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ABSTRACT 23 

Oxalic acid is widely reported in the literature as one of the major components of organic aerosol.  24 

It has been reported as both a product of primary emissions from combustion processes and as a 25 

secondary product of atmospheric chemistry.  Concentrations of particulate oxalate have been 26 

measured at a UK urban site (500 daily samples) and for a more limited period simultaneously at a 27 

rural site (100 samples) in the fine (less than 2.5 µm) and coarse (2.5-10 µm) size fractions.  Full 28 

size distributions have also been measured by sampling with a MOUDI cascade impactor.  Average 29 

concentrations of oxalate sampled over different intervals in PM10 are 0.04 ± 0.03 µg m-3 at the 30 

rural site and 0.06 ± 0.05 µg m-3 at the urban background site, broadly comparable with 31 

measurements from other European locations.  During the period of simultaneous sampling at the 32 

urban and rural site, concentrations were very similar and the inter-site correlation in the PM2.5 33 

fraction for oxalate (r = 0.45;  p < 0.001) was appreciably weaker than that for sulphate and nitrate 34 

(r = 0.82 and 0.84, respectively). Nonetheless, the data clearly point to a predominantly secondary  35 

source of oxalate at these sites.  Possible contributions from road traffic and woodsmoke appear to 36 

be very small.  In the larger urban dataset, oxalate in PM2.5 was correlated significantly (p < 0.01) 37 

with sulphate (r = 0.60), nitrate (r = 0.48) and secondary organic carbon (r = 0.25).  Clustering of 38 

air mass back trajectories demonstrates the importance of advection from mainland Europe.  The 39 

size distribution of oxalate at the urban site showed a major mode at around 0.55 µm and a minor 40 

mode at around 1.5µm in the mass distribution.  The former mode is similar to that for sulphate 41 

suggesting either a similar in-cloud formation mechanism, or cloud processing of oxalate and 42 

sulphate after formation in homogeneous reaction processes. 43 

 44 

Keywords:  Oxalate;  secondary organic aerosol;  regional pollution45 
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1. INTRODUCTION 46 

Organic compounds, including both water-soluble and insoluble species, account for a significant 47 

fraction of the fine particulate matter mass in the atmosphere (Jacobson, et al., 2000; Zhang et al., 48 

2007;  Harrison and Yin, 2008). Among the different types of water-soluble organic carbon 49 

(WSOC), monocarboxylic acids (MCA) and dicarboxylic acids (DCA) are groups of significant 50 

interest in the chemical characterisation of PM (Chebbi and Carlier, 1996; Cecinato et al., 1999; 51 

Dabek-Zlotorzynska and McGrath, 2000; Limbeck et al., 2001; Falkovich et al., 2004; Karthikeyan 52 

and Balasubramanian, 2005; Wang et al., 2007). 53 

 54 

Oxalic acid is the dominant dicarboxylic acid (DCA) followed by malonic and succinic acids 55 

(Kawamura and Ikushima, 1993; Kawamura and Usukura, 1993; Yao et al., 2002a,b), and it 56 

constitutes up to 50-70% of total atmospheric DCA (Sempere and Kawamura, 1994; 1996). The 57 

occurrence of oxalate in aerosols and precipitation was demonstrated using ion chromatography by 58 

Norton et al. (1983). Thereafter, Kawamura and Kaplan (1987) found that the diacids (C2-C10) were 59 

mainly associated with particles but a minor fraction of these compounds was present in the vapour 60 

phase. They suggested the possibility that low molecular weight diacids (i.e. oxalic) were present in 61 

the vapour phase under elevated temperature conditions. Oxalic acid is mostly present in the 62 

particulate phase in the ambient atmosphere and is of lower volatility compared with formic and 63 

acetic acids, which are the main monocarboxylic acids present in the gas phase (Chebbi and Carlier, 64 

1996). 65 

 66 

The sources of oxalate in the atmosphere comprise both primary biogenic and anthropogenic 67 

emissions (Kawamura and Kaplan, 1987; Kawamura and Ikushima, 1993) and transformations of 68 

precursors in the gaseous and condensed phases (Dabek-Zlotorzynska and McGrath, 2000; Chebbi 69 

and Carlier, 1996; Kawamura et al., 1996; Myriokefalitakis et al., 2011). Knowledge of the size 70 

distribution of oxalate can provide valuable insights into its sources, formation and growth 71 
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mechanism. Oxalate is predominantly found in size distributions in the large droplet mode, while 72 

the condensation mode and the coarse mode are both relatively less abundant (Kerminen et al., 2000; 73 

