that the slightly worse perfor-
mance of RTs and Bag + MLPs in comparison to Bag + RTs in terms
of MAE may be related to the fact that RTs and Bag + MLPs suffer
more from underestimations. This issue should be further analysed
as future work and could be helpful for improving the performance
of these approaches for SEE.

It is worth noting that previous works on ensembles have used
mostly measures based on MRE [9,8,10]. One of the reasons for us
to report results using MMRE and PRED(N) in addition to MAE and
SA is to compare our conclusions to the conclusions obtained by
some of those works.

In terms of MMRE and PRED(N), even though our work provides
a different (practically the opposite) conclusion from Braga et al.
[9], it does not necessarily contradict their reported results. Con-
sidering that the best performances obtained by their ensembles
and single learning machines is very similar in their experiments,
had statistical tests been done, their conclusion could possibly
have been more similar to ours.

Another important point to be mentioned is that the bagging
version used here is not the same version used by Kultur et al.
[8]. In Kultur et al.’s work, instead of taking the simple average
of the outputs of the base learning machines as the output of the
ensemble, the outputs of the base learning machines are first clus-
tered using adaptive resonance theory. After that, the simple aver-
age of the estimations in the largest cluster is considered as the
output of the ensemble.

As Kultur et al.’s approach is not available as open source, we
performed the following test to compare Bag + MLPs with the best
result that the bagging ensemble could produce should other
scheme than the simple average be used as the output of the
ensemble. The best result was produced by making the output of
the ensemble as the best output produced by any of its base learn-
ing machines. This ideal ensemble can improve both MMRE,
PRED(25) and MAE for several data sets, according to Wilcoxon
sign-rank tests considering the level of significance of 0.05 using
Holm–Bonferroni corrections. So, Bag + MLPs still have potential
to be improved for SEE, in particular considering the choice of
the base models to be used for predictions. This is an additional in-
sight (RQ3) provided by this section.

It is also worth making a note on the preprocessing of the data
sets. As explained in Section 3, data sets were preprocessed using
k-means for outliers removal. Outliers are examples different from
usual and that cannot be well estimated by the models generated.
Experiments done using RTs and Bag + MLPs reveal that the error
obtained when attempting to use the models to estimate solely
outlier projects is worse than the average obtained using non-
outlier examples, both in terms of MAE and PRED(25). Interest-
ingly, the error in terms of MMRE is not much affected. As MMRE
tends to bias models towards underestimations [21], these outliers
are likely to be projects underestimated by the models.

We have also repeated the experiments using Bag + RTs,
Bag + MLPs and RTs, but without performing this part of the pre-
processing, i.e., allowing the train/test sets to contain outliers.
The experiments reveal that the SAs obtained are considerably



Table 14
Friedman ranking of locality approaches.

Rounded avg. rank Avg. rank Std. dev. rank Approach
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reduced. So, in practice, the use of a clustering approach such as k-
means is recommendable to remove outliers from the training sets
and to identify whether a test example is an outlier.
3 2.77 1.30 RT
2.77 1.64 k-NN
3.00 1.15 k-Means
3.23 1.42 SC
3.23 1.69 EM
6. Comparison of locality approaches

This section concentrates mainly on answering RQ2: what local-
ity approach is more adequate for SEE tasks? In particular, how
well does RT locality do in comparison to other locality ap-
proaches? On what type of data sets? This research question is
new to the current paper. The analysis presented in Section 5
partly contributes to its answer by evaluating RT’s suitability in
comparison to other approaches. In the current section, we analyse
different locality approaches not only in order to verify which of
them is more appropriate for SEE, but also to provide insight on
improving SEE (RQ3). The approaches analysed are: RTs, EM, k-
means, SC and k-NN.

6.1. Number of clusters generated

Table 13 shows the average number of clusters generated by
EM, k-means and SC. As we can see, EM and SC tend to produce
a single cluster in 5 and 4 out of 13 data sets, respectively. On
the one hand, these approaches can be considered to fail to cor-
rectly identify training examples with similar features in the SEE
domain. On the other hand, we could consider that they manage
to identify when their type of locality is or is not useful. As shown
in Table 13, these approaches frequently produce a single cluster
when data sets are very small. K-means never produced less than
two clusters because the number of clusters itself is a parameter
which was chosen among 2–5. RTs produce a single node in more
than a third of the runs only for sdr, which is a very small data set.
The executions also reveal that EM sometimes produces empty
clusters, i.e., even though the empty cluster was created using
the available training data, no training example is associated to it
when determining to which cluster the training examples belong.
That happened 1–6 times for data sets Org1, Org2, Org4–7.

