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Abstract 

Articular cartilage is the bearing surface of synovial joints and plays a crucial role in the 

tribology to enable low friction joint movement.  A detailed understanding of the surface 

roughness of articular cartilage is important to understand how natural joints behave and the 

parameters required for future joint replacement materials.  Bovine articular cartilage on bone 

samples were prepared and the surface roughness was measured using scanning electron 

microscopy stereoscopic imaging at magnifications in the range 500  to 2000 .  The 

surface roughness (two-dimensional, Ra, and three-dimensional, Sa) of each sample was 

then measured using atomic force microscopy (AFM).  For stereoscopic imaging the surface 

roughness was found to linearly increase with increasing magnification.  At a magnification of 

500  the mean surface roughness, Ra, was in the range 165.4 ± 5.2 nm to 174 ± 39.3 nm; 

total surface roughness Sa was in the range 183 nm to 261 nm.  The surface roughness 

measurements made using AFM showed Ra in the range 82.6 ± 4.6 nm to 114.4 ± 44.9 nm 

and Sa in the range 86 nm to 136 nm.  Values obtained using SEM stereo imaging were 

always larger than those obtained using AFM.  Stereoscopic imaging can be used to 

investigate the surface roughness of articular cartilage.  The variations seen between 

measurement techniques show that when making comparisons between the surface 

roughness of articular cartilage it is important that the same technique is used. 

 

Keywords: Articular cartilage; Atomic Force Microscopy; Scanning Electron Microscopy; 

Stereoscopic imaging; Surface roughness. 
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1. Introduction 

Articular cartilage is the bearing surface of synovial joints.  It comprises a relatively small 

number of cells (chondrocytes) and an abundant extra cellular matrix of collagen, 

proteoglycan and water (McNary et al., 2012; Shepherd and Seedhom, 1997).  This structure 

makes articular cartilage a viscoelastic material (Fulcher et al. 2009).  Articular cartilage 

plays a crucial role in load transmission in joints and in the tribology to enable low friction 

joint movement (Dowson and Jin, 1986; Yao and Unsworth, 1993).  Therefore, a detailed 

understanding of the surface roughness of articular cartilage is important to understand how 

natural joints behave.  Knowledge of surface roughness will also be important for the 

development of new synthetic or tissue engineered materials to replace diseased or 

damaged articular cartilage (Ateshian, 2007; Danisovic et al., 2012; Ma et al. 2010).  Articular 

cartilage in need of replacement is typically damaged (Fick and Espino, 2011; Fick and 

Espino 2012). 

 

The surface roughness of a material can be characterised by a variety of roughness 

parameters.  The most widely used measure of surface roughness is the arithmetic average, 

Ra, which is determined from a two-dimensional profile.  Surface roughness measurements 

of an area can also be made and Sa is the arithmetic average of a three-dimensional 

roughness (Al-Nawas et al., 2001).  A variety of techniques have been used to measure the 

surface roughness of articular cartilage.  Contacting methods include the use of talysurf 

measurements (Forster and Fisher, 1999; Jones and Walker, 1968; Sayles et al., 1979) or 

Atomic Force Microscopy (Moa-Anderson et al., 2003).  Non-contacting methods have 

included optical coherence tomography (Saarakkala et al., 2009), ultrasound (Saarakkala et 

al. 2004), laser profilometry (Forster and Fisher, 1999) and scanning electron microscopy 

stereoscopic imaging (Bloebaum and Radley, 1995).  Contact methods may not be 

appropriate because articular cartilage is a soft tissue that can deform during measurements; 

non-contact methods have not been investigated across a range of scales/magnifications 

which could affect the measurements. 
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This paper investigates the surface roughness of articular cartilage using scanning electron 

microscopy stereoscopic imaging and atomic force microscopy.  The aim was to investigate 

the effect of magnification on surface roughness using stereoscopic imaging and to compare 

with results obtained by atomic force microscopy.  As articular cartilage is a natural material 

with a high variability in surface properties, a standard roughness specimen was also used to 

quantify the two surface roughness techniques. 