Yao et al., 2003; Huang et al., 2006). 74 

 75 

In this paper, we aim to gain a better understanding of the sources and atmospheric behaviour of 76 

particulate oxalate by analysis of a dataset of oxalate concentrations from two UK sites in 77 

comparison with other, major chemical components i.e. sulphate, nitrate, chloride, primary and 78 

secondary organic carbon (OC) and elemental carbon (EC) in ambient air.  79 

 80 

2. METHODOLOGY 81 

2.1 Sampling Locations 82 

2.1.1 Elms Road Observatory Site (EROS)  (N 52:27:13;  W 1:55:41) 83 

EROS is located within the ‘‘green space’’ of the University of Birmingham campus. This is an 84 

urban background site located in an open field within the University. The site is about 3.5 km 85 

southwest of the centre of Birmingham, which has a population of over one million and is part of a 86 

conurbation of 2.5 million population. The nearest anthropogenic sources are a nearby railway 87 

(predominantly electric), some moderately trafficked B roads at about 500 metres and other 88 

activities of the university and local residents. Figure S1 in Supplementary Information shows the 89 

locations of the two sites. 90 

 91 

2.1.2  Harwell (N 51:34:16; W 1:19:31) 92 

This rural site is located within the grounds of the Harwell Science Centre, Didcot, Oxfordshire. 93 

The air sampler was installed outside the main monitoring station. The surrounding area is generally 94 

open with agricultural fields. There is limited activity in the area and the nearest road about 400 95 

metres from the monitoring site is used only for access to buildings within the Science Park. The 96 

nearest trees are at a distance of 200 - 300 metres from the monitoring station. Distant sources 97 
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include the busy A34 dual carriageway about 2 km to the east and the Didcot Power Station about 5 98 

km to the north-east.  The Harwell site is located 115 km from the EROS site, both in central 99 

England. 100 

 101 

2.2  Air Sampling 102 

Airborne particulate matter in both fine (PM2.5) and coarse (PM2.5-10) fractions was collected daily 103 

by Partisol samplers with filter changing taking place at 1200 noon local time over the period from 104 

November 2008 to April 2011 at EROS and from July to December 2010 at Harwell. A 105 

Dichotomous Partisol Plus model 2025D sequential air sampler fitted with a PM10 inlet and 106 

containing a virtual impactor and downstream flow controllers which separate the flow into fine and 107 

coarse fractions, at flow rates of 15.0 L min-1 and 1.7 L min-1, respectively was utilised. The 108 

calculation of coarse PM is achieved by the correction of fine particles in the carrier flow using the 109 

formula, Cc = Mc/Vt – Vc/Vt .Cf (where Cc is the mass concentration of the coarse particle fraction, 110 

Mc the mass collection on coarse particle fraction filter, Vc and Vt are the volumes of air samples 111 

through the coarse fraction filters and the sum of coarse and fine fraction filters, respectively, and Cf 112 

is mass concentration of the fine particle fraction). The Partisol sampler was equipped with a 47 113 

mm quartz fibre filter (Whatman QMA) substrate. Filters were pre-heated at 500oC in air using a 114 

furnace for 4 hours in order to minimize their carbon content and stored sealed in a freezer prior to 115 

air sampling. The exposed filters were stored in filter cassettes within the storage magazines inside 116 

of the instrument. After the sampling was completed, the exposed filters were stored in a metal 117 

container at about -18oC in a freezer until analysis to prevent loss of volatile compounds.  This 118 

sampling method is subject to the usual artefacts of adsorption and volatilisation which occur when 119 

sampling semi-volatile materials on filters. 120 

 121 

Samples were also collected at the EROS site using a MOUDI cascade impactor run at 30 L min-1, 122 

giving cut points at 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32 and 0.18 µm.  Impaction substrates were 47 mm 123 
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Teflon with a 37 mm Teflon back-up.  Because of its reduced pressure the MOUDI is liable to 124 

under-sample semi-volatile particulate substances including nitrate (Huang et al., 2004) and oxalate. 125 

 126 

2.3  Analysis of Samples 127 

2.3.1  OC, EC and TC  128 

For the determination of OC, EC and TC concentration, a Sunset Laboratory Thermal-Optical 129 

Carbon Aerosol Analyser was used in this study. It uses thermal desorption in combination with 130 

optical transmission of laser light through the sample to speciate carbon collected on a quartz fibre 131 

filter (Sunset Laboratory Inc., 2004). Organic carbon is removed during an initial non-oxidizing 132 

temperature ramp from about 75oC to 650oC under a helium atmosphere, and then passes to a 133 

manganese dioxide oxidizing oven where it is converted to carbon dioxide, which is mixed with 134 

hydrogen and converted to methane over a heated nickel catalyst. The methane is subsequently 135 

measured using a flame ionization detector (FID). A second temperature ramp from 500oC to 850oC 136 

is then initialized with the carrier gas switched to a helium/oxygen mixture, under which elemental 137 

carbon and pyrolysis products are oxidized and carried through the system and measured in the 138 

same manner as the organic carbon. A laser is used to monitor the light transmission through the 139 

filter during the analysis, which determines a split point which separates the elemental carbon 140 

formed by charring during the initial non-oxidising temperature ramp from the elemental carbon 141 

that was originally in the sample. The split point is the point in time when the laser signal measured 142 

during the oxidizing stage equals the initial laser signal. The temperature programme used a 143 

protocol recently developed for the European Super-sites for Atmospheric Aerosol Research project 144 