6.2. Friedman ranking

In order to evaluate the quality of the separation of data pro-
vided by the clustering approaches in comparison to the locality
provided by RTs and k-NN, the clustering algorithms were associ-
ated to RTs as explained in Section 4.1. If this scheme provides bet-
ter performance than single RTs, it shows that the corresponding
clustering algorithm can be more beneficial to SEE than RTs by
themselves.
Table 13
Average number of clusters – values in italics represent more than 1=3 of runs with
less than two clusters.

Data set Number of projects EM k-Means SC

Cocomo81 63 3.10 2.20 1.90
Nasa93 90 6.13 3.67 1.53
Nasa 58 4.67 4.03 3.27
Sdr 12 1.00 2.10 5.00
Desharnais 74 2.90 2.00 2.00
Org1 75 2.70 2.00 1.93
Org2 32 1.10 2.83 1.73
Org3 158 2.76 2.03 1.00
Org4 117 3.40 3.03 2.00
Org5 20 1.70 2.13 1.26
Org6 21 1.06 2.20 1.03
Org7 21 1.20 2.00 1.03
OrgAll 444 4.03 2.07 2.00
The Friedman ranking of the approaches is shown in Table 14.
The Friedman test detected no statistically significant difference
in the MAE of these approaches (statistic Ff ¼ 0:2612 <
Fð4;48Þ ¼ 2:565). SC and EM sometimes perform very similarly
to RTs because they generate a single cluster, thus basically making
predictions based solely on a single RT. However, k-means always
produces at least two clusters, obtaining MAE legitimately similar
to RT’s.

6.3. Approaches most often ranked first or second in terms of MAE

Table 15 shows the approaches most often ranked as first or
second in terms of MAE, separated according to PROMISE and
ISBSG, and according to data set size. Interestingly, the approaches
do not perform so differently from each other depending on the
size of the data set. Clustering approaches manage to be among
the best in a similar frequency to RTs and k-NN, including k-means,
which always divides the training data in at least two clusters. It is
worth noting, though, that k-means would be more likely to per-
form worse for smaller data sets if the learning approaches used
for each training data cluster were not based on locality.

When considering either PROMISE or ISBSG data sets, the ap-
proaches present a clearer difference in behaviour. Approaches
such as k-NN or k-means tend to be more frequently among the
best for ISBSG, which is likely to be more heterogeneous, whereas
RTs tend to be more frequently among the best for PROMISE.

6.4. Magnitude of performance against the best

There are 21 cases in which the approaches analysed (RT, EM, k-
means, SC and k-NN) have performance worse than the best MAE
approach of the data set in more than 0.1 units of SA. Wilcoxon
tests to verify the statistically significance retrieve p-value less
than 0.05 for 16 out of these 21 cases. Holm–Bonferroni corrections
lead to 9 (43%) cases being statistically significantly different. The
number of times that each approach is worse than the best in more
than 0.1 SA is shown in Table 16.

As we can see, even though k-means’ and k-NN’s Friedman
ranking in terms of performance is similar to RT’s and all these ap-
proaches appear overall frequently among the best two in terms of
MAE, k-means and k-NN are less reliable. K-means’ SA is more than
0.1 worse than the best approach in 6 out of 13 data sets, and k-
NN’s is worse in five data sets. RTs, on the other hand, are worse
in more than 0.1 units of SA only in two data sets.

6.5. Discussion

This section shows that EM and SC sometimes fail to separate
training examples by identifying their similar features. However,
if using them for creating new approaches that are not required
to always divide the data into different clusters, we could consider
these approaches to be able to detect when their type of locality is
helpful. As the approaches analysed in this section are considered
all statistically similar across multiple data sets, all of them could
be further exploited in future work to improve SEE. The clusters
provided by k-means and the locality provided by k-NN may be



Table 15
Number of data sets in which each locality approach was ranked first or second according to MAE.

