

On the integer max-linear programming problem
Butkovic, Peter; MacCaig, Marie

DOI:
10.1016/j.dam.2013.08.007

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Butkovic, P & MacCaig, M 2014, 'On the integer max-linear programming problem', Discrete Applied
Mathematics, vol. 162, pp. 128–141. https://doi.org/10.1016/j.dam.2013.08.007

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 02/04/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185478253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.dam.2013.08.007
https://research.birmingham.ac.uk/portal/en/publications/on-the-integer-maxlinear-programming-problem(e17530e0-ef97-4e3a-8464-9e2b5d4cbe9f).html

Discrete Applied Mathematics 162 (2014) 128–141

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the integer max-linear programming problem✩

Peter Butkovič ∗, Marie MacCaig
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

a r t i c l e i n f o

Article history:
Received 7 December 2012
Received in revised form 19 July 2013
Accepted 13 August 2013
Available online 13 September 2013

Keywords:
Max-linear system
Integer vector
Max-linear program

a b s t r a c t

Max-linear programs have been used to describe optimisation problems formultiprocessor
interactive systems. In some instances the variables used in this model are required to be
integer; however, no method seems to exist for finding integer solutions to max-linear
programs.

For a generic class of matrices, we show that integer solutions to two-sided max-linear
systems and programs can be found in polynomial time. For general matrices, we adapt
the existing methods for finding real solutions to obtain algorithms for finding integer
solutions.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with the task of finding integer solutions to two-sided max-linear systems and the integer max-linear
programming problem.

In max-algebra, for a, b ∈ R = R ∪ {−∞}, we define a ⊕ b = max(a, b), a ⊗ b = a + b and extend the pair (⊕, ⊗) to
matrices and vectors in the same way as in linear algebra, that is (assuming compatibility of sizes),

(A ⊕ B)ij = aij ⊕ bij,

(A ⊗ B)ij =

k

aik ⊗ bkj and

(α ⊗ A)ij = α ⊗ aij.

Throughout this paper we will use ε to denote the zero element −∞ as well as any vector or matrix whose every entry is
−∞.

Except for complexity arguments, all multiplications in this paper are in max-algebra, and where appropriate we will
omit the ⊗ symbol.

A two-sided max-linear system (TSS) is of the form

Ax ⊕ c = Bx ⊕ d,

where A, B ∈ R
m×n

and c, d ∈ R
m
. If c = d = ε, then we say that the system is homogeneous; otherwise, it is called

nonhomogeneous. Nonhomogeneous systems can be transformed to homogeneous systems [3]. If B ∈ R
m×k

, a system of the
form

Ax = By

is called a system with separated variables.

✩ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
∗ Corresponding author. Tel.: +44 1214146600; fax: +44 1214143389.

E-mail addresses: P.Butkovic@bham.ac.uk, peter.butkovic@virgin.net (P. Butkovič), mxm779@bham.ac.uk (M. MacCaig).

0166-218X/$ – see front matter© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.08.007

http://dx.doi.org/10.1016/j.dam.2013.08.007
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.08.007&domain=pdf
mailto:P.Butkovic@bham.ac.uk
mailto:peter.butkovic@virgin.net
mailto:mxm779@bham.ac.uk
http://dx.doi.org/10.1016/j.dam.2013.08.007

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 129

The problems of finding solutions to

Ax = By (1.1)

and

Ax = Bx (1.2)

have been studied previously, and one solution approach is to use the Alternating Method [3,9]. If A and B are integer
matrices, then the solution found by the Alternating Method is integer; however, this cannot be guaranteed if A and B are
real.

In Section 3, we show that we can adapt the Alternating Method in order to obtain algorithms which determine whether
integer solutions to these problems exist for real matrices A and B, and find one if it exists. Note that various other methods
for solving a TSS are known [1,5,12], but none of them has been proved polynomial, and there is no obvious way of adapting
them to integrality constraints. In Section 4, we show that, for a certain class of matrices, which represents a generic case,
the problem of finding an integer solution to both systems can be solved in strongly polynomial time, and give a method in
this case.

If f ∈ R
n
, then the function f (x) = f T ⊗ x is called max-linear. Max-linear programming problems (MLPs) seek to

minimise or maximise amax-linear function subject to constraints given bymax-linear equations. Note that unlike in linear
programming there is no obvious way of convertingmaximisation of max-linear functions tominimisation of the same type
of functions, and vice versa.

For A, B ∈ Rm×n, c, d ∈ Rm, f ∈ Rn, the integer max-linear program (IMLP) is given by

f T ⊗ x → min or max
s.t. Ax ⊕ c = Bx ⊕ d
x ∈ Zn.

Solutionmethods to solve theMLP are known; for example, in [3,4], a bisectionmethod is applied to obtain an algorithm
that finds an approximate solution to theMLP. Also, a Newton-type algorithmhas been designed [10] to solve amore general
max-linear fractional programming problem by a reduction to a sequence of mean payoff games. Again, an integer solution
is found for any instances of theMLPwith integer entries, but the problemwith integrality constraints is very different if the
entries are real. In Section 5, we develop an algorithm based on the bisection method which will find an optimal solution
to the IMLP, or determine that no solution exists. In Section 6, we show that, in the generic case, the IMLP can be solved in
polynomial time.

It should be noted that the solution set of a max-linear systemwith all variables on one side can be described in terms of
set coverings and can easily be solved [2,3]. Consequently, the corresponding systems with integrality constraints can also
be easily solved, as can max-linear programs and integer max-linear programs with constraints of this type.

As an example of an application of a TSS and the IMLP, consider the followingmultiprocessor interactive system (MPIS) as
described in [4]; see also [8].

Products P1, . . . , Pm are made up of a number of components which are prepared using n processors. Each processor
contributes to the final product Pi by producing one of its components. We assume that each processor can work on a
component for every product simultaneously, and that work begins on all products as soon as the processor is switched on.

Let aij be the time taken for the jth processor to complete its component for Pi (i = 1, . . . ,m; j = 1, . . . , n). Denote the
starting time of the jth processor by xj (j = 1, . . . , n). Then, for each product Pi, all of its components will be completed at
time max(x1 + ai1, . . . , xn + ain).

Now suppose that, independently, k other processors prepare components for productsQ1, . . . ,Qm and that the duration
and starting times of these are bij and yj, respectively. Then the synchronisation problem is to find starting times of all n + k
processors so that each pair (Pi,Qi) (i = 1, . . . ,m) is completed at the same time. This task is equivalent to solving the
system of equations

max(x1 + ai1, . . . , xn + ain) = max(y1 + bi1, . . . , yk + bik) (i = 1, . . . ,m).

If, additionally, we require that Pi and Qi are not completed before a particular time, ci and di, say, then the equations are

max(x1 + ai1, . . . , xn + ain, ci) = max(y1 + bi1, . . . , yk + bik, di) (i = 1, . . . ,m),

which is equivalent to the two-sided system Ax ⊕ c = By ⊕ d.
When solving theMPIS itmay be required that the starting times are restricted to discrete values, inwhich casewewould

want to look for integer solutions to the TSS.
In applications it may also be required that the starting times of the MPIS are optimised with respect to a given criterion.