(EUSAAR 2), which is He at 200oC (120 s); 300oC (150 s); 450oC (180 s); 650oC (180 s) following 145 

by He/O2 500oC (120 s); 550oC (120 s); 700oC (70 s) and 850oC (80 s) (Cavalli et al., 2010). A filter 146 

punch 1.5 cm2 in size was removed from the 47-mm QMA filter and loaded into the carbon aerosol 147 

analyser.  The results of OC/EC analysis were corrected for the blank. 148 

 149 
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Organic carbon concentrations were sub-divided into primary and secondary OC using the 150 

elemental carbon tracer method (Castro et al., 1999), as reinterpreted by Pio et al. (2011).  This 151 

involved estimating primary OC as equal to 0.35 EC and secondary OC by difference from the total. 152 

 153 

2.3.2  Ionic species  154 

The exposed QMA filters remaining from carbon analysis and PTFE filters were transferred from 155 

their bags to a narrow neck 15 ml HDPE bottle. Distilled deionised water (10 mL) was added and 156 

the bottles were extracted in an ultrasonic bath for 30 min at room temperature. After 157 

ultrasonication, the filter extracts were filtered through a syringe filter (0.2 µm) and then kept in a 158 

cold room until analysis. For particulate matter collected onto PTFE filters in size-segregated 159 

samples, the filters were wetted with propan-2-ol (0.5 mL) to eliminate the natural hydrophobicity 160 

of the filters. Then, 15 mL of ddw were added and ultrasonication performed for 30 min. The 161 

leachate was filtered and kept refrigerated until being analysed. 162 

 163 

Anion concentrations (sulphate, nitrate, chloride and oxalate) were determined using ion 164 

chromatography (Dionex model ICS-2000). The ICS-2000 is an integrated ion chromatography 165 

system containing an analytical column (IonPac AS11HC with 2 × 250 mm) with a guard column 166 

(IonPac AG11HC with 2 × 50 mm). The eluent for these samples was potassium hydroxide 167 

(gradient) and its flow rate during the analyses was 0.38 mL min-1. The injection sample volume of 168 

200 µl was loaded into the eluent stream and 5 mL sample vials were used with the auto sampler. 169 

The ICS-2000 was controlled by Chromeleon software which also provided data acquisition and 170 

data processing functions. The IC system was calibrated using a series of mixed anion standards of 171 

known concentration (0.2 – 20 ppm) before running a sample. The mixed standard solutions 172 

containing SO4
2-, NO3

-, Cl- and C2O4
2- were prepared and kept in the cold room. 173 

 174 

 175 
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2.3.3 Quality Assurance 176 

The quality of chemical analysis was investigated and detailed in the Supplementary Information.  177 

After completion of the work, it was learned that oxalate is susceptible to degradation in aqueous 178 

solutions (Dabek-Zlotorzynska and McGrath, 2000).  As our samples had been stored for periods 179 

between 2 and 28 days as aqueous extracts at 4ºC prior to analysis, statistical tests were applied to 180 

evaluate oxalate losses.  Application of the Mann-Whitney test showed no significant difference 181 

between samples stored for 7 days and 25 days, and for < 7 days and > 7 days, and we conclude that 182 

degradation losses were negligible. 183 

 184 

2.4 Air Mass Trajectories Calculation 185 

In order to investigate the potential source regions of oxalate, backward air mass trajectories were 186 

calculated for the period of study. The Hybrid Single Particle Lagrangian Integrated Trajectory 187 

(HYSPLIT_4) model available on the NOAA Laboratory website was used for calculation of the 188 

trajectories. The meteorological data used (the Global Data Assimilation System; GDAS) were 189 

obtained at the NOAA Air Resource Laboratory (ARL) archives. Each of the trajectories 190 

corresponded to a 72h back trajectory ending at 500 metres altitude at each site. A cluster analysis 191 

was applied to minimise the uncertainty of individual trajectories associated with the resolution and 192 

accuracy of the meteorological data and by any simplifying assumptions used in the trajectory 193 

model (Stohl, 1998). 194 

 195 

3.  RESULTS AND DISCUSSION 196 

3.1 Oxalate Concentration Level and Major Chemical Composition in PM 197 

Table 1 shows the concentrations of oxalate in PM in comparison with published data from other 198 

sites from Europe and Asia. The differences in oxalate concentration depend on the local sources as 199 

well as on the variability in meteorological and atmospheric chemical conditions in the area at the 200 
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time of sampling. In our dataset, oxalate exhibited higher concentrations in fine particulate matter 201 

than in the coarse fraction especially for aerosol samples taken at the urban site. 202 

 203 

The major anion components of the aerosol samples were also measured in order to investigate 204 

relationships of oxalate with those constituents, and their concentration data appear in Table S1 in 205 

the Supplementary Information. 206 

 207 

3.1.1 Effect of the Local Factors upon Oxalate Concentration 208 

Regression analysis of ionic species in PM2.5 obtained from simultaneously collected EROS and 209 