PROMISE data ISBSG data Less than 50 projects More than 50 projects All data

RT: 4 k-NN: 5 EM: 3 RT: 4 RT: 6
SC: 2 k-means: 4 RT: 2 k-NN: 4 k-NN: 6
EM: 2 EM: 3 k-NN: 2 k-means: 3 k-means: 5
k-means: 1 RT: 2 k-means: 2 SC: 3 EM: 5
k-NN: 1 SC: 2 SC: 1 EM: 2 SC: 4

Table 16
Number of times that an approach is worse than
the best MAE approach of the data set in more
than 0.1 units of SA.

Approaches Number of times

RT 2
EM 4
k-NN, SC 5
k-Means 6

Table 17
CFS ranking and RT features relative importance for cocomo81: features ranking, first
tree level in which the feature appeared in more than 50% of the trees, and percentage
of the trees in which it appears in that level. Features bellow the horizontal line are
not selected by CFS.

Features ranking Tree level % Of trees

LOC Level 0 100:00
Development mode - -
Required software reliabilit y Level 1 90:00
Modern programing practices - -
Time constraint for CPU Level 2 73:33
Data base size Level 2 83:34
Main memory constraint - -
Turnaround time - -
Programmers capability - -
Analysts capability - -
Language experience - -

Virtual machine experience - -

Schedule constraint - -
Application experience Level 2 66:67
Use of software tools - -
Machine volatility - -
Process complexity - -
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particularly helpful for more heterogeneous data sets. However,
when these approaches are not beneficial, they can cause SA worse
than the best in more than 0.1 units. RTs are more rarely worse
than the best in more than 0.1 units, being more reliable than
the other approaches analysed.

This analysis provides an answer to RQ2 by analysing the ade-
quacy of different locality approaches to SEE, how well RTs do in
comparison to other approaches and on what type of data set the
approaches are likely to be more useful. Even though RTs have sev-
eral features likely to be beneficial to SEE, other approaches are
also beneficial. The study also provides insight on how to improve
SEE (RQ3). It shows that future research for improving SEE should
try to benefit from different types of locality, as all the approaches
analysed here can be potentially useful in different ways.

7. Insight based on successful ensemble and locality approaches

Sections 5 and 6 give some insights on how to improve SEE and
some directions for future work. For instance, they highlight the
importance of both ensembles and locality, showing that future re-
search may particularly benefit from combining the two to im-
prove SEE through automated approaches. They also show that
different types of locality can provide different benefits. The cur-
rent section explores these issues further. Section 7.1 reproduces
the analysis from our previous paper [56] on the benefit of the
hierarchy of features provided by RTs in comparison to correla-
tion-based feature selection. Section 7.2 is new to this paper and
analyses different strategies of combining ensembles and locality,
and their potential benefits. As explained in Section 1, the key con-
tribution of this paper is not in a new algorithm, but better under-
standing/insight based on experimental studies.

7.1. Analysis of RTs and feature selection

As explained in Section 2.2, using the relative importance of fea-
tures for the predictions, as done by RTs, may be particularly ben-
eficial to SEE. In this section, we analyse whether the separation of
features provided by RTs is important only as a correlation-based
feature selector or whether the relative importance of features is
key to the performance of RTs. If the relative importance is very
beneficial, other approaches which currently perform similarly to
RTs might be improved by incorporating hierarchy of features.

A correlation-based feature selection (CFS) method [57] with
greedy stepwise search [13] was used in the analysis. This method
was chosen because it uses a similar idea to information gain in the
RTs to check what features are more significant. It additionally
checks the correlation among features themselves. Greedy step-
wise search was used because it allows ranking features. The main
reason for using this CFS is its similarity to the working of RTs, with
the key difference that simply using its selected features as inputs
for a learning machine does not provide it with a hierarchy of rel-
ative importance of the features. So, CFS is particularly helpful for
understanding the behaviour of RTs and how beneficial its use of
the relative importance of features is to SEE. This filter method
was also used instead of a wrapper method so that the same set
of features can be used for different models, as explained bellow.

As a first step, we ran all the experiments using the framework
presented in Section 4, but after performing feature selection. This
study showed that feature selection by itself did not change the
fact that RTs and Bag + MLPs were usually among the best in terms
of MMRE, PRED(25) and MAE. The approaches that obtained most
improvements in performance were Bag + RBF, RBF and NCL. How-
ever, the improvements were not large even for these approaches.
Bag + RBF’s SA average considering all data sets was 0.0522 higher,
RBF’s was 0.0533 and NCL’s was 0.0484 higher than when not
using features selection.