In this paper, we consider the case when the objective function is also max-linear and it has to be either minimised or
maximised. As an example, it may be required that all processors in an MPIS begin as soon [late] as possible; that is, the
latest starting time of a processor is as small [big] as possible. In this case, we would set fj = 0 and seek to minimise
[maximise] f (x) = max(x1, . . . , xn).

130 P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141

With this extra requirement we obtain the following MLP:

f T ⊗ x → min or max
s.t. Ax ⊕ c = Bx ⊕ d.

If the starting times are restricted to discrete values, then the MLP is transformed to an IMLP.

2. Preliminaries

We will use the following standard notation and terminology. The symbol α−1 stands for −α, and for a vector γ we use
γ −1 to mean the vector with entries γ −1

i . A vector [matrix] whose every entry belongs to R is called finite as is any scalar
from R. If a matrix has no ε rows [columns], then it is called row [column] R-astic, and it is called doubly R-astic if it is both
row and column R-astic [3,8].

For a ∈ R, the fractional part of a is fr(a) := a − ⌊a⌋. For a matrix A ∈ R
m×n

, we use ⌊A⌋ (⌈A⌉) to denote the matrix with
(i, j) entry equal to ⌊aij⌋ (⌈aij⌉), and similarly for vectors. We define ⌊ε⌋ = ε = ⌈ε⌉.

For positive integers m, n, k, we denote M = {1, . . . ,m},N = {1, . . . , n} and K = {1, . . . , k}. If A = (aij) ∈ R
n×n

, then
λ(A) denotes the maximum cycle mean; that is,

λ(A) = max

ai1 i2 + · · · + ail i1

l
: (i1, . . . , il) is a cycle, l = 1, . . . , n

,

where max(∅) = ε by definition. Note that this definition is independent of whether we allow cycles to contain repeated
nodes [3]. The maximum cycle mean can be calculated in O(n3) time [3,11].

An n × n matrix is called diagonal, written diag(d1, . . . , dn) = diag(d), if its diagonal entries are d1, . . . , dn ∈ R and
off-diagonal entries are ε. We use I to denote the identity matrix, I = diag(0, . . . , 0), of appropriate size.

If a, b ∈ R = R ∪ {+∞}, then we define a⊕
′ b = min(a, b) and a⊗

′ b = a + b if at least one of a, b is finite,
(−∞) ⊗ (+∞) = (+∞) ⊗ (−∞) = −∞ and (−∞) ⊗

′(+∞) = (+∞) ⊗
′(−∞) = +∞. The pair of operations (⊕′, ⊗′)

is extended to matrices and vectors similarly as (⊕, ⊗). For A ∈ R
m×n

, we define A#
= −AT

∈ R
n×m

. It can be shown [3,8]
that (A ⊗ B)# = B#

⊗
′ A#.

Next, we give an overview of some basic properties.

Lemma 2.1. Let A ∈ R
m×n

, x ∈ Rn.

(a) If A is row R-astic, then A ⊗ x is finite.
(b) If A is column R-astic, then A#

⊗
′ x is finite.

Proof. Straightforward from the definitions. �

Lemma 2.2 ([3,8]). If A ∈ R
m×n

and x, y ∈ R
n
, then

x ≤ y ⇒ A ⊗ x ≤ A ⊗ y and A⊗
′ x ≤ A⊗

′ y.

Corollary 2.3 ([3,8]). If A, B ∈ R
m×n

and x ≤ y, then

B#
⊗

′(A ⊗ x) ≤ B#
⊗

′(A ⊗ y).

Lemma 2.4 ([3]). Let A, B ∈ R
m×n

, c, d ∈ R
m
. Then there exists x ∈ Rn satisfying Ax ⊕ c = Bx ⊕ d if and only if there exists

z ∈ Rn+1 satisfying (A|c)z = (B|d)z.

The cancellation law in max-algebra is as follows.

Lemma 2.5 ([3]). Let v, w, a, b ∈ R, a > b. Then, for any real number x, we have

v ⊕ a ⊗ x = w ⊕ b ⊗ x ⇔ v ⊕ a ⊗ x = w.

For any matrices of compatible sizes [3,8],

X ⊗ (X#
⊗

′ Y) ≤ Y , (2.1)

X ⊗ (X#
⊗

′(X ⊗ Z)) = X ⊗ Z . (2.2)

If A ∈ R
m×n

and b ∈ Rm, then, for all j ∈ N , define

Mj(A, b) =

t ∈ M : atj ⊗ b−1

t = max
i

aij ⊗ b−1
i

.

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 131

Proposition 2.6 ([7]). Let A ∈ R
m×n

, b ∈ Rm, and x̄ = A#
⊗

′ b.
(a) An integer solution to Ax ≤ b exists if and only if x̄ is finite. If an integer solution exists, then all integer solutions can be

described as the integer vectors x satisfying x ≤ x̄.
(b) An integer solution to Ax = b exists if and only if

j:x̄j∈Z

Mj(A, b) = M.

If an integer solution exists, then all integer solutions can be described as the integer vectors x satisfying x ≤ x̄ with
j:xj=x̄j

Mj(A, b) = M.

We define x̂ = ⌊A#
⊗

′ b⌋. Then, from Proposition 2.6 and (2.2), we conclude the following.

Corollary 2.7. Let A ∈ R
m×n

, b ∈ R
m
, c ∈ Zn. Then the following hold.

(a) x̂ is the greatest integer solution to Ax ≤ b (provided x̂ is finite).
(b) Ax = b has an integer solution if and only if x̂ is an integer solution.
(c) A ⊗ ⌊A#

⊗
′(A ⊗ c)⌋ = A ⊗ c.

Consider the matrix inequality AX ≤ B, where A ∈ R
m×n

, B ∈ R
m×k

, X ∈ R
n×k

, and let X̂ = ⌊A#
⊗

′ B⌋. This system can be
written as a set of inequalities of the form Ax ≤ b in the following way, using the notation Xr , Br to denote the rth column
of X and B, respectively:

AXr ≤ Br , r = 1, . . . , k.

This allows us to state the following result.

Corollary 2.8. Let A ∈ R
m×n

, B ∈ R
m×k

, C ∈ Zn×k. Then the following hold.

(a) X̂ is the greatest integer solution to AX ≤ B (provided X̂ is finite); that is, A ⊗ ⌊A#
⊗

′ B⌋ ≤ B.
(b) AX = B has an integer solution if and only if X̂ is an integer solution.
(c) A ⊗ ⌊A#

⊗
′(A ⊗ C)⌋ = A ⊗ C.

A vector x ∈ R
n
− {ε} [x ∈ Zn

] satisfying Ax ≤ λx is called a [integer] subeigenvector of A with respect to subeigenvalue
λ. In this paper, we only need results on finite subeigenvectors. The set of all [integer] subeigenvectors with respect to
subeigenvalue λ is denoted

V ∗(A, λ) = {x ∈ Rn
: Ax ≤ λx}

[IV ∗(A, λ) = {x ∈ Zn
: Ax ≤ λx}].