Harwell samples was conducted using reduced major axis (RMA) regression. The relationships of 210 

concentrations of oxalate and other chemical components between the two sites are summarized in 211 

Table 2. In these data, the correlation coefficients (r) of sulphate and nitrate in fine particles show 212 

quite high values of 0.82 and 0.84, respectively. On the other hand, lower values of correlation 213 

coefficient for chloride, oxalate, WSOC and OCsec between the sites were observed in the range 214 

from 0.45 to 0.57. 215 

 216 

The plot for sulphate in the fine mode showed a zero intercept with a gradient close to 1.0, 217 

indicating that the regional contribution of long-range transport in the atmosphere plays a dominant 218 

role in determining its concentration. For nitrate in PM2.5, the regression intercept in Table 2 219 

indicates a small local increment of 0.11 µg m-3 consistent with the local fine nitrate contribution of 220 

0.17 µg m-3 estimated from the difference in mean concentrations of data from simultaneously 221 

collected samples from the two sites (Table 3). This finding suggests a small nitrate urban 222 

increment, as was concluded for London by Abdalmogith and Harrison (2005), although the 223 

observation of a similar increment of SO4
2- at EROS indicates that it may simply reflect slightly 224 

greater regional formation at EROS. With regard to chloride, oxalate and WSOC, the intercept 225 

values in the fine fraction were low (0.05 µg m-3, 0.01 µg m-3 and 0.01 µg m-3, respectively) 226 
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suggesting regional sources and no significant urban effect.  The Mann-Whitney U test was applied 227 

to assess whether any significant concentration difference for aerosol components existed between 228 

the two sites. This test is a nonparametric test that can be used to analyse data from two independent 229 

groups. Test results indicated that SO4
2-, NO3

-, C2O4
2- and OCsec concentrations measured in PM2.5 230 

simultaneously at EROS and Harwell were not significantly different, with p > 0.05. There were 231 

differences for Cl-, EC, OCprim, OC and WSOC concentrations in fine particles between the two 232 

sites (p < 0.05). The estimation of an urban contribution to atmospheric aerosol was quantified by 233 

subtraction of Harwell concentrations representing the rural site from EROS concentrations 234 

representing  an urban background site. The results for the local contribution can be inferred from 235 

Table 3. As expected, EC shows a strong local contribution (0.6 µg m-3) in PM2.5 reflecting local 236 

urban emissions at the EROS site. OCsec and OCprim in fine particles show a lower local contribution 237 

(0.4 µg m-3
 and 0.3 µg m-3). Small local contributions were observed in fine sulphate, nitrate and 238 

chloride in this study (0.13 µg m-3, 0.17 µg m-3 and 0.08 µg m-3, respectively). There is no 239 

difference in mean concentrations of oxalate in PM2.5 between the two sites although concentrations 240 

are low and less precise than for the other analytes. This finding is strongly supportive of the 241 

formation of oxalate by regional-scale atmospheric chemical processes and atmospheric transport 242 

and its presence as a long-lived species. Backward airmass trajectories arriving at both sites are 243 

reported in a subsequent section in order to investigate further the origins of the regional 244 

contribution. 245 

 246 

3.2 Seasonal Variation of Oxalate 247 

The time series of oxalate measured daily in the fine fraction at the EROS and Harwell sites is 248 

shown in Figure 1. It is clear that the within-site temporal variation of oxalate was greater than the 249 

spatial variation. In order to evaluate seasonal variations, monthly concentration data for major 250 

components are presented in Figure 2. The air sampling period was split into four seasons as 251 

follows:  summer (JJA); autumn (SON); winter (DJF) and spring (MAM). The significance of 252 
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differences in ionic concentrations between the seasons was determined for EROS data by applying 253 

a Kruskal-Wallis test. The number of data in the whole, summer, autumn, winter and spring periods 254 

were 500, 116, 165, 101 and 118 samples, respectively. In these data, test results indicated 255 

significant differences for each of sulphate, nitrate, chloride and oxalate concentrations between the 256 

four seasons (p < 0.05). It is clear that sulphate, nitrate and chloride in the fine fraction were lower 257 

in the summer months (Figure 2), but the dataset is too small to draw firm conclusions. For chloride, 258 

the mean concentration in PM2.5 and PM10 is higher in the winter and lower in the summer as 259 

expected due to generally much higher wind speeds in winter leading to greater generation of 260 

marine aerosol. A seasonal trend for particulate oxalate does not show through so clearly but the 261 

average concentration level is highest in spring.  This may be the result of strong sunshine levels 262 

and plant growth favouring secondary formation, with lower temperatures than in summer reducing 263 

the partitioning into vapour.  Kerminen et al. (2000) saw a clear summer maximum and winter 264 