 

2. Materials and methods 

2.1 Standard sample preparation 

A standard surface roughness sample made from electroformed nickel (specimen type 543E 

sinusoidal, Rubert + Co Ltd, Cheadle, UK), with Ra = 35.48 ± 1.2 nm was used to produce a 

polydimethylsiloxane (PDMS) mold so that surface roughness values from scanning electron 

microscopy (SEM) stereoscopic imaging and atomic force microscopy could be compared.  

The PDMS was prepared with 10:1 w/v of Sylgard 184 silicone elastomer and its curing 

agent (Dow Corning Corporation, Midland, USA), followed by rigorous mixing of them in a 

teflon beaker using a spatula.  The mixture was degassed by keeping the viscous fluid in 

open air for 20 minutes.  After that the liquid PDMS was poured onto the standard surface 

roughness sample.  It was then allowed to cure overnight, which produced a transparent and 

solid peelable material at room temperature.  Six PDMS samples were produced.  Since 

PDMS is a non-conductor, for SEM the surface was sputter coated with ~10 nm of platinum 

(Emscope SC-650, Quorum Technologies Ltd, Ashford, UK). 

 

2.2 Articular cartilage preparation 

A bovine joint, aged approximately three years, was obtained from a local butchers shop 

(Johnstans Butchers, Kings Heath, Birmingham, UK).  On arrival in the laboratory the 

cartilage surfaces were inspected with the naked eye and found to be free from damage.  

Samples of cartilage on subchondral bone were then cut from the lateral humeral condyle.  

Four samples, of approximate dimensions 10 mm  10 mm   10 mm were produced.  

Ringer’s solution was used to keep the specimens hydrated; sodium azide (Sigma Aldrich, 
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Gillingham, UK) was added to the Ringer’s solution to prevent the growth of bacteria on the 

cartilage surface. 

 

The specimens were then fixed with 2.5% glutaraldehyde (Agar Scientific Ltd, Essex, UK)) 

and 8% paraformaldehyde (Sigma Aldrich, Missouri, USA) solution in 0.1 M physiological 

equivalent phosphate buffer solution for 20 minutes at room temperature prior to dehydration 

(ap Gwynn et al., 2000).  Dehydration involved using graded ethanol solutions of 50%, 70%, 

90%, 100% and 100% dry ethanol, each being applied for 10 minutes (Kääb et al., 1999).  

Supercritical drying was then undertaken with CO2 using a Critical Point Dryer (E3000, 

Quorum Technologies Ltd, Ashford, UK) to remove the internal fluid from the samples.  The 

cartilage samples were then sputter coated with ~10 nm of platinum (Emscope SC-650, 

Quorum Technologies Ltd, Ashford, UK) for SEM imaging. 

 

2.3 Surface roughness from scanning electron microscopy stereoscopic imaging  

The surface roughness of each PDMS and cartilage specimen was measured using 

scanning electron microscopy (SEM) stereoscopic imaging.  Imaging was performed using a 

Philips XL30 ESEM-FEG (FEI Company, Hillsboro, Oregon, USA), operating in a 

conventional high vacuum mode at a pressure less than 1 × 10-7 mbar.  All the images were 

scanned at 10 kV accelerating voltage of the electron beam, with the working distance 

approximately 10 mm.  The surfaces were scanned at magnifications of 500 , 800 , 1200  

and 2000 .  In order to produce a stereoscopic image it was necessary to take images of 

the surface at 0, 5 and -5 normal to the beam.  These images were then reconstructed 

and surface characterisation performed using the MeX software package, version 5.0.1 

(Alicona Imaging GmbH, Graz, Austria).  Further details of the technique are provided by 

Ostadi et al. (2010).  Four surface roughness measurements (Ra) were made on each 

specimen of PDMS and cartilage, as well as the total surface roughness (Sa). 

 

2.4 Surface roughness from atomic force microscopy 
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After the SEM images were obtained for each PDMS and cartilage specimen, the surface 

roughness was then measured using atomic force microscopy (AFM).  Measurements were 

made using a Nanowizard II AFM (JPK Instruments AG, Berlin, Germany), operating in 

intermittent contact mode.  CSC17 silicon cantilevers were employed, exhibiting ~10 nm 

diameter pyramidal tips (MikroMasch, Tallinn, Estonia).  An area of 25 µm  25 µm was 

scanned.  Four surface roughness measurements (Ra) were made on each specimen of 

PDMS and cartilage, as well as the total surface roughness (Sa). 