The existence of [integer] subeigenvectors can be determined, and thewhole set can be described, using the following result.

Theorem 2.9 ([3,7]). Let A ∈ R
n×n

, λ ∈ R.
(i) V ∗(A, λ) ≠ ∅ if and only if

λ(λ−1A) ≤ 0.

(ii) If V ∗(A, λ) ≠ ∅, then

V ∗(A, λ) = {λ−1A∗u : u ∈ Rn
}.

(iii) IV ∗(A, λ) ≠ ∅ if and only if

λ(⌈λ−1A⌉) ≤ 0.

(iv) If IV ∗(A, λ) ≠ ∅, then

IV ∗(A, λ) = {⌈λ−1A⌉
∗
z : z ∈ Zn

}.

Corollary 2.10. For A ∈ R
n×n

, it is possible to decide whether IV ∗(A, λ) ≠ ∅ in O(n3) time.

3. Alternating Method for integer solutions

In this section, we show that the Alternating Method [3,9] can be easily adapted to design algorithms that determine
whether integer solutions to (1.1) or (1.2) exist, and if so find one. This method will be crucial for the solution of the IMLP.
We first detail an algorithm to solve systemswith separated variables, and then a second algorithm to solve general systems.
Since the justification behind the construction of the two algorithms in this section is similar to the arguments in [3,9], we
only outline the key results here; full details can be found in [6].

132 P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141

If the ith row of either A or B is ε, then we have (Ax)i = ε = (By)i, which, since x and y are finite, means that the ith
row of the other matrix is also ε. Thus we may remove the redundant ith equation from the equality. If, instead, either of A
or B has an ε column, then this column may be removed without affecting the solution. Hence we assume without loss of
generality that A, B are doubly R-astic.

For any matrix Y ∈ Rm×n, let

K(Y) =

max{|yij| : i ∈ M, j ∈ N}

. (3.1)

We propose the following algorithm to find integer solutions to the system with separated variables (1.1).
Algorithm: SEP-INT-TSS

Input: A ∈ R
m×n

, B ∈ R
m×k

doubly R-astic, any starting vector x(0) ∈ Zn.
Output: An integer solution (x, y) to Ax = By or indication that no such solution exists.

1. r := 0.
2. y(r) := ⌊B#

⊗
′(A ⊗ x(r))⌋.

3. x(r + 1) := ⌊A#
⊗

′(B ⊗ y(r))⌋.
4. If xi(r + 1) < xi(0) for all i ∈ N , then STOP (no solution).
5. If A ⊗ x(r + 1) = B ⊗ y(r), then STOP (solution found).
6. Go to 2.

Theorem 3.1 ([6]). Algorithm SEP-INT-TSS is correct and terminates after

O(mn(n + k)K(A))

operations, if applied to instances where the matrix A is finite.

Lemma 2.4 allows us to write any general two-sided system as a homogeneous system, (1.2), so to find integer solutions
to general systems it is sufficient to develop a method to solve homogeneous systems. The following statement is obvious.

Proposition 3.2. Let A, B ∈ R
m×n

. The problem of finding x ∈ Zn satisfying Ax = Bx is equivalent to finding x ∈ Zn, y ∈ Rm

such that
A
B

x =

I
I

y,

where I ∈ R
m×m

.

We propose the following algorithm to find integer solutions to (1.2).
Algorithm: GEN-INT-TSS

Input: A′, B′
∈ R

m×n
doubly R-astic, I ∈ R

m×m
, any starting vector x(0) ∈ Zn.

Output: A solution x ∈ Zn to A′x = B′x or indication that no such vectors exist.

1. r := 0, A :=

A′

B′

, B :=

I
I

.

2. y(r) := B#
⊗

′(A ⊗ x(r)).
3. x(r + 1) := ⌊A#

⊗
′(B ⊗ y(r))⌋.

4. If xi(r + 1) < xi(0) for all i ∈ N , then STOP (no solution).
5. If A ⊗ x(r + 1) = B ⊗ y(r), then STOP (solution found).
6. Go to (2).

Theorem 3.3 ([6]). Algorithm GEN-INT-TSS is correct and terminates after

O(K(A′
|B′)(mn(m + n)))

operations, if applied to instances where both of the matrices A′, B′ are finite.

4. A polynomially solvable case

In this section, we give a generic condition on the matrices A, B, which, if satisfied, means that we can determine in
polynomial time whether a solution to (1.1) or (1.2) exists, and if so find one. We then show that the method for these
matrices can be extended to find integer solutions to any two-sided systems, but at a cost to efficiency.

4.1. Description of the generic case: Property OneFP

A key observation is that, if Ax = z = By, where x and y are integer vectors, then, for each i, there exist j, t such that
fr(zi) = fr(aij) = fr(bit).

Recall that we assume without loss of generality that A, B are doubly R-astic.

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 133

We define the following properties on a pair of matrices (A, B).

(a) We say that the pair (A, B) satisfies Property ZeroFP if there exists i ∈ M such that there is no pair (aij, bit)with the same
fractional part.

(b) We say that the pair (A, B) satisfies Property One+FP if, for each i ∈ M , there is at least one pair (aij, bit) with the same
fractional part.

(c) We say that the pair (A, B) satisfies Property OneFP if, for each i ∈ M , there is exactly one pair (aij, bit) with the same
fractional part and aij, bit ∈ Z (this can be assumed without loss of generality).

Further, for either a TSS or the IMLP, we will say that the system satisfies Property OneFP if the pair of input matrices
(A, B) satisfies Property OneFP.

Proposition 4.1. Let A ∈ R
m×n

, B ∈ R
m×k

. If an integer solution to Ax = By, or (if n = k) Ax = Bx, exists, then

(∀i ∈ M)(∃j ∈ N, t ∈ K) fr(aij) = fr(bit).

Proof. Assume that x ∈ Zn, y ∈ Zk satisfy Ax = By. Then

(∀i ∈ M) max
j

(aij + xj) = max
j

(bij + yj).

Therefore, for each i, there exist r(i), r ′(i) ∈ N such that

fr(ai,r(i) + xr(i)) = fr(bi,r ′(i) + yr ′(i)).

But fr(ai,r(i) + xr(i)) = fr(ai,r(i)) and fr(bi,r ′(i) + yr ′(i)) = fr(bi,r ′(i)). Hence

(∀i)(∃j ∈ N, t ∈ K) fr(aij) = fr(bit). �

So a necessary condition for a two-sided system to have an integer solution is that (A, B) satisfies Property One+FP, and
therefore any TSS where the pair (A, B) satisfies Property ZeroFP has no integer solutions. The aim of this section is to show
that, when the pair (A, B) satisfies Property OneFP, the problem of finding integer solutions can be solved in polynomial
time.

For such a pair of matrices, we define the pair (r(i), r ′(i)) to be the indices such that fr(ai,r(i)) = fr(bi,r ′(i)), i = 1, . . . ,m.
Without loss of generality we may assume that the entries (ai,r(i), bi,r ′(i)) are integer, and that no other entries in the

equation for eithermatrix are integer (this is sincewemay subtract a constant from each rowof the systemwithout affecting
the answer to the question).