minimum at sites in Finland. 265 

 266 

3.3 Sources and Formation Pathways of Oxalate by Correlation Analysis 267 

An intra-site correlation analysis of measured components at EROS was conducted in order to 268 

investigate the origin of particles (Table S3). Oxalate in PM2.5 and PM10 shows a slightly higher 269 

correlation (r value) with sulphate (r = 0.60 and r = 0.59, respectively) than with nitrate (r = 0.48 270 

and r = 0.49, respectively) for the entire period. These results suggest that oxalate originates from 271 

similar atmospheric processes as sulphate i.e., from secondary formation. The close relationship of 272 

oxalate with sulphate is consistent with results reported by Kerminen et al. (2000), Yao et al. (2003) 273 

and Yu et al. (2005). Strong relationships of oxalate with sulphate and nitrate are observed 274 

particularly in summer (for PM2.5, r = 0.70 and r = 0.79, respectively; for PM10, r = 0.69 and r = 275 

0.78, respectively). The correlations between oxalate and nitrate suggest that temperature may 276 

influence the oxalate concentration as it does for nitrate through the ammonium nitrate dissociation.  277 

This has recently been confirmed in field observations by Bao et al. (2012), although laboratory 278 
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studies of the atmospheric gas-particle partitioning of oxalic acid/oxalate do not give unequivocal 279 

predictions (Soonsin et al., 2010).  280 

 281 

The mean oxalate concentration in the whole dataset had a very weak correlations with EC in PM2.5, 282 

PM2.5-10 and PM10 (r = 0.07, r = -0.09 and r = 0.04, respectively). This was anticipated from its 283 

regional distribution and reflects an insignificant contribution to oxalate from primary combustion 284 

sources. A similar observation was reported by Yao et al. (2004) and Yu et al. (2005), which clearly 285 

indicated little contribution of vehicular emissions to ambient oxalic acid. EC is strongly related to 286 

road traffic emissions at our site (Yin and Harrison, 2008;  Yin et al., 2010). Moreover, a poor 287 

correlation between oxalate and potassium, a tracer for biomass burning, was observed in the fine 288 

fraction at EROS (r = 0.18) suggesting that primary biomass burning or rapid formation in biomass 289 

burning plumes was also not a major source of the oxalate.  This is contrary to the measurements of 290 

Legrand et al. (2007) using date from K-Puszta (Hungary) and Aveiro (Portugal) who infer a major 291 

contribution of wood burning to oxalate concentrations in winter.  In order to investigate secondary 292 

sources of oxalate aerosol, the relationship between oxalate and secondary OC was determined and 293 

the plots of oxalate versus OCsec in PM2.5 at EROS are shown in Figure S2 (Supplemental 294 

Information).  This figure shows that when all data (n = 500) are pooled, the two variables are 295 

weakly correlated (r = 0.24), but when sub-divided by season, show stronger correlations in spring 296 

(r = 0.35), and especially summer (r = 0.55). The high correlation coefficient found during summer 297 

suggests a photochemical and/or biogenic contribution to both secondary OC formation and to 298 

oxalate. This is in agreement with the results reported by Kawamura and Ikushima (1993) and 299 

Sempere and Kawamura (1994).  The relatively low correlation between oxalate and SOC indicates 300 

that oxalate makes up a very variable proportion of secondary organic aerosol, but is typically 1-3% 301 

of SOA (after conversion of SOC to SOA mass), or 0.5-1.5% expressed as oxalate carbon/organic 302 

carbon. 303 

 304 
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Oxalate in coarse particles showed a modest correlation with nitrate and sulphate in summer (r = 305 

0.49 and r = 0.45, respectively). Coarse oxalate may arise from gas-phase oxalic acid reacting with 306 

pre-existing particles, by particle coagulation or by heterogeneous reactions within large droplets. 307 

However, for the full dataset, oxalate in the coarse mode correlated weakly with the other ionic 308 

species. The general assumption is that oxalate in ambient air is formed in the aqueous phase and 309 

therefore coarse mode oxalate can be produced by aqueous phase processes. Russell and Seinfeld 310 

(1998) have proposed that supermicron particles can be formed by in-cloud processes. Earlier 311 

studies by Dutton and Evans (1996) and Gadd (1999) have reported that oxalate was a by-product 312 

of the hydrolysis of oxaloacetate from citric acid and glyoxylate via the metabolic action of fungi in 313 

soil. Wind-blow soil might then be a source of oxalate in coarse airborne particles, but this seems 314 

unlikely to be a large contributor to airborne concentrations. 315 

 316 

3.4 Size Distribution of Oxalate 317 

The size distribution of oxalate was studied in comparison with major anionic and cationic species 318 

in ambient aerosol.  Earlier studies have highlighted the strong similarities of the oxalate size 319 

distribution with that of sulphate (Kerminen et al., 2000;  Huang et al., 2006). 320 