 

3. Results 

3.1 PDMS 

The surface roughness measurements for each PDMS sample using SEM stereoscopic 

imaging and AFM are shown in Table 1.  Figure 1 shows images of a PDMS surface from 

SEM stereoscopic imaging and AFM.  It was observed the surface roughness, Ra, for each 

PDMS sample was found to linearly increase with increasing magnification, as shown in 

Figure 2 for two of the PDMS sample.  The same trend was seen for the other four samples.  

All linear regressions were found to be significant (p < 0.05).  Surface roughness, Sa, was 

also found to linearly increase with increasing magnification.  The lowest values of surface 

roughness were found at a magnification of 500 .  At this magnification the mean surface 

roughness Ra for each PDMS sample was in the range 52.3 ± 8.8 nm to 72 ± 8.2 nm; total 

surface roughness Sa was in the range 72 nm to 99 nm.  The surface roughness 

measurements made using AFM showed Ra to be in the range 24.7 ± 1.4 nm to 29.9 ± 9.7 

nm and Sa in the range 28 nm to 29 nm.  Values obtained using SEM stereoscopic imaging 

were always larger than those obtained using AFM. 

 

3.2 Articular cartilage 

The surface roughness measurements for each articular cartilage sample using SEM 

stereoscopic imaging and AFM are shown in Table 2.  Figure 3 shows images of a cartilage 

surface from SEM stereoscopic imaging and AFM.  It was observed that for samples 2, 3 and 

4 the surface roughness, Ra was found to linearly increase with increasing magnification, as 
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shown in Figure 4; all linear regressions were found to be significant (p < 0.05).  The surface 

roughness for sample 1 increased between magnifications of 500  and 800 , but then 

decreased (Figure 4).  There was no significant linear regression found for this sample as p > 

0.05.  Surface roughness, Sa, was also found to follow the same trend as Ra. 

 

Excluding sample 1, the lowest values of surface roughness were found at a magnification of 

500 .  At this magnification the mean surface roughness Ra for each cartilage sample was in 

the range 165.4 ± 5.2 nm to 174 ± 39.3 nm; total surface roughness Sa was in the range 183 

nm to 261 nm.  The surface roughness measurements made using AFM showed Ra in the 

range 82.6 ± 4.6 nm to 114.4 ± 44.9 nm and Sa in the range 86 nm to 136 nm.  Values 

obtained using SEM stereo imaging were always larger than those obtained using AFM 

(Figure 5). 

 

4. Discussion 

Surface roughness values obtained using SEM stereoscopic imaging for the PDMS 

specimens were found to increase with increasing magnification.  This shows that in order to 

compare the surface roughness of specimens using this technique, it is vital that details of 

the magnification used are included so that suitable comparisons can be made. 

 

The authors are unaware that any other study has been undertaken to investigate the 

relationship between magnification and surface roughness using scanning electron 

microscopy stereoscopic imaging.  As magnification increases, the images show finer and 

finer features of a surface.  This may then show deeper troughs in the surface, which leads 

to a higher surface roughness.  At lower magnifications the deeper troughs will not be visible. 

 

For the PDMS samples, which has been molded from a standard roughness sample, the 

AFM results gave roughness values in the range 24.7 to 29.9 nm.  This manufacturer gave 

the surface roughness as 35.48 nm.  The difference may be due to small deformations of the 
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PDMS using AFM.  At the lowest magnification of 500  the surface roughness values were 

in the range 52.3 nm to 72 nm, showing roughness values higher than those made with AFM.  

These experiments just used a single tip diameter of 10 nm for the AFM, but variations in 

roughness values with AFM will occur if different tip sizes are used.  Sedin et al. (2001) 

showed that increasing the tip size caused a decrease in surface roughness for an image 

size of 500 nm, but an increase in surface roughness for a image size of 5000 nm.   