If we randomly generated two real matrices A ∈ R
m×n

, B ∈ R
m×k

, then we would expect there to be very few pairs
of entries (air(i), bir ′(i)) which share the same fractional part. So, when given a random two-sided system, the most likely
outcome is that there is no integer solution (that the matrices satisfy Property ZeroFP). Among matrices which satisfy
Property One+FP, the next most likely outcome is that the pair (A, B) satisfies Property OneFP. While this discussion is
not mathematically rigorous, it does allow us to conclude that matrices (A, B) satisfying either Property ZeroFP or Property
OneFP represent a generic case.

We say that an element aij of A is active with respect to x if aij + xj = (Ax)i, and inactive otherwise. A consequence of
Proposition 4.1 is the following.

Corollary 4.2. Let A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. Then the entries ai,r(i) [bi,r ′(i)] are the only possible active entries
in the matrix A [B] with respect to any integer solution x [y] satisfying Ax = By.

4.2. Systems with separated variables

Let A ∈ R
m×n

, B ∈ R
m×k

. First, we consider the question of whether there exist x ∈ Zn, y ∈ Zk such that Ax = By when
(A, B) satisfies Property OneFP.

Observe that

Ax = z−1
= By ⇔ diag(z)Ax = 0 = diag(z)By.

Thus we conclude the following.

Proposition 4.3. Let A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. Then (x, y) is an integer solution to (1.1) if and only if there
exists z ∈ Zm such that (x, y) satisfy

diag(z) ⊗ A ⊗ x = 0 (4.1)

and

diag(z) ⊗ B ⊗ y = 0. (4.2)

134 P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141

Proposition 4.4. Let A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. Suppose that z ∈ Zm satisfies (4.1) and (4.2) for some integer
vectors x, y. If there exists a column of diag(z)A containing more than one integer entry, then these entries are equal. Similarly
for diag(z)B.

Proof. Assume that z satisfies (4.1). Then, for each i, the entry ai,r(i) is the only active entry of A in the ith row (equivalently,
zi + ai,r(i) is the only active entry in the ith row of diag(z)A). This implies that, if there exist i, t ∈ M such that r(i) = r(t),
then

zi + ai,r(i) + xr(i) = 0 = zt + at,r(t) + xr(t) ⇒ zi + ai,r(i) = zt + at,r(t). �

Proposition 4.5. Simultaneously solving (4.1) and (4.2) is equivalent to the problem of finding z ∈ Zm satisfying

(∀i, t ∈ M) zi − zt ≥ ⌈at,r(i)⌉ − ai,r(i)

and

(∀i, t ∈ M) zi − zt ≥ ⌈bt,r ′(i)⌉ − bi,r ′(i).

Proof. Consider (4.1). We have that, for each i, the integer entry ai,r(i) + zi is the only possible active entry of diag(z)Awith
respect to an integer vector x. From Proposition 2.6 we have that an integer solution to (4.1) exists exactly when the integer
column maxima of diag(z)A cover all rows. A similar argument holds for (4.2). Hence we require that

ai,r(i) + zi > at,r(i) + zt for t ≠ i and at,r(i) ∉ Z, (4.3)

ai,r(i) + zi = at,r(i) + zt for at,r(i) ∈ Z, (4.4)
bi,r ′(i) + zi > bt,r ′(i) + zt for t ≠ i and bt,r ′(i) ∉ Z and
bi,r ′(i) + zi = bt,r ′(i) + zt for bt,r ′(i) ∈ Z.

For any other column (those not containing integer entries) we do not get any additional constraints, since we may set the
corresponding entry of x or y to be small enough so that the column has no effect on the product Ax or By.

This set of inequalities is equivalent to

∀i, t ∈ M ai,r(i) + zi ≥ ⌈at,r(i)⌉ + zt (4.5)

and

∀i, t ∈ M bi,r ′(i) + zi ≥ ⌈bt,r ′(i)⌉ + zt . (4.6)

To see this, note that (4.3) and (4.4) imply (4.5). For the other direction, assume that (4.5) holds. If at,r(i) ∉ Z, then we have
ai,r(i) + zi > at,r(i) + zt , as required. If, instead, at,r(i) ∈ Z, then r(t) = r(i), and from (4.5) we have

ai,r(i) + zi ≥ ⌈at,r(i)⌉ + zt and at,r(t) + zt ≥ ⌈ai,r(t)⌉ + zi,

which together imply equality. Similar arguments hold for the inequalities with entries from B.
The result is obtained by rearranging inequalities (4.5) and (4.6). �

LetW = (wij) ∈ Z
m×m

, where
wij = max(⌈aj,r(i)⌉ − ai,r(i), ⌈bj,r ′(i)⌉ − bi,r ′(i)).

Then, by Proposition 4.5, for solving (1.1), we need to determine whether there exists z ∈ Zm satisfying
(∀i, j ∈ M)zi − zj ≥ wij

⇔(∀i)max
j

(wij + zj) ≤ zi

⇔W ⊗ z ≤ z.
This is exactly the condition for z ∈ IV ∗(W , 0), which can be checked using Theorem 2.9. We conclude the following.

Theorem 4.6. Let A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. For all i, j ∈ M, let

wij = max(⌈aj,r(i)⌉ − ai,r(i), ⌈bj,r ′(i)⌉ − bi,r ′(i)).

Then an integer solution to Ax = By exists if and only if λ(W) ≤ 0. If this is the case, then Ax = By = z−1, where z ∈ IV ∗(W , 0),
and x and y can be found using Proposition 2.6.

Note that, for all i ∈ M , wii = 0, and therefore W is doubly R-astic and λ(W) ≥ 0. Therefore the condition for existence
of an integer solution is equivalent to λ(W) = 0.

From Theorem 4.6 and Corollary 2.10, we obtain the following.

Corollary 4.7. For A ∈ R
m×n

, B ∈ R
m×k

, it is possible to decide whether an integer solution to Ax = By exists in O(m3
+ n + k)

time.

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 135

4.3. General two-sided systems

We now consider finding integer solutions to (1.2) under the condition that (A, B) satisfy Property OneFP. The following
statement is obvious.

Proposition 4.8. Let A, B ∈ R
m×n

satisfy Property OneFP. The problem of finding x ∈ Zn such that Ax = Bx is equivalent to
finding x ∈ Zn, y ∈ Zn such that

A
I

x =

B
I

y.

Observe that, if (A, B) satisfies Property OneFP, then so does (Â, B̂), where

Â =

A
I

, B̂ =

B
I

.

Thus to solve a general two-sided system satisfying Property OneFPwemay convert it into a systemwith separated variables
and solve using Theorem 4.6. By Corollary 4.7, we have the following.

Corollary 4.9. For A, B ∈ R
m×n

satisfying Property OneFP, we can decide whether an integer solution to Ax = Bx exists in
O((m + n)3) time.