 321 

In most of our samples, the mass size distributions of oxalate were bimodal consisting of one 322 

submicron mode and one supermicron mode. Some samples appeared to exhibit a more complex 323 

structure (Figure 3).  The dominant mode of oxalate peaked at 0.4 µm – 0.5 µm with a more 324 

variable coarse mode around 1-2 µm.  The finer mode was very similar to that of sulphate, seen in 325 

simultaneously collected material in Figure S3 (Supplementary Information).  This reflects the 326 

significant relationship between C2O4
2- and SO4

2- in PM2.5 (r = 0.60) found at this site for the 327 

samples collected by Partisol Plus air samplers (500 samples). The similarity in size distributions 328 

suggests that oxalate and sulphate may have similar formation pathways.  Yao et al. (2002a) 329 

concluded that oxalate in the 0.32 µm – 0.54 µm size range was produced by in-cloud processes and 330 
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other studies have attributed sulphate in the droplet mode to in-cloud processes (Meng and Seinfeld, 331 

1994; Kerminen and Wexler, 1995; Yu et al., 2005). 332 

 333 

Oxalate has previously been attributed to a range of sources including primary emissions from 334 

vehicular transportation (Kawamura and Kaplan, 1987), biomass burning (Narukawa et al., 1999;  335 

Legrand et al., 2007), biogenic activity (Kawamura, et al. 1996; Jones, 1998) and as a secondary 336 

product of the oxidation of both anthropogenic and biogenic precursors (Kalberer et al., 2001;  Lim 337 

et al., 2005).  Kawamura et al., (1996) and Kalberer et al., (2001) concluded that the condensation 338 

mode oxalate was from the photochemical formation in the gas phase by the reaction of organic 339 

compounds with photochemical oxidants such as OH free radicals and O3 to form gaseous oxalic 340 

acid, followed by its condensation onto existing particles. If gas-particle condensation were the 341 

main process to form oxalate, the highest concentrations should be found in the condensation mode 342 

(0.175 µm – 0.325 µm). On the contrary, the results showed the highest concentration of oxalate in 343 

the droplet mode, suggesting that condensation mode oxalate-containing particles were activated 344 

and became droplet mode particles due to cloud processing. A further proposed mechanism of 345 

formation of oxalic acid is from isoprene by in-cloud oxidation processes (Lim et al. 2005).  346 

 347 

Oxalate in the coarse mode accounted for 12% to 15% of total oxalate for the samples collected by 348 

cascade impactor. There were no significant correlations observed between cationic species and 349 

oxalate in the coarse mode. Similarities in coarse mode size distribution with sodium (1.8 µm – 9.9 350 

µm), suggest the possibility of formation within, or uptake of gaseous oxalate by sea salt particles.  351 

Alternatively, Russell and Seinfeld (1998) have proposed that supermicron particles can be formed 352 

by in-cloud processes. 353 

 354 

 355 

 356 
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3.5 Air Mass Trajectories 357 

3.5.1 Full Dataset at EROS 358 

The 500 daily midday back trajectories arriving at EROS during the sampling period between 359 

November 2008 to April 2011 were generated by the HYSPLIT_4 model. The result of the cluster 360 

analysis of the 3-day trajectories is presented in Figure 4. There were five main back trajectory 361 

clusters arriving at this site; cluster 1 – the fast south westerly accounted for 22% of the total 362 

trajectories, cluster 2 – the north westerly accounted for 21% of the total trajectories, cluster 3 – the 363 

slow southerly accounted for 19% of the total trajectories, cluster 4 – the fast westerly accounted for 364 

9% of the total trajectories, cluster 5 – the slow easterly accounted for 29% of the total trajectories. 365 

Cluster 5 occurred more frequently during autumn and spring. The fast maritime trajectory 366 

represented in cluster 4 occurred predominantly both in the winter and autumn months and less 367 

during the summer. Many of the trajectories during the summer grouped in the slow southerly 368 

airflow (cluster 3) whilst many of winter time trajectories appeared significantly both in cluster 2 369 

and cluster 5. Table 4 contains the average concentration of oxalate and major components in the 370 

fine fraction for all trajectory clusters. The highest concentration of all species in PM except 371 

chloride are associated with the slow easterly (cluster 5) airflows. This result indicates that for the 372 

urban background site (EROS), the concentration of major secondary aerosol species would be 373 

expected to be associated with the long range transport of pollutants emitted from European 374 

mainland sources, consistent with the studies reported by Baker (2010), Abdalmogith and Harrison 375 

(2005) and Buchanan et al. (2002). As anticipated, the fast maritime cluster 4 originating from the 376 