As a second step for this analysis, we compared the ranking of
features given by feature selection against the features appearing
in more than 50% of the RTs until their third level, for each data
set. An example is shown in Table 17. The results show that: (1)
the RTs do not use all the features selected by CFS, even though
they usually use at least one of these; (2) the RTs use some features
not selected by CFS; and (3) the RTs put higher ranked features
according to CFS in higher levels of the tree, confirming the use
of the relative importance of features.

So, feature selection by itself was not able to change the relative
performance of different learning approaches. However, instead of
simply using a subset with the most important features, RTs gave
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more importance to more important features as shown by the fea-
ture ranking, being able to achieve comparatively good perfor-
mance and suggesting that hierarchy of features is important
when working with ML for SEE. This is an insight on how to im-
prove SEE (RQ3), specially considering improvements in other
learning machines than RTs, which might be improved by incorpo-
rating hierarchy of features.

It is also interesting to verify which features are usually at the
top level of the hierarchy produced by the RTs, as these are consid-
ered to be the most influential features for the SEEs. The number of
lines of code (LOC) and the functional size are the features that
most frequently appear at the top level. Table 17 shows an exam-
ple for cocomo81, for which 100% of the RTs used LOC at the top
level (level 0). It is reasonable that this feature appears at the top
of the hierarchy, as larger programs require involvement of many
programmers, increasing the communication complexity and
effort.

Nasa93 was the only data set where another feature than LOC or
functional size appeared at the top level in more than 50% of the
RTs. For this data set, 100% of the RTs used the feature CPU time
constraint at the top level. Interestingly, even though nasa and
nasa93 are two data sets from the same organisation, the RTs did
not use the same feature at the top level for these two data sets.
For nasa, 96.67% of the RTs used LOC at the top level. In order to
better understand why this happened, we analysed the values of
the feature CPU time constraint for these two data sets. As shown
in Table 18, the standard deviation of this feature for nasa93 is
much higher than that for nasa. A Levene test [58] shows that
the difference in variance is statistically significant (p-value of
0.0036). This indicates that CPU time constraint varies more for
nasa93 than for nasa. Very different CPU time constraints are likely
to directly affect the difficulty of the software development, thus
considerably influencing its required effort. For example, extra
high CPU time constraint should require much more effort than
low CPU time constraint. So, it is reasonable that this is considered
as an important feature for nasa93.

It is also worth noting that the non-functional system features
that are becoming more important in the modern systems could
also affect the hierarchy provided by the RTs. For example, as writ-
ing secure code becomes more important for some companies,
security-related features may raise in the hierarchy.
Table 19
Difference in SA between Mult and RTs. Cells in italics the cases where Mult provides
higher SA.

Mult’s SA minus RT’s SA Data set size Data set

�0.090502023 63 Cocomo81
�0.083715479 90 Nasa93
�0.083664355 58 Nasa
�0.025044093 444 OrgAll
�0.025036362 158 Org3

0.0187048882 21 Org6
7.2. Combining ensembles and locality into tailored approaches

Section 5 shows that Bag + RT is a way to join the power of
locality and automated ensembles to improve SEE over several
other approaches. This is very encouraging for future research in
the area of automated ensembles and locality for SEE. The reason
is that even though Bag + RTs present several features that moti-
vate their usage for SEE, tailored but automated approaches build-
ing upon the behaviour of this and other approaches should be able
to improve performance even further. In this section, we analyse
the potential of two types of combinations of locality and ensem-
bles tailored for SEE, with the aim of providing more insight on
how to improve SEE.

RTs and Bag + MLPs are two approaches that did considerably
well in Section 5, even though not so well as Bag + RT. As RT is
based on locality and Bag + MLPs is based on ensembles, we inves-
tigate the effect of two types of approach:
Table 18
CPU time constraint information.

Data set Minimum Maximum Avg Std. dev.

Nasa93 1.00 1.66 1.133 0.203
Nasa 1.00 1.66 1.076 0.138
1. Using ensembles to combine several different learning
machines which are based on feature rules, similarly to the
locality of the RTs. In this case, ensembles are used at a higher
level and locality at a lower level in an attempt to improve RTs.
We call this approach ‘‘Mult’’, for multiple types of base learn-
ing machines. The base learning machines were RT, decision
table, conjunctive rule and M5 Rules [13].