Remark 1. The transformation described in Proposition 3.2 is not suitable here, since it has y ∈ R, whereas to use
Theorem 4.6 we want to be able to look for integer solutions. Conversely, the transformation described in Proposition 4.8 is
not suitable to use when discussing the Alternating Method, since we need at least one of the matrices to be finite for our
complexity arguments to hold.

4.4. Some special cases

We now present a couple of cases where we can give simpler conditions, both for systems with separated variables.
The first case occurs when we have r(1) = · · · = r(m) or r ′(1) = · · · = r ′(m). We assume without loss of generality

that the former occurs.

Proposition 4.10. Assume that A ∈ R
m×n

, B ∈ R
m×k

satisfy Property OneFP. Suppose further that r(1) = · · · = r(m) = p. Let
A′ and B′ be the matrices obtained from A and B by subtracting aip from the ith row. Then an integer solution to Ax = By exists if
and only if

B′
⊗ ⌊(B′)# ⊗

′ 0⌋ = 0.

Proof. Observe that an integer solution to Ax = By exists if and only if an integer solution to A′x = B′y exists.
Assume first that x, y are integer vectors satisfying A′x = B′x. Now, from Corollary 4.2, we know that the active entries

in A′ with respect to x are the zero entries in column p. Thus A′
⊗ x = (xp, xp, . . . , xp)T .

Therefore B′y = (xp, xp, . . . , xp)T , which implies that B(x−1
p ⊗ y) = 0, and hence, using Corollary 2.7, we know that

B′
⊗ ⌊(B′)# ⊗

′ 0⌋ = 0.
For the other direction, assume that B′

⊗⌊(B′)# ⊗
′ 0⌋ = 0. Choosing x ∈ Zn such that x = (x1, . . . , xp−1, 0, xp+1, . . . , xn)T

with xj small for j ≠ p gives us that A′
⊗ x = 0, and thus setting y = ⌊(B′)# ⊗

′ 0⌋ gives A′
⊗ x = B′

⊗ y, as required. �

Remark 2. If r(1) = · · · = r(m) = p and r ′(1) = · · · = r ′(m) = q, then the only candidates for active entries are found in
columns Ap and Bq. So, if Ax = By, then xpAp = yqBq, and the other components of x and y are small enough not to affect the
outcome. Thus a solution to (1.1) exists if and only if Ap is a max-multiple of Bq.

The second case occurs when A, B are square, satisfy Property OneFP, and for one matrix the active entries are spread
over all columns. Without loss of generality, assume that it is matrix A, so {r(1), . . . , r(m)} = M .

Proposition 4.11. Assume that A, B ∈ R
m×m

satisfy Property OneFP. Suppose further that r(i) ≠ r(t) for all i, t ∈ M with i ≠ t.
Let A′ be obtained from A by subtracting ai,r(i) from row i for each i and permuting the columns so that the zero entries appear on
the leading diagonal. If

λ(⌈A′
⌉) ≠ 0,

then no integer solution to A ⊗ x = B ⊗ y exists.

Proof. Let B′ be obtained from B by subtracting ai,r(i) from row i for each i. Assume that an integer solution to Ax = By exists.
Then an integer solution to A′x = B′y exists, and the active entries in A′ are the zeros on the diagonal by Corollary 4.2. Thus
(A′x)i = aii + xi = xi, and hence x ∈ IV ∗(A′, 0). By Theorem 2.9 we have λ(⌈A′

⌉) = 0. �

136 P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141

4.5. Adapting the method to solve any TSS

We end this section by giving a brief description of how the solutionmethod for systems satisfying Property OneFP could
be adapted to find integer solutions to any TSS, but that in doing so wemay lose efficiency. Since we can convert any general
two-sided system into a system with separated variables, we discuss systems with separated variables only.

Let A ∈ R
m×n

, B ∈ R
m×k

, and suppose that (A, B) satisfies Property One+FP. In this case, for each row i of Ax = By, we will
have a number of pairs

(air(i,s), bir ′(i,s))

for some integer s ≤ nk, such that fr(air(i,s)) = fr(bir ′(i,s)). Observe that, for any x ∈ Zn, y ∈ Zk satisfying Ax = By, we can
identify a single pair of active entries for each row of the equation, and hence the pair (x, y) is also an integer solution to
the system Ax = B−y, where (A, B−) satisfies Property OneFP and B− is obtained from B by subtracting a small real number
0 < δ ≪ 1 from every entry in B except the single active entry per row in Bwith respect to y.

In general, Ax = By if and only if there exists anm-tuple (k1, . . . , km), ki ∈ K , and a matrix B−
= (b−

ij) ∈ R
m×k

with

b−

ij =

bij if j = ki
bij − δ otherwise,

such that Ax = B−y.
Hence, given a pair (A, B) satisfying Property One+FP, we can generate a number of pairs (A, B(g)), g ∈ N such that x, y

is an integer solution to Ax = By if and only if there exists g such that Ax = B(g)y. Note that each B(g) is obtained from B by
subtracting δ from all but one element, bir ′(i,s), per row, and that the pairs (A, B(g)) satisfy Property OneFP. We can therefore
determine whether an integer solution to Ax = B(g)y exists in strongly polynomial time.

Unfortunately, in the worst case, there could be as many as nk pairs per row, and thus (nk)m matrices to check, so the
complexity of this method is O(m3nmkm). However we can say that, for fixed m, a polynomial method for finding integer
solutions to a TSS exists.

5. Integer max-linear programs

In this section, we develop algorithms to solve the IMLP for problems with finite entries. We will write IMLPmax to mean
the integer max-linear program which maximises f T x, and IMLPmin to denote the program minimising f T x, where f ∈ Rn.
For A, B ∈ Rm×n, c, d ∈ Rm, we denote

S = {x ∈ Rn
: Ax ⊕ c = Bx ⊕ d},

IS = S ∩ Zn,

ISmin
= {x ∈ IS : f (x) ≤ f (z) ∀z ∈ IS},

ISmax
= {x ∈ IS : f (x) ≥ f (z) ∀z ∈ IS}.

The method described here is based on the bisection method used to find real optimal solutions to max-linear programs
described in [3].

The justification for using a bisection method for problems with integrality requirements is given by the following.

Proposition 5.1. Let x, y ∈ IS, with f (x) = α < β = f (y). Then, for all γ ∈ (α, β) with fr(γ) = fr(β), there exists z ∈ IS such
that f (z) = γ .

Proof. Take λ = 0 and µ = γ ⊗ β−1
∈ Z. Let z = λ ⊗ x ⊕ µ ⊗ y. Now S is a max-convex set [3], and so, since λ ⊕ µ = 0,

we have z ∈ S ∩ Zn
= IS. Finally,

f (z) = λ ⊗ f (x) ⊕ µ ⊗ f (y) = α ⊕ γ = γ . �

We also need the following results. The first follows from the cancellation rule, Lemma 2.5.

Lemma 5.2 ([3]). Let α, α′
∈ R, α′ < α and f (x) = f T ⊗ x, f ′(x) = f ′T

⊗ x, where f ′

j < fj for every j ∈ N. Then the following
holds for every x ∈ R : f (x) = α if and only if f (x) ⊕ α′

= f ′(x) ⊕ α.