Atlantic Ocean carries the highest chloride concentration of 1.12 µg m-3.  Salvador et al. (2010) 377 

observed the source of oxalic and other diacids from central Europe, consistent with our trajectory 378 

observations. 379 

  380 

A significant source of biogenic emissions from vegetation especially isoprene, could be a potential 381 

precursor associated with continental trajectories as stated by Legrand et al. (2007).  Their study 382 
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confirmed the role of isoprene as a precursor of oxalic acid associated with the high estimated 383 

isoprene emissions in Europe especially in the east flank of France (Simpson et al., 1995).  This 384 

seems unlikely to be the main source, however, as this would produce a pronounced seasonality 385 

which is not observed. 386 

 387 

4.  CONCLUSIONS 388 

Previous work on atmospheric oxalate has highlighted both primary and secondary sources.  The 389 

former have included both road traffic and biomass burning.  However, in our dataset oxalate does 390 

not show a positive urban increment analogous to that of elemental carbon and does not correlate 391 

with EC and for this reason we discount road traffic as a significant source.  The concentrations 392 

measured in our work, although comparable with many contemporary data (see Table 1) are 393 

generally lower than in older studies, suggesting that the road traffic source may have decreased 394 

with the advent of exhaust after-treatment devices.  Additionally, we see no correlation between 395 

oxalate and fine potassium, a woodsmoke tracer, and we think it unlikely that biomass burning is 396 

contributing significantly to concentrations of oxalate.   397 

 398 

A number of features of the behaviour of oxalate are consistent with a secondary, regional source.  399 

Mean concentrations are very similar at the urban and rural sites, and at the rural site oxalate is 400 

significantly correlated with the secondary inorganic components sulphate and nitrate.  After 401 

clustering of airmass back trajectories, the highest concentrations of oxalate were found to be 402 

associated with airmasses originating over the European mainland consistent with the behaviour of 403 

sulphate, nitrate and secondary organic carbon.  It should, however, be noted that the elevation of 404 

oxalate in the continental trajectory is less than that for sulphate, nitrate or secondary organic 405 

carbon and the inter-site correlation between the urban EROS and rural Harwell sites is less strong 406 

for oxalate than for sulphate and nitrate.  This is interpreted as oxalate having a number of 407 

secondary sources through different reaction pathways, depending upon different precursors which 408 
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react at different rates, consequently leading to less spatial homogeneity than for sulphate and 409 

nitrate which have predominantly single precursor compounds.  Biogenic precursors may play a 410 

role, but the lack of a substantial summer maximum suggests that this is not dominant. 411 

 412 

The size distribution of oxalate sampled at the urban site bears strong similarities to that of sulphate 413 

suggesting common pathways in their formation either through aqueous phase formation processes 414 

or cloud processing subsequent to formation. 415 

 416 

417 
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Table 1.  Average concentrations (µg m-3) of oxalic acid in airborne particulate matter in some 660 
previous studies 661 
 662 
Site Period Size fraction Oxalic acid 

concentration 
References 

Urban background*, 
UK 

 PM2.5 0.05 ± 0.05  
Nov 08 – Apr 11 PM2.5-10 0.02 ± 0.01 This work 
 PM10 0.06 ± 0.05  

Rural, UK* 
 PM2.5 0.02 ± 0.03  
Jul – Dec 10 PM2.5-10 0.02 ± 0.01 This work 
 PM10 0.04 ± 0.03  

Mountain, Austria 
Urban background, 
Austria 

Apr 99  0.052 ± 0.029 
Limbeck et al., 2005 Feb 99  0.068 ± 0.023 

Urban, Italy 1997 PM10 0.019  
Semi-rural, Italy 1994 PM10 0.008 Cecinato et al., 1999 
Forest, Italy 1994 PM10 0.007  
Coastal rural, 
Germany Feb – Mar 98 TSP 0.021-0.432  

Rural, Germany Nov – Dec 99;  
Jul – Aug 98 TSP 0.004 – 0.157 Rohrl and Lammel, 

2001 
Urban, Germany Jul – Aug 98 TSP 0.064 – 0.497   

Urban, Finland* Apr – May 06; PM2.5 0.050 ± 0.37 Saarnio et al., 2010 Jul – Sep 06 PM1 0.140± 0.024 
Urban background, 
Romania 

Jan 07 – Mar 08 PM1.5 
PM>1.5 

0.035 ±0.023 
0.049 ±0.032 

Arsene et al., 2011 

Urban, China Dec 06 – Jan 08 
July – Aug 07 

PM2.5 
PM2.5 

0.182 ±0.106 
0.216 ±0.097 

Ho et al., 2011 

Urban, India Jan 07 – May 07 PM10 0.114 ±0.696 Pavuluri et al., 2010 
*  Reported as concentration of oxalate 663 

 664 

Table 2.  Results of regression analyses of EROS (urban background) and Harwell (rural) 665 
concentrations of ionic components in PM2.5 666 
 667 

Analyte RMA regressiona 
Sulphate y = 1.09x  (r = 0.82) 
Nitrate y = 1.05x + 0.11 (r = 0.84) 

Chloride y = 1.13x + 0.05 (r = 0.52) 
Oxalate y = 0.67x + 0.01 (r = 0.45) 
WSOC y = 1.25x + 0.01 (r = 0.52) 
OCsec

b y = 1.62x - 0.67 (r = 0.57) 
a   y represents urban background (EROS) concentration of analyte in µg m-3; x  represents rural (Harwell)  668 
 concentration of analyte in µg m-3 669 
b   Secondary organic carbon calculated based on the ratio of (OC/EC)min = 0.35 670 