2. Using a clustering approach as a locality approach and creating
a Bag + MLP for each training set cluster. In this case, a locality
approach (k-means) is used at a higher level and ensembles at a
lower level in an attempt to improve Bag + MLP. We call this
approach ‘‘Clusb’’, for cluster bagging.

The main issue to be investigated here is when ensembles and
locality at a higher or lower level are more likely to provide
improvements for SEE, giving directions for future work.

Table 19 shows the improvement in SA obtained by Mult in
comparison to RTs in italics. As we can see, the improvements still
need to be increased in future work, being usually close to or better
than 0.05 SA, but lower than 0.1 SA. The insight provided here is
regarding the relationship between the improvement and data
set size. The correlation between them is �0.3337. This is a reason-
able negative correlation, showing that larger improvements may
be achieved for smaller data sets. Several other features of the data
sets are likely to also have some influence in the performance of
the algorithms, making them better or worse for each specific data
set. However, we can see that the size is a feature with consider-
able influence in this case, suggesting that such tailored ensembles
at a higher level can be particularly helpful for smaller data sets.

It is worth noting, though that the effect of Mult can be detri-
mental when the data set is large. This shows that the base learn-
ing machines used in addition to RTs can be particularly good or
detrimental depending on the data set, hindering Mult’s perfor-
mance in the latter case.

Table 20 shows the improvements obtained by Clusb in relation
to Bag + MLPs (results for sdr were omitted as this data set is too
small for clustering). Again, when there are improvements, they
are smaller than 0.1 SA, but mostly close to or better than 0.05
SA. The correlation between improvement and data set size is
0.3055. Again, this is a reasonable amount of correlation consider-
ing SEE, and indicates that locality at a higher level can be mainly
advantageous for larger data sets. As shown in Table 20, Clusb can
be even detrimental for smaller data sets.

So, this section shows that approaches using tailored ensembles
at a higher level may be particular useful for improving perfor-
mance on smaller data sets, whereas approaches using locality at
a higher level may be particularly useful for improving on larger
0.0463227775 20 Org5
0.0481770822 75 Org1
0.0570139663 21 Org7
0.0593049005 117 Org4
0.0657496405 32 Org2
0.0780584515 74 Desharnais
0.0872040493 12 Sdr



Table 20
Difference in SA between Clusb and Bag+MLPs. Cells in italics highlight the cases
where Clusb provides higher SA.

Clusb’s SA minus Bag+MLP’s SA Data set size Data set

�3.532254646 20 Org5
�1.407062325 32 Org2
�0.096944035 58 Nasa
�0.078153916 21 Org7
�0.062928635 74 Desharnais
�0.062255486 21 Org6
�0.017828149 75 Org1

0.0281382156 63 Cocomo81
0.0460938455 158 Org3
0.0684082225 117 Org4
0.0805119301 90 Nasa93
0.0911181081 444 OrgAll
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data sets. Future work on joining ensembles and locality may ben-
efit from exploiting that.
8. Threats to validity

Internal validity regards to establishing that a certain observa-
ble event was responsible for a change in behaviour. It is related
to the question ‘‘Is there something other than the treatment that
could cause the difference in behaviour?’’ [59]. In ML, it is essential
to use a principled experimental framework. In our study, we fol-
lowed a framework that joins the power of statistical tests to the
importance of the magnitude of the differences in performance, be-
sides considering parameters selection as an explicit step in order
to deal with internal validity.

Construct validity regards to accurately naming our measures
and manipulations [59]. MMRE and PRED(25) can be biased and
were used in part of the work to allow comparison of our conclu-
sions to previous works based on MRE measures. However, we
based our conclusions mainly on MAE, which is a non-asymmetric
and unbiased performance measure. SA is also an unbiased mea-
sure recently proposed by Shepperd and Mc Donell [21] and was
used in order to provide more easily interpretable results.

External validity regards to generalising the study’s results out-
side the study to other situations [59]. Typical external validity is-
sues in ML are related to the use of few samples. In the present
study, we used thirteen different data sets containing a large vari-
ety of projects from different organisations and countries in order
to deal with this issue. This number is more than twice the number
of data sets used in previous work on automated ensembles for
SEE, besides considering both PROMISE and ISBSG data sets.
9. Conclusions

This paper presents a principled and comprehensive evaluation
of ensembles of learning machines for SEE, an analysis of different
locality approaches, an experimental framework for evaluating SEE
models and several insights on improving SEE. In this section, we
revisit the research questions and summarise the main content
of their answers.