Since the result holds for real vectors x, it clearly also holds for integer x. Using this and the cancellation law, we can
check whether f (x) attains some value α by checking whether a two-sided system has an integer solution.

Proposition 5.3. f (x) = α for some x ∈ IS if and only if the following integer max-linear system has a solution:

A ⊗ x ⊕ c = B ⊗ x ⊕ d,
f (x) ⊕ α′

= f ′(x) ⊕ α,

x ∈ Zn,

where α′ < α and f ′

j < fj for every j ∈ N.

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 137

We know from Section 3 that we can decide whether a two-sided system has an integer solution by applying Algorithm
GEN-INT-TSS.

5.1. When the objective function is unbounded

We now consider the question of when optimal solutions exist. We denote the minimum and maximum of f by f min and
f max, respectively. Without loss of generality, we assume that c ≥ d, and we denoteM>

= {i ∈ M : ci > di}. Let

Lr = min
j∈N

(fj ⊗ cr ⊗ b−1
rj)

and

L =

max
r∈M>

Lr

. (5.1)

Note that L = −∞ ifM>
= ∅.

In the rest of this section, we follow similar arguments as appear in [3] regarding the max-linear programming problem.
For any result stated without a proof, the result either follows immediately from a theorem in [3], or can be obtained by a
simple adaptation of the proof found there.

Lemma 5.4. If c ≥ d, then f (x) ≥ L for every x ∈ IS.

Theorem 5.5. f min
= −∞ if and only if c = d.

For the upper bound, we need the following results.

Lemma 5.6. Let c ≥ d. If x ∈ IS and (Ax)i > ci for all i ∈ M, then x′
= αx ∈ IS and (Ax′)i ≤ ci ⊗ 1 for some i ∈ M, where

α =

max
i∈M

ci(Ax)−1

i

. (5.2)

Proof. Assume that x ∈ IS. Then Ax = Bx, since Ax > c ≥ d. From the choice of α, we get that

(A(αx))i = α(Ax)i ≥ ci

for all i ∈ M . Further, since A(βx) = B(βx) for any β ∈ Z, we have x′
∈ IS.

Finally, let j ∈ M be an index at which the value of α is attained. Then

(Ax′)j = ⌈cj(Ax)−1
j ⌉(Ax)j ≤ cj ⊗ (Ax)−1

j ⊗ 1 ⊗ (Ax)j ≤ cj ⊗ 1. �

Let

U =

max
r∈M

max
j∈N

(fj ⊗ a−1
rj ⊗ cr ⊗ 1)

. (5.3)

Lemma 5.7. If c ≥ d, then the following hold.

(a) If x ∈ IS and (Ax)r ≤ cr ⊗ 1 for some r ∈ M, then f (x) ≤ U.
(b) If Ax = Bx has no integer solution, then f (x) ≤ U for every x ∈ IS.

Theorem 5.8. f max
= +∞ if and only if Ax = Bx has an integer solution.

So far, we have shown that we can determine immediately when f min is unbounded and can check whether f max is
unbounded, for example by applying Algorithm GEN-INT-TSS. We now need to argue that, when the objective function
value is bounded, there exist integer vectors for which f max and f min are attained.

5.2. Attainment of optimal values

For all j ∈ N , let

hj =

min

min
r∈M

(a−1
rj ⊗ cj),min

r∈M
(b−1

rj ⊗ dj), f −1
j ⊗ L

,

h′

j =

min

min
r∈M

(a−1
rj ⊗ cj),min

r∈M
(b−1

rj ⊗ dj)

, (5.4)

h = (h1, . . . , hn)
T , and h′

= (h′

1, . . . , h
′
n)

T . Observe that h′ is finite and that h is finite if and only if f min > −∞.

138 P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141

Proposition 5.9. Let h and h′ be as defined above.

(i) For any x ∈ IS, the vector x′
= x ⊕ h ∈ IS satisfies x′

≥ h and f (x) = f (x′).
(ii) For any x ∈ IS, the vector x′

= x ⊕ h′
∈ IS satisfies x′

≥ h′ and f (x) ≤ f (x′).

Corollary 5.10. Let h and h′ be as defined above.
(i) If f min > −∞ and IS ≠ ∅, then

f min
= min

x∈IS
f (x),

where IS = IS ∩ {x ∈ Zn
: hj ≤ xj ≤ f −1

j ⊗ f (x̄), j ∈ N}.
(ii) If f max < +∞, then

f max
= max

x∈IS′
f (x),

where IS
′
= IS ∩ {x ∈ Zn

: h′

j ≤ xj ≤ f −1
j ⊗ U, j ∈ N}.

Proof. Similar to the proof of Corollaries 10.2.12 and 10.2.17 in [3]. �

We summarise these results as follows.

Corollary 5.11. If IS ≠ ∅ and f min > −∞ [f max < +∞], then ISmin
≠ ∅ [ISmax

≠ ∅].

Finally, we need a finite lower bound on f max, since Lwill not work in the case when c = d.

Corollary 5.12. Let L′
= ⌊f (h′)⌋. If x ∈ IS, then x′

= x ⊕ h′ is such that f (x′) ≥ L′, and hence f max
≥ L′.

5.3. The algorithms

5.3.1. Algorithm when minimising the objective function
For minimisation, we know that an optimal solution exists provided that c ≠ d. We first check whether f min

= L using
Proposition 5.3: if so, we are done: if not, then we find any feasible x0 using Algorithm GEN-INT-TSS and, if necessary, scale
it using (5.2) so that f (x0) ≤ U . Then we know that f min

∈ (L, f (x0)].
Once we know that, for any x ∈ IS, we have that f (x) satisfies

L ≤ f (x) ≤ f (x0) = U,

we can set

Θ = {θ : θ ∈ (L,U] and fr(θ) = fr(U)},

and apply the bisection method on the set Θ as follows.

1. Order θi ∈ Θ from smallest to largest, and test whether the middle value, θ , is attained for any x ∈ IS.
2. If it is, then we have a new upper bound: f (x) ≤ θ .
3. If it is not, then we have a new lower bound: f (x) > θ .

In 3, we use the fact that, if θ is unattainable, then no value in (L, θ] is attainable. To see this, note that, if there exists
α ∈ (L, θ] attainable, then by Proposition 5.1 all values in (α,U) with fractional part equal to that of U work, but θ satisfied
this condition, and was not attainable. In each case, we have halved the number of values that we need to test.

Using this idea, we obtain the following algorithm for solving IMLPmin.
Algorithm: INT-MAXLINMIN

Input: A, B ∈ Rm×n, c, d ∈ Rm, c ≥ d, c ≠ d, f ∈ Rn.
Output: x ∈ IS such that f (x) = f min.

1. Calculate L from (5.1). If L = f (x) for some x ∈ IS, then STOP (f min
= L).

2. Find an x0 ∈ IS. If (A ⊗ x0)i > ci for all i ∈ M , then scale x0 by α defined in (5.2).
3. L(0) := L,U(0) := f (x0), r := 0.
4. Θ := {θ : θ ∈ (L(r),U(r)] and fr(θ) = fr(U(r))}, η := |Θ|. If η = 1, then STOP (f min

= U(r)).