 

Surface roughness values for articular cartilage obtained using SEM stereoscopic imaging 

were also found to increase with increasing magnification, except for sample 1, where it is 

possible that errors occurred in the image reconstruction.  The reconstruction errors come 

from matching the SEM images together to form a single three-dimensional image; a peak 

and valley in the surface may get reconstructed the wrong way round.  The technique uses 

Baysien statistics and the explanation of these errors is beyond the scope of this paper, but 

the reader is directed to Belhumeur (1996).  For stereoscopic images the surface roughness 

values, Ra, were found to vary between 165.4 nm to 174 nm at a magnification of 500  and 

313.7 nm to 418.1 nm at a magnification of 2000 .  A previous study that used SEM 

stereoscopic imaging at a magnification of 100  found features on the cartilage surface to 

have a mean height of 7700 nm (Bloebaum and Radley, 1995).  This mean value is much 

higher than the measurements found in the current study and are likely to be caused by 

contamination seen on the cartilage surface in the SEM images, which Bloebaum and 

Radley (1995) acknowledge.  In our study we used sodium azide to prevent the problem of 

contamination. 

 

The AFM surface roughness values obtained in this study were in the range 82.6 nm to 

114.4 nm.  A previous study that used AFM has shown bovine surface roughness values to 

be 72 ± 23 nm and 65 ± 24 nm for fresh and frozen samples, respectively (Moa-Anderson et 

al., 2003). 
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Values of articular cartilage surface roughness have also been determined previously using 

other techniques.  Forster and Fisher (1999) found cartilage to have a surface roughness of 

around 800 nm, when measured using laser profilometry and 1600 nm when using stylus 

profilometry.  Other stylus profilometry measurements have shown have found human 

articular cartilage to have surface roughness values of 2700 nm (Jones and Walker, 1968) 

and up to 7000 nm (Sayles et al., 1979).  Bovine articular cartilage has been found with a 

roughness of around 8000 nm measured with Optical Coherence Tomography (Saarakkala 

et al., 2009) and between 6800 nm and 12,300 nm using ultrasound (Saarakkala et al., 

2004). 

 

The fixing of specimens with glutaraldehyde is an established technique (e.g. Kääb et al., 

1999) that prevents further degradation of tissue post mortem.  The technique will increase 

the stiffness of specimens (Elber et al., 2011), however, the authors are unaware that it 

causes any changes to surface roughness.  Fixing and dehydration of the cartilage is 

required for conventional scanning electron microscopy.  Unfixed specimens can be imaged 

using cryo-electron microscopy, but this can lead to cracks in the specimens.  Unpublished 

work by the authors has compared the surface of articular cartilage using scanning electron 

microscopy (fixed specimens) and cryo-electron microscopy (unfixed specimens) and the 

surface morphology looks similar. 

 

SEM stereoscopic imaging has been shown to be a suitable technique for measuring the 

surface roughness of articular cartilage.  While AFM is also suitable, the time required for 

accurate scanning of surfaces with features such as those displayed by the cartilage make it 

a slow process; imaging a 25 µm × 25 µm area takes approximately 12 hours for a pixel 

density of 1024 x 1024. 

 

The results show that the measurement of surface roughness of articular cartilage can be 

technique specific and that magnification is an important consideration for SEM stereoscopic 
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imaging.  The compressive modulus and thickness of articular cartilage have been found to 

vary between individuals and joints (Shepherd and Seedhom 1999a,b).  Articular cartilage 

surface roughness is also likely to vary between individuals and joints.  This study shows that 

where comparisons are being made between cartilage samples, it is important that the same 

technique is used so that comparisons are valid. 

 

5. Conclusions 

The following conclusions can be drawn from the results: 

1) Using SEM stereoscopic imaging, the measured surface roughness of PDMS and articular 

cartilage increases with increasing magnification. 

2) The surface roughness, Ra, of bovine articular cartilage was in the range 165.4 ± 5.2 nm to 

174 ± 39.3 nm, when measured using SEM stereoscopic imaging. 

3) The surface roughness, Ra, of bovine articular cartilage was in the range 82.6 ± 4.6 nm to 

114.4 ± 44.9 nm, when measured using AFM. 

4) When making comparisons between the surface roughness of articular cartilage it is 

important that the same technique is used. 
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Table 1.  Surface roughness values for the six PDMS samples measured using SEM stereo 

imaging (at magnifications of 500 , 800 , 1200  and 2000 ) and AFM. 