RQ1: Do existing automated ensembles of learning machines
generally improve effort estimations given by single learning ma-
chines, including potentially adequate locality approaches such
as RTs? Which of them would be more useful?

When considering MAE and SA as performance measures,
Bag + RTs is shown to perform well. It is highly ranked in terms
of performance across multiple data sets, it is frequently among
the best approaches for each data set, and rarely performs consid-
erably worse than the best approach for any data set. Overall, it
performs better than several other approaches, including RTs. This
is an inspiring result for future work on joining the power of
ensembles to locality based on automated approaches. Bag + MLPs,
which is an ensemble approach not benefiting from locality, per-
formed similarly to single RTs.

RQ2: What locality approach is more adequate for SEE tasks? In
particular, how well does RT locality do in comparison to other
locality approaches? On what type of data sets?

RTs, EM, k-means, SC and k-NN were considered all statistically
similar across multiple data sets. So, all of them could be further
exploited in future work to improve SEE. The clusters provided
by k-means and the locality provided by k-NN may be particularly
helpful for more heterogeneous data sets. However, when k-means
and k-NN are not beneficial, they can get very poor performance.
RTs are more reliable than the other approaches analysed. EM
and SC sometimes fail to separate projects into more than one
cluster.

RQ3: What insight on how to further improve software effort
estimation can we gain by analysing competitive ensemble and
locality approaches?

Our paper provides several insights, which are based on exten-
sive experimentation and analyses:

� Bag + RTs do particularly well in comparison to several other
approaches, showing that comparatively well performing fully
automated approaches based on ensembles are possible and
could probably be further improved in terms of magnitude of
performance by being tailored for SEE.
� Single RTs and Bag + MLPs perform slightly worse than

Bag + RTs, but still perform well in comparison to other
approaches. The analyses show that both locality and ensem-
bles can be beneficial to SEE, and that joining these two types
of approach can improve results further. Future work on
improving SEE through automated approaches may benefit
from exploiting that further.
� Bag + MLP has room for improvements in terms of the choice of

base model to be used for performing predictions.
� When considering MMRE and PRED(25), which are based on the

asymmetric measure MRE, RTs and Bag + MLPs are singled out
as frequently highly ranked. Bag + RTs perform less well in
terms of these measures. So, the slightly worse performance
of RTs and Bag + MLPs in comparison to Bag + RTs in terms of
MAE may be related to the fact that RTs and Bag + MLPs suffer
more from underestimations. This issue should be further ana-
lysed as future work and could be helpful for proposing
improvements of these approaches for SEE.
� Future work on locality may benefit not only from ‘‘informed’’

locality learnt based on the target effort of training examples,
such as RT’s locality, but also from clustering approaches such
as k-means and traditional approaches such as k-NN. Care must
be taken, though, as k-means and k-NN are less reliable, possi-
bly performing particularly bad for databases to which they are
not beneficial.
� RT’s locality places more important features in higher levels of

the trees, which is part of the reason for their better perfor-
mance. The benefits of such a hierarchy of features go beyond
simply using a correlation-based feature selector. So, feature
hierarchy might be used for improving SEE where RTs are not
employed.
� Approaches using tailored ensembles at a higher level may be

particular useful for improving performance on smaller data
sets. Approaches using locality at a higher level may be partic-
ularly useful for improving on larger data sets. Future work on
joining ensembles and locality may benefit from exploiting that.

RQ4: How to evaluate/choose ML models for SEE?
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An experimental framework was proposed, considering the
choice of approaches, evaluation procedure and parameters explic-
itly. Evaluation of different approaches across different data sets is
recommended to follow three steps based on (1) Friedman ranking
and test, (2) identification of the approaches among the best and
the characteristics of the data sets to which they tend to perform
better, and (3) how frequently the approaches perform consider-
ably worse than the best. As no approach is always the best for
all data sets, ideally, an organisation should perform experiments
following a principled framework considering its available data
in order to choose a ML model. However, if an organisation has
no resources to perform such experiments, Bag + RTs are recom-
mended, as they perform comparatively well across a large range
of data sets, and rarely perform worse than the best approach for
any data set in more than 0.1 units of SA. Even though RTs perform
slightly worse, they could also be used should the software man-
ager wish to easily understand the rules underlying the model’s
behaviour. In summary, this work provides an extensive analysis
and several insights that can be used by future works on improving
SEE.
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