5. Take θ ∈ Θ ∩

L(r)+U(r)

2 −
1
2 ,

L(r)+U(r)
2 +

1
2

.

6. Check whether f (x) = θ for some x ∈ IS, and if so find one.
If yes, then U(r + 1) = θ, L(r + 1) = L(r).
If no, then U(r + 1) := U(r), L(r + 1) = θ .

7. r := r + 1, go to 4.

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 139

Theorem 5.13. Algorithm INT-MAXLINMIN is correct and terminates after at most O(log(⌈U − L⌉)) iterations.
Let

K̄ =

max{|aij|, |bij|, |ci|, |di|, |fj| : i ∈ M, j ∈ N}

.

Observe that L, L′,U ∈ [−3K̄ , 3K̄].

Corollary 5.14. If Algorithm GEN-INT-TSS is used to perform the checks in steps 1 and 6 , then Algorithm INT-MAXLINMIN has
complexity O(mn(m + n)K̄ log K̄).
Proof. The number of iterations is O(log(⌈U − L⌉)) ≤ O(log 6K̄) = O(log K̄). Each iteration uses Algorithm GEN-INT-TSS
which, from Theorem 3.3, requiresO(K(X |Y)(m′n′(m′

+n′))) operations, where K(X |Y) is defined in (3.1),m′
= m+1, n′

=

n + 1, and

X =

A c
f T α′

, Y =

B d
f ′T α

.

We can choose α′ and f ′ so that α − 1 ≤ α′
≤ α, fj − 1 ≤ f ′

j ≤ fj, and hence K(X |Y) ≤ K̄ + 1. Therefore the number of
operations in a single iteration is O(K̄mn(m + n)). �

5.3.2. Algorithm when maximising the objective function
For maximisation, we cannot assume that c ≠ d, since this is not the criterion for f max to be unbounded. We must first

check that f max < +∞ by verifying that Ax = Bx has no integer solution, which can be done using Algorithm GEN-INT-
TSS. We then check whether f max

= U (where U is defined in (5.3)) using Proposition 5.3. If not, then we find any feasible
solution x0, and set x0 := x0 ⊕ h′ so that f (x0) ≥ L′.

Further, whenmaximising, it is no longer enough to only check values in the intervalwith a single fractional part, because
the upper bound is not attained, and so we can no longer guarantee that the optimal value shares its fractional part with U .
However, we do know that there are only a finite number of possible fractional parts that could be attained; these are fr(fi)
for all i, because f T ⊗ x for x ∈ Zn can only take its fractional part from the elements of f . Once we know, for all x ∈ IS, that
L = f (x0) ≤ f (x) ≤ U , we proceed as follows.
1. Let [J, J + 1) be an interval contained halfway between L and U .
2. Test each of the (at most n) values in this interval that share the same fractional part as a component of f to see whether

they are attained by some x ∈ IS.
3. If one exists, then the largest becomes a new lower bound.
4. If none in the interval are attained, then Proposition 5.1 guarantees that no value higher than J can be attained, and thus

we have a new upper bound.
Continue in this way, each time approximately halving the length of the interval until U − L ≤ 2. In this case, the interval

[J, J + 1) may not be contained entirely in (L,U), and so testing points in this smaller interval is no longer efficient, since
we will check unnecessary points, or find L again. So, instead, check the remaining ≤2n possible points, and choose the one
with smallest value.

We obtain the following algorithm for IMLPmax.
Algorithm: INT-MAXLINMAX

Input: A, B ∈ Rm×n, c, d ∈ Rm, c ≥ d, f ∈ Rn.
Output: x ∈ IS such that f (x) = f max.

1. Calculate U from (5.3). If U = f (x) for some x ∈ IS, then STOP (f max
= U).

2. Check whether Ax = Bx has an integer solution. If yes, STOP (f max
= +∞).

3. Find an x0 ∈ IS. Set x0 := x0 ⊕ h′ as defined in (5.4).
4. L(0) := f (x0),U(0) := U, r := 0.
5. If U − L ≤ 2, go to 8. Else let J :=

1
2 (U(r) + L(r)).

6. Using a bivalent search, find the biggest σ ∈ [J, J + 1) such that (∃j)fr(fj) = fr(σ) and f (x) = σ for some x ∈ IS.
If none exist, then U(r + 1) := J, L(r + 1) = L(r).
Otherwise, U(r + 1) = U(r), L(r + 1) = σ .

7. r := r + 1, go to 5.
8. Using a bivalent search, find the biggest γ ∈ (L(r),U(r)) such that (∃j)fr(fj) = fr(γ) and f (x) = γ for some x ∈ IS.

If none exist, then STOP (f max
= L(r)).

Otherwise STOP, f max
= γ .

Theorem 5.15. Algorithm INT-MAXLINMAX is correct and terminates after atmost O(log(U−L′)) iterations, where L′
= ⌊f (h′)⌋.

Corollary 5.16. If Algorithm GEN-INT-TSS is used to perform the checks in steps 1, 6, and 8 , then Algorithm INT-MAXLINMAX
has complexity O(mn(m + n) log(n)K̄ log K̄).
Proof. The same as the proof of Corollary 5.14, with L replaced by L′, but here we have that each iteration uses Algorithm
GEN-INT-TSS at most log(2n) times. �

140 P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141

6. IMLP and systems with Property OneFP

In Section 4, we showed that, for systems satisfying Property OneFP, we could find integer solutions to a TSS in strongly
polynomial time; here, we show that, if Property OneFP is satisfied, then our solutionmethods for the IMLP can also bemade
more efficient.

6.1. The adapted Alternating Method is pseudopolynomial for systems with Property OneFP

Let A ∈ R
m×n

, B ∈ R
m×k

be doubly R-astic such that the pair (A, B) satisfies Property OneFP. Let Ã = (ãij) and B̃ = (b̃it),
where

ãij =

aij if aij ∈ Z
⌊aij⌋ + s1 otherwise and b̃it =

bit if bit ∈ Z
⌊bit⌋ + s2 otherwise

for some real numbers 0 < s1, s2 < 1, s1 ≠ s2. Note that the pair (Ã, B̃) also satisfies Property OneFP.

Proposition 6.1. Let A, B, Ã, B̃ be as described above. The pair (x, y) [vector x] is an integer solution to Ax = By [Ax = Bx] if
and only if (x, y) [x] is an integer solution to Ãx = B̃y [Ãx = B̃x].

Proof. Assume that Ax = By. We know by Corollary 4.2 that the only active entries in A and B are the integer entries, air(i)
and bir ′(i). We have

(∀i ∈ M)(∀j ∈ N, j ≠ r(i))air(i) + xr(i) > aij + xj
∴ (∀i ∈ M)(∀j ∈ N, j ≠ r(i))air(i) + xr(i) ≥ ⌈aij⌉ + xj
∴ (∀i ∈ M)(∀j ∈ N, j ≠ r(i))air(i) + xr(i) > ⌊aij⌋ + s1 + xj
∴ (∀i ∈ M)(∀j ∈ N, j ≠ r(i))ãir(i) + xr(i) > ãij + xj.