 

Sample SEM or 
AFM 

Mean 
surface 

roughness, 
Ra 

(nm) 

Standard 
Deviation 

(nm) 

Total 
surface 

roughness, 
Sa 

(nm) 

1 SEM 500 64.0 11.5 87 
 SEM 800 134.8 6.9 183 
 SEM 1200 278.0 42.8 278 
 SEM 2000 563.8 94.8 1126 
 AFM 25.7 0.8 29 
2 SEM 500 52.3 8.8 72 
 SEM 800 101.3 18.2 135 
 SEM 1200 222.0 40.4 283 
 SEM 2000 490.8 29.1 837 
 AFM 24.7 1.4 29 
3 SEM 500 67.0 10.7 91 
 SEM 800 143.0 23.2 181 
 SEM 1200 301.5 49.0 292 
 SEM 2000 648.0 89.5 962 
 AFM 25.3 0.6 29 
4 SEM 500 69.0 12.9 99 
 SEM 800 144.5 24.6 185 
 SEM 1200 280.3 53.8 351 
 SEM 2000 648.5 116.9 829 
 AFM 29.9 9.7 28 
5 SEM 500 63.5 13.6 84 
 SEM 800 148.5 29.6 185 
 SEM 1200 276.3 14.2 298 
 SEM 2000 699.8 136.4 862 
 AFM 25.9 1.0 29 
6 SEM 500 72.0 8.2 87 
 SEM 800 151.3 16.0 191 
 SEM 1200 278.5 33.3 281 
 SEM 2000 611.5 127.8 819 
 AFM 25.0 0.5 30 
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Table 2.  Surface roughness values for the four articular cartilage samples measured using 

SEM stereo imaging (at magnifications of 500 , 800 , 1200  and 2000 ) and AFM. 

 

Sample SEM or 
AFM 

Mean 
surface 

roughness, 
Ra 

(nm) 

Standard 
Deviation 

(nm) 

Total 
surface 

roughness, 
Sa 

(nm) 

1 SEM 500 172.5 5.9 195 
 SEM 800 190.0 3.9 198 
 SEM 1200 122.6 10.2 147 
 SEM 2000 71.3 10.2 86 
 AFM 77.9 10.9 90 
2 SEM 500 213.6 52.7 231 
 SEM 800 232.3 51.8 207 
 SEM 1200 283.1 8.9 296 
 SEM 2000 313.7 29.7 316 
 AFM 114.4 44.9 136 
3 SEM 500 174.0 39.3 261 
 SEM 800 192.0 39.8 232 
 SEM 1200 216.2 37.4 283 
 SEM 2000 418.1 31.6 398 
 AFM 84.1 20.9 86 
4 SEM 500 165.4 5.2 183 
 SEM 800 186.3 5.9 199 
 SEM 1200 216.8 16.2 258 
 SEM 2000 317.8 10.1 319 
 AFM 82.6 4.6 89 
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Figure 

a 

 

b 

Figure 1. Images of the PDMS surface roughness. a) SEM stereoscopic image at a 

magnification of 2000×.; b) AFM image. 
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a 

 

b 

Figure 2.  Mean surface roughness, Ra, plotted against magnification for PDMS.  Line 

indicates a linear correlation.  Error bars represent the standard deviations. a) Sample 1, y = 

0.34x-121.8; R2 = 0.996; p = 0.002; b) Sample 6 y = 0.36x-131.6; R2 = 0.991; p = 0.004 
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a 

 

b 

 

Figure 3. Images of the articular cartilage surface roughness of sample 3. a) SEM 

stereoscopic image of sample 3 at a magnification of 2000×.; b) AFM image. 
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a 

b 

c 
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d 

 

Figure 4.  Mean surface roughness, Ra, plotted against magnification for articular cartilage.  

Line indicates a linear correlation.  Error bars represent the standard deviations. a) Sample 

1, y = -0.077x+226.1; R2 = 0.883; p = 0.06; b) Sample 2 y = 0.068x+183.6; R2 = 0.937; p = 

0.032; c) Sample 3 y = 0.166x+62.8; R2 = 0.91; p = 0.046; d) Sample 4 y = 0.102x+105.7; R2 

= 0.98; p = 0.01. 
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Figure 5.  Articular cartilage mean SEM surface roughness plotted against mean AFM 

surface roughness. The magnification of the SEM was 500 .  Upper line indicates a linear 

correlation y = 1.27x+67.3; R2 = 0.94; p = 0.03.  Lower line is y = x.  Error bars have been 

removed for clarity. 

 