 671 

672 
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Table 3.  Statistical data on the concentrations (µg m-3) at EROS and Harwell sites during the 673 
simultaneous period (n = 100) 674 
 675 

 PM2.5  PM2.5-10  PM10 

 Mean Range  Mean Range  Mean Range 

EROS         

SO4
2- 1.60 ± 1.35 0.32 – 6.48  0.25 ± 0.17 <dl – 0.89  1.85 ± 1.47 0.55 – 7.37 

NO3
- 1.61 ± 2.11 <dl – 10.88  0.63 ± 0.64 <dl – 3.29  2.25 ± 2.50 <dl – 12.49 

Cl- 0.35 ± 0.27 <dl – 1.29  0.61 ± 0.51 0.08 – 2.79  0.96 ± 0.67 0.16 – 3.38 

C2O4
2- 0.02 ± 0.02 <dl – 0.10  0.01 ± 0.01 <dl – 0.05  0.03 ± 0.02 <dl – 0.12 

EC 1.0 ± 1.1 0.2 – 8.2  0.04 ± 0.1 <dl – 0.5  1.0 ± 1.1 0.2 – 8.3 

OC 2.3 ± 1.6 0.9 – 12.1  1.2 ± 0.6 0.5 – 5.3  3.5 ± 1.8 1.6 – 13.7 

OCprim 0.4 ± 0.4 0.1 – 2.9  n.a n.a  0.4 ± 0.4 0.1 – 2.9 

OCsec* 2.0 ± 1.3 0.7 – 9.2  n.a n.a  3.1 ± 1.5 1.4 – 10.8 

WSOC 1.7 ± 1.0 0.1 – 6.7  n.a n.a  n.a n.a 

WSOC/OCsec 0.9 ± 0.2 0.1 – 1.2  n.a n.a  n.a n.a 

         

HAR         

SO4
2- 1.47 ± 1.24 0.05 – 6.76  0.35 ± 0.40 <dl – 2.36  1.82 ± 1.40 0.36 – 7.53 

NO3
- 1.44 ± 2.02 0.03 – 11.65  0.71 ± 0.68 <dl – 3.40  2.16 ± 2.50 0.19 – 14.75 

Cl- 0.27 ± 0.23 <dl – 1.22  0.66 ± 0.60 0.04 – 3.17  0.93 ± 0.80 0.09 – 4.39 

C2O4
2- 0.02 ± 0.03 <dl – 0.18  0.02 ± 0.02 <dl – 0.05  0.04 ± 0.03 <dl – 0.19 

EC 0.4 ± 0.4 <dl – 1.9  0.03 ± 0.1 <dl – 0.5  0.4 ± 0.4 <dl – 2.2 

OC 1.8 ± 0.9 0.5 – 4.8  1.0 ± 0.5 0.4 – 3.3  2.8 ± 1.1 1.0 – 7.0 

OCprim 0.1 ± 0.1 <dl – 0.7  n.a n.a  0.1 ± 0.2 <dl – 0.8 

OCsec* 1.6 ± 0.8 0.5 – 4.5  n.a n.a  2.7 ± 1.0 0.9 – 6.6 

WSOC 1.3 ± 0.8 0.1 – 4.0  n.a n.a  n.a n.a 

WSOC/OCsec 0.8 ± 0.2 0.2 – 1.1  n.a n.a  n.a n.a 

* OCprim and OCsec calculated using an assumed OCprim/EC ratio = 0.35 676 

 677 
Table 4.  Average concentrations of major chemical components in PM2.5 including mean 678 
temperature by trajectory clusters at EROS for the entire dataset 679 
 680 

PM2.5 n Concentration, µg m-3     T 

  SO4
2- NO3

- Cl- C2O4
2- OC EC OCprim OCsec (oC) 

           
Cluster 1 108 1.30 1.18 0.79 0.03 2.3 0.8 0.3 2.0 11 

Cluster 2 105 1.59 2.04 0.69 0.04 3.3 1.3 0.4 2.8 9 

Cluster 3 95 1.63 2.08 0.52 0.05 2.5 0.9 0.3 2.2 12 

Cluster 4 45 1.49 1.40 1.12 0.05 2.6 0.9 0.3 2.3 8 

Cluster 5 147 2.71 5.16 0.74 0.06 3.9 1.5 0.5 3.4 8 

           
 681 

 682 

 683 
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Figure 1.  Time series of oxalate concentrations in PM2.5 measured at EROS and Harwell sites 685 
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Figure 2.  Monthly average concentrations of major chemical components in PM2.5 at EROS and 688 
Harwell sites 689 
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Figure 3.  Size distributions of oxalate in aerosol samples collected by MOUDI impactor 696 
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Figure 4.  Results of trajectory clustering for full EROS dataset 700 
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