Hence Ax = Ãx, and it can also be shown that By = B̃y. A similar argument holds for the other direction. The case Ax = Bx
is proved analogously. �

Remark 3. Another way to prove this would be to calculate W from (A, B) as described in Theorem 4.6 and W̃ from (Ã, B̃)
similarly. Then note that W = W̃ , and therefore for any integer solutions x, x̃ we have Ax = Bx = z = Ãx̃ = B̃x̃ for any
z ∈ IV ∗(W , 0). Finally, observe that this implies that x = x̃ using Corollary 4.2.

Proposition 6.1 allows us to transformany system satisfying Property OneFP into a systemwith the same solution set, also
satisfying Property OneFP, with the additional property that all non-integer entries of each matrix have the same fractional
part (but different from the fractional part in the other matrix). Without loss of generality, we can set, for instance, s1 = 0.1
and s2 = 0.2 so that no entry in the system has more than one decimal place. Hence the maximum number of symbols in
an entry is

log κ + 1,

where κ = K(Ã|B̃) is as defined in (3.1).
For systems with Property OneFP where A, B are finite, we can input this transformed system into Algorithms SEP-INT-

TSS and GEN-INT-TSS, which we know to have complexity

O(mn(n + k)K(Ã)) and O(κ(mn(m + n))),

respectively, by Theorems 3.1 and 3.3. Therefore both Algorithm SEP-INT-TSS and Algorithm GEN-INT-TSS are
pseudopolynomial when applied to instances with finite matrices satisfying Property OneFP.

Finally, note that the computationally expensive step in Algorithms INT-MAXLINMIN and INT-MAXLINMAX is the
use of Algorithm GEN-INT-TSS in each iteration. Therefore, for systems satisfying Property OneFP, these algorithms are
pseudopolynomial.

6.2. Polynomial algorithm for IMLP for systems with Property OneFP

In Section 6.1, we argued that for pairs (A, B) satisfying Property OneFP the algorithms for solving the IMLP are
pseudopolynomial. Here we show that, if Property OneFP is satisfied, we can perform the checks in each iteration by the
condition from Theorem 4.6 instead of Algorithm GEN-INT-TSS, and obtain a polynomial algorithm for solving IMLP.

In each iteration, Algorithm GEN-INT-TSS is used to determine whether there exists some x ∈ IS satisfying f (x) = α by
finding if an integer solution to the following two-sided system exists:

A c
f T α′

⊗ x =

B d
f ′T α

⊗ x,

where f ′ < f , α′ < α.

P. Butkovič, M. MacCaig / Discrete Applied Mathematics 162 (2014) 128–141 141

Now note that we always test an α that shares its fractional part with some element of f , and we can always choose f ′, α′

so as not to add any fractional parts which already appear in the (m + 1)st row. As before, we can transform this system
into one in which every entry has at most one decimal place, and therefore the maximum number of symbols in an entry is

ν = log κ ′
+ 1,

where

κ ′
= K(X |Y), X =

A c
f T α′

, Y =

B d
f ′T α

.

So we obtain the following proposition.

Proposition 6.2. Let A′
= (A|c), B′

= (B|d). Under the assumptions that

(i) the pair (A′, B′) satisfies Property OneFP, and
(ii) (∀j, t ∈ N) fr(ft) ≠ fr(fj)

Algorithm INT-MAXLINMIN has complexity O((m + n)3 log κ ′) and Algorithm INT-MAXLINMAX has complexity O((m +

n)3 log n log κ ′). Hence the algorithms are polynomial in ν .

Proof. The same as the proofs of Corollaries 5.14 and 5.16, except for the complexity of checking whether f (x) = α. This
requires us to determine whether A c

f T α′

I

 x =

 B d
f ′T α

I

 y

has an integer solution. This can be done in O((m + n + 2)3) = O((m + n)3) time by Corollary 4.9. �

Acknowledgement

The first author was supported by EPSRC grant EP/J00829X/1.

References

[1] X. Allamigeon, S. Gaubert, É. Goubault, The tropical double description method, in: J.-Y. Marion, Th. Schwentick (Eds.), Proceedings of the 27th
International Symposium on Theoretical Aspects of Computer Science, STACS 2010, in: Leibniz International Proceedings in Informatics (LIPIcs), vol.
5, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2010, pp. 47–58.

[2] P. Butkovič, Max-algebra: the linear algebra of combinatorics? Linear Algebra and its Applications 367 (2003) 313–335.
[3] P. Butkovič, Max-Linear Systems: Theory and Algorithms, Springer-Verlag, London, 2010.
[4] P. Butkovič, A. Aminu, Max-linear programming, IMA Journal of Management Mathematics 20 (3) (2009) 233–249.
[5] P. Butkovič, G. Hegedüs, An elimination method for finding all solutions of the system of linear equations over an extremal algebra, Ekonomicko-

Matematický Obzor 20 (1984) 203–215.
[6] P. Butkovič, M.MacCaig, The alternatingmethod for finding integer solutions to two-sided systems, University of Birmingham, School ofMathematics,

2012/08.
[7] P. Butkovič, M. MacCaig, On integer eigenvectors and subeigenvectors in the max-plus algebra, Linear Algebra and its Applications 438 (2013)

3408–3424.
[8] R.A. Cuninghame-Green, Minimax Algebra, in: Lecture Notes in Economics and Math. Systems, vol. 166, Springer, Berlin, 1979.
[9] R.A. Cuninghame-Green, P. Butkovič, The equation Ax = By over (max, +), Theoretical Computer Science 293 (2003) 3–12.

[10] S. Gaubert, R.D. Katz, S. Sergeev, Tropical linear-fractional programming and parametric mean-payoff games, Journal of Symbolic Computation 47
(2012) 1447–1478.

[11] R.M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Mathematics 23 (1978) 309–311.
[12] E.A. Walkup, G. Boriello, a general linear max-plus solution technique, in: J. Gunawardena (Ed.), Idempotency, Cambridge, 1988, pp. 406–415,.

http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref1
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref2
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref3
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref4
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref5
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref7
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref8
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref9
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref10
http://refhub.elsevier.com/S0166-218X(13)00348-X/sbref11

	On the integer max-linear programming problem
	Introduction
	Preliminaries
	Alternating Method for integer solutions
	A polynomially solvable case
	Description of the generic case: Property OneFP
	Systems with separated variables
	General two-sided systems
	Some special cases
	Adapting the method to solve any TSS

	Integer max-linear programs
	When the objective function is unbounded
	Attainment of optimal values
	The algorithms
	Algorithm when minimising the objective function
	Algorithm when maximising the objective function

	IMLP and systems with Property OneFP
	The adapted Alternating Method is pseudopolynomial for systems with Property OneFP
	Polynomial algorithm for IMLP for systems with Property OneFP

	Acknowledgement
	References

